Analysis of flash pocket profile shape in an extrusion blow mould

Podobne dokumenty
THE INFLUENCE OF THE ENGINE LOAD ON VALUE AND TEMPERATURE DISTRIBUTION IN THE VALVE SEATS OF TURBO DIESEL ENGINE

Krytyczne czynniki sukcesu w zarządzaniu projektami

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów


Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

DELTIM Sp. z o.o. S.K.A ul. Rząsawska 30/38; Częstochowa. Bumper bar X-Lander X-Move

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Tychy, plan miasta: Skala 1: (Polish Edition)

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Hard-Margin Support Vector Machines

Microsystems in Medical Applications Liquid Flow Sensors

Symulacje komputerowe gruboœci œcianki butelki uzyskiwanej w procesie wyt³aczania z rozdmuchiwaniem

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

AN EFFECT OF FLOW NON-UNIFORMITY IN EARTH-TO-AIR MULTI-PIPE HEAT EXCHANGERS (EAHEs) ON THEIR THERMAL PERFORMANCE

ROZPRAWA DOKTORSKA. Model obliczeniowy ogrzewań mikroprzewodowych

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 4

Kompozyty 11: 4 (2011)

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Revenue Maximization. Sept. 25, 2018

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

Uszczelnianie profili firmy KLUŚ na przykładzie profilu PDS 4 - ALU / Sealing KLUŚ profiles on example of PDS 4 - ALU profile. Pasek LED / LED strip

Inquiry Form for Magnets

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

NIESTACJONARNY PRZEPŁYW CIEPŁA W TŁOKU DOŁADOWANEGO SILNIKA Z ZAPŁONEM SAMOCZYNNYM


Standardized Test Practice

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

G14L LPG toroidal tank

For choosen profiles, KLUS company offers end caps with holes for leading power supply cable. It is also possible to drill the end cap independently

099 Łóżko półpiętrowe 2080x1010(1109)x Bunk bed 2080x1010(1109)x1600 W15 INSTRUKCJA MONTAŻU ASSEMBLY INSTRUCTION

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

WYTŁACZANIE Z ROZDMUCHIWANIEM W FORMIE - OCENA JAKOŚCI ZBIORNIKÓW PALIWOWYCH

PRZEPISY RULES PUBLIKACJA NR 83/P PUBLICATION NO. 83/P

Knovel Math: Jakość produktu

Veles started in Our main goal is quality. Thanks to the methods and experience, we are making jobs as fast as it is possible.

DOI: / /32/37

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA. mgr inż. Piotr Smurawski

WENTYLATORY PROMIENIOWE SINGLE-INLET DRUM BĘBNOWE JEDNOSTRUMIENIOWE CENTRIFUGAL FAN

ROZPRAWY NR 128. Stanis³aw Mroziñski

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS

NARZĘDZIA DO PRZETWÓRSTWA POLIMERÓW

Materiałowe i technologiczne uwarunkowania stanu naprężeń własnych i anizotropii wtórnej powłok cylindrycznych wytłaczanych z polietylenu


Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

Stargard Szczecinski i okolice (Polish Edition)

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

Cracow University of Economics Poland

Lecture 18 Review for Exam 1

Struktury proponowane dla unikalnych rozwiązań architektonicznych.

Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition)

BARIERA ANTYKONDENSACYJNA

DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!

The Overview of Civilian Applications of Airborne SAR Systems

098 Łóżko piętrowe 2080x1010(1109)x Double bunk bed 2080x1010(1109)x1600 W15 MONTAGEANLEITUNG ASSEMBLY INSTRUCTION

HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07

P R A C A D Y P L O M O W A

HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Instrukcja obsługi User s manual

The analysis of the energy demand for heating and cooling of the house built on the basis of the traditional Canadian wood-frame construction

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

ELECTRIC AND MAGNETIC FIELDS NEAR NEW POWER TRANSMISSION LINES POLA ELEKTRYCZNE I MAGNETYCZNE WOKÓŁ NOWYCH LINII ELEKTROENERGETYCZNYCH

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Extraclass. Football Men. Season 2009/10 - Autumn round

SPIS TREŚCI SPIS WAŻNIEJSZYCH OZNACZEŃ WSTĘP KRÓTKA CHARAKTERYSTYKA SEKTORA ENERGETYCZNEGO W POLSCE... 14

Installation of EuroCert software for qualified electronic signature

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

January 1st, Canvas Prints including Stretching. What We Use

Jazz EB207S is a slim, compact and outstanding looking SATA to USB 2.0 HDD enclosure. The case is

Akademia Morska w Szczecinie. Wydział Mechaniczny

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume Issue 1 DOI: /amm

MAGNESY KATALOG d e s i g n p r o d u c e d e l i v e r

Systemy wbudowane. Poziomy abstrakcji projektowania systemów HW/SW. Wykład 9: SystemC modelowanie na różnych poziomach abstrakcji

SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS

ZWROTNICOWY ROZJAZD.

BIOPHYSICS. Politechnika Łódzka, ul. Żeromskiego 116, Łódź, tel. (042)

Has the heat wave frequency or intensity changed in Poland since 1950?

TURNTABLES OBROTNICE 1

Macromolecular Chemistry

[ROBOKIDS MANUAL] ROBOROBO

WIADRA I KASTRY BUDOWLANE BUILDING BUCKETS AND CONTAINERS

Convolution semigroups with linear Jacobi parameters

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

Modelowanie zagadnień cieplnych: analiza porównawcza wyników programów ZSoil i AnsysFluent

ITIL 4 Certification

APPLICATION. Journal of Machine Construction and Maintenance Problemy eksploatacji QUARTERLY ISSN /2017 (107) p

yft Lublin, June 1999

Skurcz przetwórczy wyprasek a warunki wtryskiwania *)

Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2)

Transkrypt:

460 Dariusz KWIATKOWSKI, Micha³ MOD AWSKI, Tomasz JARUGA Dariusz KWIATKOWSKI, Micha³ MOD AWSKI, Tomasz JARUGA* Department of Polymer Processing, Institute of Mechanical Engineering Czêstochowa University of Technology, Al. Armii Krajowej 19 C, 42-201 Czêstochowa, * e-mail: jaruga@ipp.pcz.pl Analysis of flash pocket profile shape in an extrusion blow mould Abstract: The cycle time is a very important issue in manufacturing processes, especially in packaging industry. It depends on the product shape and size, particularly on the wall thickness, but also on tool design and process settings. One of the most important factors influencing the cycle time is cooling system efficiency in the tool. In case of extrusion blow moulding not only the product should be cooled rapidly but also the flash material in the pinch-off zone. The results of an PE-HD bottle extrusion blow moulding simulation were presented in this paper. The simulation was done with the use of ANSYS Polyflow software. The cooling efficiency in the pinch-off zone was evaluated for different profiles of the flash pocket by comparison of the temperature distribution after cooling time. It was found that the triangled and semicircular profile is more efficient than trapezoidal and flat shape. ANALIZA PROFILU PRZEKROJU KIESZENI ODPADOWEJ W FORMIE ROZDMU- CHOWEJ Streszczenie: Czas cyklu jest niezwykle istotnym czynnikiem w procesach wytwarzania, szczególnie w przemyœle opakowañ. Zale y on od kszta³tu i wymiarów wyrobu, szczególnie od gruboœci œcianek, ale tak e od konstrukcji narzêdzia i warunków procesu technologicznego. Jednym z najwa niejszych czynników wp³ywaj¹cych na czas cyklu jest efektywnoœæ ch³odzenia wyrobu w narzêdziu. W procesie wyt³aczania z rozdmuchiwaniem nie tylko nale y szybko ch³odziæ wyrób, ale tak e odpad w strefie zgniatania. W niniejszym artykule zosta³y zaprezentowane wyniki symulacji procesu wyt³aczania z rozdmuchiwaniem butelki z tworzywa PE-HD. Symulacjê wykonano z wykorzystaniem oprogramowania ANSYS Polyflow. Oszacowano efektywnoœæ ch³odzenia w strefie zgniatania dla ró - nych kszta³tów profilu formy w kieszeni odpadowej poprzez porównanie rozk³adu temperatury po czasie ch³odzenia. Ustalono, e profile o kszta³cie trójk¹tnym oraz pó³kolistym s¹ bardziej efektywne ni profile p³aski oraz trapezoidalny. 1. INTRODUCTION The extrusion blow moulding process is used to manufacture hollow parts like bottles and other types of containers. In most cases polyolefins are processed by this technology. This process is divided in two stages. First, a parison is extruded and then, in the second stage, it is blown in a mould. The pinching edges in a mould cut off the excessive material which stays in pinch-off sections while the mould is closed. A pinch-off section consists of a pinching edge, a pressure zone and a flash pocket (pinch relief) where the plastic should be intensively cooled. Blow moulds consist of at least several parts. A scheme of an exemplary blow mould is presented in Fig. 1. Three main zones can be distinguished in a pinch-off section (Fig. 2.): pinching edge just behind the cavity, then pressure zone to compress the material and, finally, flash pocket where most of the flash is held. The design of a pinch-off section should assure the efficient cooling down of the flash the contact surface

Analysis of flash pocket profile shape in an extrusion blow mould 461 Fig. 1. Scheme of an extrusion blow mould [1, 2] Rys. 1. Schemat formy do rozdmuchiwania, 1 elementy ustalaj¹ce, 2 wstawka no owa (odcinaj¹ca), 3 element formuj¹cy szyjkê, 4 strefa zgniatania, 5 krawêdÿ tn¹ca, 6 p³yta tylna (mocuj¹ca), 7 element formuj¹cy korpus opakowania, 8 gniazdo formuj¹ce, 9 kana³ odpowietrzaj¹cy, 10 elementy prowadz¹ce (s³upy i tuleje prowadz¹ce, 11 element formuj¹cy dno opakowania, 12 kolektor uk³adu ch³odz¹cego [1, 2] between parison and mould should be as large it can be achieved by manufacturing of a riffled surface. Moreover, the distance between two mould halves in this section is also important. If this distance is too small the flash is compressed with a high pressure and this can result in mould opening because of high force generation. Moreover, the entire pinch-off zone should be large enough to hold all the flash after mould closing. The pinch-off area size and Fig. 2. Geometry of pinch-off section in an extrusion blow mould [1] Rys. 2. Kszta³t strefy zgniatania w formie rozdmuchowej [1] dimensions should be optimized for the particular product, depending on its size and shape, parison dimensions (wall thickness and diameter) machine parameters etc. [1,3] The recommended geometry of a pinch-off section in a blow mould is shown in details in Fig. 3. In this the ribs are designed to increase the cooling area of the flash relief and the angle of a rib is 90. A shape of the cavity is determined by an extrusion blow moulded product s shape. The desired product properties can be obtained by the control of processing parameters [5] but the mould design is also an important factor influencing the part quality. For example, the formation of the polymer parison bond inside a mould depends on the pinching edge design [6]. This bond is an area of a high risk of a failure during the part exploitation. The flash pocket and cooling system design have in turn the influence on the process, especially on the cycle time because the flash cooling efficiency can be different.

462 Dariusz KWIATKOWSKI, Micha³ MOD AWSKI, Tomasz JARUGA Fig. 3. Section through a pinch-off area; b 1 width of pinching edge, b 2 width of pressure zone, t 1 depth of pressure zone, t 2 depth of flash pocket, t 3 distance of ribs, x ribbed area of flash pocket, I cavity, 1, 2 transition angles, s 1 average wall thickness of the product near pinch-off area, s 2 average parison wall thickness in pinch-off area [1, 4] Rys. 3. Przekrój strefy zgniatania; b1 szerokoœæ krawêdzi tn¹cej, b2 szerokoœæ strefy œciskania, t1 g³êbokoœæ strefy œciskania, t2 g³êbokoœæ kieszeni odpadowej, t3 odleg³oœæ miêdzy ebrami, x u ebrowana strefa kieszeni odpadowej, I gniazdo formuj¹ce, 1, 2 k¹ty przejœcia pomiêdzy strefami, s1 œrednia gruboœæ œcianki wyrobu w pobli u strefy zgniatania, s2 œrednia gruboœæ œcianki rêkawa w strefie zgniatania [1, 4] 2. EXPERIMENTAL The aim of this investigation was to compare the effectiveness of heat transfer in the flash pocket of an extrusion blow mould for different profile shapes in the cross-section of this mould zone, by a mean of computer simulation. ANSYS Polyflow 14.5 software was used for this purpose. Usually, in case of extrusion blow moulding process simulation, this software is used to predict the distribution of product thickness [7] and, for example, to optimize the parison dimensions [8, 9]. 2.1. The tool and the product The extrusion blow moulding process with a mould for manufacturing an axi-symmetrical Fig. 4. Half of the analyzed extrusion blow mould, a) the view of the mould, b) the cross-section considered in the computer simulation Rys. 4. Czêœæ analizowanej formy rozdmuchowej, a) widok formy, b) przekrój rozwa any w symulacji komputerowej bottle was analyzed in this investigation. This single-cavity mould is shown in Fig. 4. The bottle dimensions are: 225mm of height and 62mm of diameter. There are more recommendations in the literature concerning the pinch-off zone design in the plane perpendicular to the mould parting plane [1-3] than in the cross-section in the plane marked as A-A in Fig. 4 a. Since the mould surface being in contact with molten polymer should be large, a flash pocket is usually riffled in order to increase the contact area and to cool the polymer better. In this article the results of temperature distribution in A-A cross-section obtained in computer simulation are presented. Four different shapes in the cross-section of the pinch-off area, in the flash pocket zone were proposed to analyze. They are shown in Fig. 5 and marked with letters A, B, C and D. Shape A is a flat surface and is easy to machine

Analysis of flash pocket profile shape in an extrusion blow mould 463 Fig. 5. The analyzed shapes in the cross-section of the mould flash pocket Rys. 5. Analizowane kszta³ty przekroju kieszeni odpadowej w formie when the mould is manufactured but it has the smallest contact area with the polymer when a mould is closed. The triangular shape (B) is defined in details in the literature [1]. The semicircular (D) shape is also used in the industry and the trapezoidal shape C is supposed to be a compromise between the complexity of manufacturing and the contact area between polymer and a mould. The quotient was used to expressed the complexity of flash pocket surface. It is defined as the heat exchange surface area in the flash pocket related to the area of the projection of this surface onto the mould parting plane. Its value depends on the area of the contact surface between polymer and a mould. The values for the different flash pocket shapes taken into account in the simulation are listed in Table 1. Table 1. Values of quotient Shape of the pinch-off zone value A flat 1.00 B triangled 1.41 C trapezoidal 1.12 D semicircular 1.20 The symmetry axis of the mould in the cross-section is coincident with the parison axis. Moreover, in the cases of the ribbed shapes the grooves are located between the teeth Fig. 6. Cross-section through the pinch-off zone in the flash pocket area after mould closing Rys. 6. Przekrój przez strefê zgniatania w obszarze kieszeni odpadowej po zamkniêciu formy of the opposite mould half, as it is shown in Fig. 6 where the cross-section of the closed mould is presented. The flash pocket profile shapes were designed in the way that the mesh nodes in the polymer area would not move during mould closing in the direction perpendicular to the mould movement. The second assumption was that the flash pocket is fully filled with the polymer. 2.2. Material processed and boundary conditions The temperature distribution across the polymer in the flash pocket and the mould material was simulated. The temperature depends on the heat transfer between polymeric parison and the cooled metal mould. Two-dimensional (2D) model was used and the simulation was done in a cross-section of the flash pocket. The extruded parison before blowing was modeled first as a tube of 50mm of outer diameter and 2mm of wall thickness (Fig. 7a). However, since it was not possible to define the contact surface between the internal surfaces of the parison,

464 Dariusz KWIATKOWSKI, Micha³ MOD AWSKI, Tomasz JARUGA Fig. 7. The shape of the parison before blowing phase: a) real, b) assumed in the simulation Rys. 7. Kszta³t rêkawa przed rozdmuchem: a) rzeczywisty, b) przyjêty do symulacji the shape was modified to the form similar to the folded tube rectangle-like area (Fig. 7b). This kind of shape is obtained just before a mould is closed, when the parison is folded and compressed between two mould halves. The area of the shape from Fig. 7b is equal of polymer surface area in the cross-section of the tubular parison from Fig. 7a. The mould closing phase was not skipped in the simulation but since it was very fast (0.2 s) so the assumption of rectangle-like initial parison cross-section shape was possible. It was assumed that the parison was extruded first through the extrusion die and then blown in a closed mould and in this time the cooling phase in the flash pocket started. The material the parison is made of is high-density polyethylene (PE-HD) Hostalen ACP 5831D, produced by Lyondellbasell company. The most important properties of the polymer used in the simulation are as follows: Viscosity: 37 983 Pa s Melt density: 753 kg/m 3 Thermal conductivity: 0.3 W/(m K) Heat capacity: 1800 J/(kg K) The material of the mould was aluminium of the following properties: Density: 2800 kg/m 3 Thermal conductivity: 58 W/(m K) Heat capacity: 450 J/(kg K) The initial conditions for the simulation were as follows: the temperature of the parison after extrusion: 200 C and the initial temperature of the mould was assumed as 12 C. The Fig. 8. Boundary conditions assumed in the simulation: 1 parison (compressed), 2 flash pocket area surface, 3 cooling channel, 4 outer surface of the mould Rys. 8. Warunki brzegowe za³o one w symulacji; 1 rêkaw (zgnieciony), 2 powierzchnia formy w obszarze kieszeni odpadowej, 3 kana³ ch³odzenia, 4 zewnêtrzna powierzchnia formy boundary conditions of the considered system are defined in Fig. 8. The edge no.1, corresponding with the parison outer surface, was determined as freesurface with the contact condition. The coefficient of thermal conductivity between the polymer and the mould is 170W/m K. It was also assumed that the temperature of the coolant is 12 C and the temperature of the cooling channels walls is constant. The heat transfer between the mould and the air on the surfaces no. 4 exists all the time but in case of surface no. 1 (parison) and no. 2 (pinch-off area) only before the mould is closed. This heat exchange is described by thermal diffusivity coefficient of 20W/(m 2 K) value. The ambient temperature was assumed: 25 C for surfaces no. 1 and no. 2 and 30 C for surface no 4. The time of parison cooling (after the mould is closed) is 10s. 3. RESULTS AND DISCUSSION The results of computer simulation were: temperature distribution in the pinch-off zone

Analysis of flash pocket profile shape in an extrusion blow mould 465 flash pocket area cross-section and the change in the temperature of polymer and mould material during cooling. These quantities obtained for the different shapes of the mould flash pocket were compared. 3.1. Temperature distribution The temperature distribution of the mould and the compressed parison is shown in Fig. 9 for different shapes: A, B, C and D. The polymer temperature is more uniform in case of the shapes B and D for the more complex shapes of the flash pocket profile. Moreover, the temperature of the mould in the ribbed areas is higher in these two cases. 3.2. Temperature drop The change in the average temperature in the compressed parison cross-section area (in the polymer) as well as the change in the average temperature on the parison outer surface during the cooling was simulated and the results are shown in Fig. 10. It was proved that the differences in the heat transfer intensity depend on the shape of the flash pocket area. The most effective flash pocket profile shapes are: triangular (B) and semicircular (D). The smallest cooling effectiveness is observed for the flat surface shape (A), what could be expected because this shape has the smallest value of coefficient. The difference in the parison outer surface temperature after 10s of cooling was 23 C when comparing the best option triangular shape B and the basic flat shape A. Similar, but even higher temperature differences occured in the case of average temperature in the parison cross-section, but this temperature was generally higher than temperature on the outer surface. 4. SUMMARY AND CONCLUSIONS Four different profiles in the flash pocket zone of the pinch-off section in an extrusion blow mould were examined by the computer Fig. 9. Temperature distribution in the cross-section of the compressed parison and the mould after 10s of cooling Rys. 9. Rozk³ad temperatury w przekroju zgniecionego rêkawa i formy po 10 s och³adzania

466 Dariusz KWIATKOWSKI, Micha³ MOD AWSKI, Tomasz JARUGA surfaces of flash pocket area in order to shorten the cycle time by faster cooling of the flash. However, the ease of manufacturing and flash demoulding should also be considered. REFERENCES Fig. 10. Change in the average temperature of: a) polymer in the cross-section area of the compressed parison, b) outer surface of the compressed parison, for different flash pocket shapes Rys. 10. Zmiana œredniej temperatury: a) tworzywa w przekroju zgniecionego rêkawa, b) zewnêtrznej powierzchni zgniecionego rêkawa, przy ró nych kszta³tach profilu kieszeni odpadowej simulation regarding the flash cooling effectiveness. It was found that the speed of the flash cooling is influenced by the shape of a flash pocket surface. The best effectiveness of the heat transfer between the polymeric parison and the mould was obtained for the triangular and semicircular shapes of the ribs while the trapezoidal and flat shapes were not so efficient. It is important to manufacture extrusion blow moulds with ribbed, efficiently complex [1] Stoeckhert K., Menning G.: Mold-Making Handbook, Hanser Publishers, Munich 1998. [2] Gierak M.: Technologicznoœæ konstrukcji opakowañ rozdmuchiwanych, In: Formowanie wyrobów z tworzyw sztucznych metod¹ rozdmuchiwania. Plastech 1998, 71-105. [3] Rosato D.V., Rosato A.V., DiMattia D.P.: Blow Molding Handbook, Hanser Publishers, Munich 2004. [4] Eiselen O.: Verfahrenstechnik beim Coextrusions-Blasformen. Kunststoffe 1988, 78, 7. [5] Pepliñski K., Bieliñski M.: W³aœciwoœci przetwórcze i u ytkowe pojemników wytwarzanych w procesie wyt³aczania z rozdmuchiwaniem w zmiennych warunkach przetwórstwa ocena wydajnoœci i jakoœci procesu. Polimery 2009, 54, 6, 448-456. [6] Pepliñski K.: Idealna strefa zgniotu w formach do wyt³aczania z rozdmuchiwaniem. Zapobieganie b³êdom. Plastics Review 2006, 63, 11, 26-28. [7] Shin-Ichiro Tanifuji: Overall Numerical Simulation of Extrusion Blow Molding Process. Polymer Engineering and Science 2000, 40, 1878-1893. [8] Pepliñski K., Mozer A.: ANSYS-Polyflow software use to select the parison diameter and its thickness distribution in blowing extrusion. Journal of PO- LISH CIMAC 2010, Vol. 5 No. 3. [9] Kwiatkowski D., Mod³awski M., Jaruga T.: Symulacje komputerowe gruboœci œcianki butelki uzyskiwanej w procesie wyt³aczania z rozdmuchiwaniem. Przetwórstwo Tworzyw 2015, 165, 256-261. [10]Sikora R.: Przetwórstwo tworzyw wielkocz¹steczkowych, Wydawnictwo Edukacyjne, Warszawa 1993.