and the drainage basin role in the lake s eutrophication

Podobne dokumenty
POLISH JOURNAL OF NATURAL SCIENCES. Abbrev.: Pol. J. Natur. Sc., Vol 25(3): , Y. 2010

Has the heat wave frequency or intensity changed in Poland since 1950?

RESTORATION OF ZDWORSKIE LAKE (POLAND) - RESTORATION WORKS AND THEIR RESULTS

WPŁYW ZBIORNIKÓW RETENCYJNYCH W OCHRONIE JEZIOR PRZED ZANIECZYSZCZENIAMI SPŁYWAJĄCYMI Z OBSZARÓW WIEJSKICH

Cracow University of Economics Poland

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Limnological Changes in the Review Trophic 7, State 3: of Lake Niegocin after the Modernization of a Local Wastewater Treatment Plant

Acta 12 (2) 2012.indd :41:15. Acta Sci. Pol., Formatio Circumiectus 12 (2) 2013,

METODA OGÓLNEJ OCENY STANU ŚRODO- WISKA OBSZARÓW WIEJSKICH NA PODSTAWIE INFORMACJI Z BANKU DANYCH REGIONALNYCH GUS I OSZACOWAŃ PROGRAMU EMEP

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

Sargent Opens Sonairte Farmers' Market

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Fizyka Procesów Klimatycznych Wykład 11 Aktualne zmiany klimatu: atmosfera, hydrosfera, kriosfera

Shortened evaluation of surface water quality of Warnowskie Lakes (Wolin National Park)

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

SPITSBERGEN HORNSUND

history and plans Helena Gawrońska, Konstanty Lossow University of Warmia and Mazury in Olsztyn, Department of Environment Protection Engineering,

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

WPŁYW UŻYTKOWANIA ZLEWNI NA KSZTAŁTOWANIE JAKOŚCI WODY W ZBIORNIKACH WODNYCH ZLEWNI RZEKI DRAWA

Forested areas in Cracow ( ) evaluation of changes based on satellite images 1 / 31 O

OpenPoland.net API Documentation

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

SPITSBERGEN HORNSUND


PhD Łukasz Gawor Silesian University of Technology, Gliwice Akademicka Street 2, Gliwice, PL, phone , fax

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Patients price acceptance SELECTED FINDINGS

poltegor - projekt sp. z o.o.

Tychy, plan miasta: Skala 1: (Polish Edition)

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

Marika Kornaś WPŁYW PIĘTRZENIA JEZIOR NA ZMINAY ZASOBÓW I JAKOŚCI WÓD W POLSCE PÓŁNOCNO-ZACHODNIEJ

Knovel Math: Jakość produktu

ŁADUNEK SKŁADNIKÓW NAWOZOWYCH WNOSZONYCH Z OPADEM ATMOSFERYCZNYM NA POWIERZCHNIĘ ZIEMI NA PRZYKŁADZIE PÓL DOŚWIADCZALNYCH W FALENTACH

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ

CHEMIZM WÓD I KONCEPCJA OCHRONY JEZIORA PODDANEGO PRESJI ROLNICZEJ. Jolanta Grochowska, Marzena Karpienia, Renata Tandyrak *

ZNACZENIE ZBIORNIKA RETENCYJNEGO DLA OCHRONY JEZIORA PRZED SPŁYWAMI FOSFORU ZE ZLEWNI ROLNICZEJ

SPITSBERGEN HORNSUND

Intensywność procesów. troficznym jezior mazurskich

ZMIANY WYBRANYCH WSKAŹNIKÓW JAKOŚCI WODY RZEKI PROSNY PRZEPŁYWAJĄCEJ PRZEZ ZBIORNIK PSURÓW

Wprowadzenie. Danuta WOCHOWSKA Jerzy JEZNACH

SPITSBERGEN HORNSUND

MULTI-MODEL PROJECTION OF TEMPERATURE EXTREMES IN POLAND IN

WALORYZACJA PRZYRODNICZA MIASTA BRZESKO

Katedra Inżynierii Ochrony Wód Wydział Nauk o Środowisku. Uwarunkowania rekultywacji Jeziora Wolsztyńskiego

GLOBAL METHANE INITIATIVE PARTNERSHIP-WIDE MEETING Kraków, Poland

Equipment for ultrasound disintegration of sewage sludge disseminated within the Record Biomap project (Horizon 2020)

SPITSBERGEN HORNSUND

The Overview of Civilian Applications of Airborne SAR Systems

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

Preliminary characteristics of the chemical composition of the toplayer. bottom deposits in Lake Dejguny (Mazurskie Lake District)


SPITSBERGEN HORNSUND

PROJECT. Syllabus for course Global Marketing. on the study program: Management

NA ZAWARTOŚĆ AZOTU W JEZIORZE SYMSAR INFLUENCE OF AGRICULTURAL DEVELOPMENT ON THE CONTENT OF NITROGEN IN LAKE SYMSAR

Unit of Social Gerontology, Institute of Labour and Social Studies ageing and its consequences for society

Pomiary hydrometryczne w zlewni rzek

Lecture 18 Review for Exam 1

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

Effective Governance of Education at the Local Level

RADIO DISTURBANCE Zakłócenia radioelektryczne

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

INFLUENCE OF DIFFERENT AREAL POLLUTION SOURCES ON SOME COMPOUNDS CONTENT IN WATER OF DEJGUNY LAKE

Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form

ASSESSMENT OF WATER NETWORK FUNCTIONING ON THE BASIS OF WATER LOSSES

River Drzewiczka, Poland

Analiza porównawcza zmian w rozbiorach wody z uwzględnieniem sposobu jej dostarczania do odbiorców

Activity of total alkaline phosphatase in water of the Strazym Lake. Aktywność ogólnej fosfatazy zasadowej w wodzie jeziora Strażym

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

PROJECT. Syllabus for course Principles of Marketing. on the study program: Management

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Warunki termiczne Rolniczej Stacji Doświadczalnej w Zawadach Thermal conditions at the Experimental Farm in Zawady

Warunki środowiskowe wód kanałów zimnego i ciepłego Elektrowni Dolna Odra w drugiej połowie lat 90-tych

Tishreen University Journal. Eng. Sciences Series

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

Country fact sheet. Noise in Europe overview of policy-related data. Poland

THE DAY TO DAY VARIABILITY OF AIR TEMPERATURE IN CRACOW AND ITS SURROUNDINGS

RADIO DISTURBANCE Zakłócenia radioelektryczne

SPITSBERGEN HORNSUND

Streszczenie rozprawy doktorskiej

SPITSBERGEN HORNSUND

PROJECT. Syllabus for course Negotiations. on the study program: Management

Dnia 6 września udaliśmy się do oczyszczalni ścieków Kapuściska znajdującej się w Łęgnowie w Bydgoszczy

KATOWICE SPECIAL ECONOMIC ZONE GLIWICE SUBZONE and its influence on local economy KATOWICE SPECIAL ECONOMIC ZONE - GLIWICE SUBZONE

Analiza jakości powietrza atmosferycznego w Warszawie ocena skutków zdrowotnych

Indywidualizm jezior Parku Narodowego Bory Tucholskie na tle jezior w narodowych parkach polskich

Ocena potrzeb pacjentów z zaburzeniami psychicznymi

yft Lublin, June 1999

deep learning for NLP (5 lectures)

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

Institute of Meteorology and Water Management, Wroclaw Branch PP 10. Wrocław, June 2007

Revenue Maximization. Sept. 25, 2018

WATER QUALITY IN RECREATIONAL RESERVOIRS IN THE CRACOW AREA JAKOŚĆ WODY W ZBIORNIKACH REKREACYJNYCH NA TERENIE MIASTA KRAKOWA

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

ROZPRAWA DOKTORSKA. Model obliczeniowy ogrzewań mikroprzewodowych

Stargard Szczecinski i okolice (Polish Edition)

SPIS TREŚCI / INDEX OGRÓD GARDEN WYPOSAŻENIE DOMU HOUSEHOLD PRZECHOWYWANIE WINA WINE STORAGE SKRZYNKI BOXES

Transkrypt:

Limnological Review 5 (2005) 93 99 Trophic condition of Lake Podkówka and the drainage basin role in the lake s eutrophication University of Warmia and Mazury in Olsztyn, Department of Environmental Protection Engineering Prawocheńskiego 1, 10 900 Olsztyn-Kortowo Abstract: A small (6.92 ha) and shallow (6 m) lake was studied, situated in the north-western part of the Olsztyn city. The lake waters were characterized by a very high content of nutrients, up to 0.498 mg P/dm 3 and 8.18 mg N/dm 3. The high fertility of the lake was exhibited also by the values of BOD 5 reaching 11.5 mg O 2 /dm 3, chlorophyll a content (28 mg/m 3 ) and concentrations of total organic carbon (TOC) oscillating between 12.4 and 17 mg C/dm 3. The reason for the high trophic status of the lake was excessive loading from the drainage basin. The actual nutrients loads to the lake exceeded the critical load level calculated according to Vollenweider (1968). Key words: eutrophication, drainage basin, nitrogen, phosphorus, external loading, allowable and critical loads of nutrients. Introduction Lake and its drainage basin create a natural landscape system which functions through transport of various forms of matter from the drainage basin and its accumulation in the reservoir (Bajkiewicz-Gra-bowska, 1999, 2002). The effect of constant input to water of the elements building organic matter is eutrophication which is the fastest in small and shal-low polymictic lakes surrounded by agricultural or urban land (Szyper The et main al., 1999, activity Szyper, hindering Kraska, the 1999). negative effects of eutrophication should be protection of lakes by cutting off the pollution sources executed by proper development in the drainage basins and on the lakes peripheries. Lake Podkówka is a small thaw reservoir situated among the moraine hills. The drainage basin in the beginning of the 1990s was dominated by wasteland (66.7%) with some fields, forests and bogs (Lossow, Gawrońska, 1993). In the past years, the use of the direct lake surroundings changed, as the land has been built up in nearly 50%. On the north and west of the lake some single-family houses can be found with the property land bordering with the lake. The number of houses increases every year. The goal of this study was to determine the trophic condition of the lake and the role of the drainage basin in the lake s eutrophication. Lake and drainage basin description Lake Podkówka s geographical location is 20 O 27 4 E, 53 O 48 16 N; 102.8 m above sea level (Mapa..., 1999). The first (and only) study of the lake was conducted by Lossow and Gawrońska (1993) and included the trophic condition determination, and bathymetric and morphometric properties determination. According to these authors, the parameters of the

94 lake are: 6.92 ha surface area, 6 m max. depth, 2.85 m mean depth, and 197,369 m 3 volume. The shoreline is little diverse (K 1.48) while the depth index of 0.475 and the relative depth of 0.023 indicate that the lake s bowl is strongly sunk in the ground. Based on own field studies and the topographic map studies it was concluded that the drainage basin of the lake is as small as 34.1 ha. The built-up land covers the most of the drainage basin (49.2%), waste-land comprises 30.3%, forests 9.1% and bogs 6.1%. On the north and west, the contiguous land is built-up with single-family houses; dense deciduous forest grows on the east, and waste-land makes the drainage basin on the south. Lake Podkówka has no surface inflows and outflows. Material and method The lake was surveyed in April 2002 through February 2003. Water for analyses was sampled from one sampling site, located in the eastern part of the lake, above the deepest (6 m) site (Fig. 1). Fig. 1. Bathymetric chart of Lake Podkówka

Trophic condition of Lake Podkówka and the drainage basin role in the lake s eutrophication 95 Temperature and oxygen content were measured each time the samples were taken, at every me-ter of the depth. Water samples were taken at 1 m under the water table and 0.5 m above the bottom. TOC content was determined in non-filtered samples. Dissolved organic carbon (DOC) was analysed after filtration through a 0.45 µm Millpore filter. Content of particulate organic carbon (POC) was found from the difference between TOC and DOC. The measurements were done with a TOC 5000 Schimadzu analyser, after prior acidification of the samples with 2M HCl to approximately 2 ph, to remove CO 2. Other chemical analyses of the water were done in accordance with the methods of Hermanowicz et al. (1999) and the Standard methods (1980). The surface area of the drainage basin was determined by demarcation of the watershed and planimetry work on the topographic map in the scale 1:10 000. The spatial nutrients run-off was calculated using the coefficients of Giercuszkiewicz-Bajtlik (1990) and Lossow and Gawrońska (1998). The static model of Vollenweider (1968) was used to calculate the allowable and critical loads levels of phosphorus and nitrogen. Results and discussion Lake Podkówka is a small reservoir with the edges in the north-west and east highly elevated, built-up or grown with deciduous trees. Wind penetration is therefore limited which is reflected by low water dynamics. The theoretical mixing depth of 2.64 m, calculated according to Patalas (1960a), points at the 4th degree of the static equilibrium. It was confirmed by the results of the studies of 2002; as soon as April, the thermal variability was noted in the water column and observed throughout the summer. Epilimnion was 3-m thick with the thermocline of the max. gradient 3.8 C/m. The intensity of water mixing and the degree of eutrophication influenced the oxygen settings in Lake Podkówka. In the surface water layers oxygen saturation ranged from 90 to 100%, with the extreme of 119% in some periods, indicating intensive production processes. They were accompanied by increase of reaction to ph 9.21 (Tab. 1), high concentrations of TOC 17.0 mg C/dm 3 (Tab. 1), BOD 5 3.5 mg O 2 /dm 3, chlorophyll a 28.06 mg/m 3, and low water transparency (0.7 m). In the deeper water layers, particularly near the bottom, oxygen was used up rather quickly, leading to total deficit in the peak of the summer stagnation. The reason were no doubt the intensive degradation processes of the matter produced in the lake and deposited in the bottom sediments. Table 1. Value ranges of the selected physico-chemical water parameters of Lake Podkówka, in various years Parameter Unit Layer Value surface 1.6 21.4 Temperature C bottom 3.2 15.8 Oxygen mg O 2/dm 3 surface 8.5 12.3 bottom 0.0 10.9 surface 7.04 9.21 Reaction ph bottom 6.70 7.47 Carbon dioxide mg CO 2/dm 3 surface 0.0 3.5 bottom 12.5 75.0 TOC mg C/dm 3 surface 12.5 17.0 bottom 12.3 14.6 DOC mg C/dm 3 surface 8.8 13.4 bottom 7.8 11.2 Nitrate mg N/dm 3 surface 0.0 0.267 bottom 0.060 1.083 Ammonium mg N/dm 3 surface 0.007 0.414 bottom 0.078 5.240 Total N mg N/dm 3 surface 1.23 3.07 bottom 1.84 8.18 Mineral P mg P/dm 3 surface 0.0 0.057 bottom 0.0 0.088 Total P mg P/dm 3 surface 0.084 0.477 bottom 0.152 0.498 BOD 5 mg O 2/dm 3 surface 2.4 7.5 bottom 3.4 11.5 Permanganate value mg O 2/dm 3 surface 14.1 37.3 bottom 13.1 26.1 Iron mg Fe/dm 3 surface 0.0 0.13 bottom 0.06 10.2 Manganese mg Mn/dm 3 surface bottom 0.04 0.25 0.06 3.40 Many authors share the opinion (Zdanowski et al., 1992; Kajak, 1995) that trophic condition of a lake is reflected by the amount of phosphorus and nitrogen in circulation. The quantities of nitrogen and phosphorus in the waters of Lake Podkówka were very high, up to 0.498 mg P/dm 3 and 8.18 mg N/dm 3 (Tab. 1, Fig. 2, Fig. 3), and dominated by the organic forms. Mineral phosphorus was practically not detected in the lake waters probably due to its utilization in the production processes. It was measured only at the end of the summer (Tab. 1, Fig. 2). Phosphates detected in the water in periods with strong oxygen deficits near the bottom were released from the bottom deposits. The process of internal loading with phosphorus from the bottom deposits was accompa-

96 nied by an increase of iron concentration to 10.2 mg Fe/dm 3 (Tab. 1). Fig. 2. Changes in phosphorus compounds content in Lake Podkówka waters Unlike mineral phosphorus, mineral nitrogen occurred continuously and its concentrations were very high (Tab. 1, Fig. 3). The quantity of the mineral forms of nitrogen was determined by ammonium and nitrate (Tab. 1). Large quantities of mineral nitrogen in the water throughout the growing season indicate on one hand large nitrogen resources in the lake but on the other, intensive mineralization and nitrification processes. Regarding the mineral nitrogen resources, Lake Podkówka can be classified as the poly type (Patalas, 1960b).

Trophic condition of Lake Podkówka and the drainage basin role in the lake s eutrophication 97 Fig. 3. Changes in nitrogen compounds content in Lake Podkówka waters Other parameters values are a sign of the advanced eutrophication processes (and the consequent high productivity of the lake); BOD 5 reached 11.5 mg O 2 /dm 3 (Tab. 1, Fig. 4), TOC throughout the growing season varied between 12.4 and 17.0 mg C/dm 3, water transparency was as low as 1.3 m on average (Fig. 5). With regard to the trophic state classification of Hillbricht-Ilkowska and Wiśniewski (1993), referring to water transparency, total P resources and chlorophyll a content, Lake Podkówka is a heavily eutrophic lake. According to the criteria given by Ku-delska et al. (1994) the lake water corresponds with the 3rd purity standard (average of 2.7 points). Fig. 4. Changes in organic matter (BOD 5 ) content in Lake Podkówka waters

98 Fig. 5. Changes in water transparency in Lake Podkówka No doubt, the fairly advanced eutrophication processes in Lake Podkówka are stimulated by the excessive input of nutrients from the drainage basin. The data presented in table 2 show that the total annual nitrogen and phosphorus load to Lake Podkówka, calculated according to Giercuszkiewicz-Bajtlik (1990), equals 23.3 kg of P and 275.6 kg of N, or per unit surface 0.337 g P/m 2 /year and 3.983 g N/m 2 /year. According to the criteria of Lossow and Gawrońska (1998), the respective values are 20.9 kg P and 242.4 kg N, or 0.302 g P/m 2 /year and 3.502 g N/m 2 /year. Table 2. Total annual nutrients loading to Lake Podkówka from the actual drainage basin and with regard to its present use-pattern Values calculated using unit run-off Values calculated using unit run-off External sources of pollution coefficients of Giercuszkiewicz-Bajtlik (1990) coefficients of Lossow and Gawrońska (1998) Phosphorus Nitrogen Phosphorus Nitrogen (kg P/year) (kg N/year) (kg P/year) (kg N/year) Spatial sources 19.2 192.6 16.8 159.4 Atmospheric sources 4.1 83.0 4.1 83.0 Total 23.3 275.6 20.9 242.4 Allowable and critical loads levels to Lake Podkówka, calculated according to Vollenweider (1968), equal (respectively) 0.046 g P/m 2 /year and 0.093 g P/m 2 /year, or 0.748 g N/m 2 /year and 1.496 g N/m 2 / year. Comparison between the actual nitrogen and phosphorus loads and the values calculated according to Vollenweider (1968) allows to conclude that the loads exceed a few times not only the allowable but also the critical values, responsible for advanced eutrophication. Lossow and Gawrońska (1993) who examined Lake Podkówka more than 10 years ago described the reservoir as highly eutrophic. As evidenced in the study of 2002 the water quality deteriorated which together with the present high loading from the drainage basin shows the need to apply protective measures that would diminish the external loading. Taking into consideration the high vulnerability of this reservoir with no outflows (3rd water quality standard; Kudelska et al., 1994) to external impacts, farther development in the drainage basin may lead to total degradation of the lake. References Bajkiewicz-Grabowska E., 1999, Struktura fizycznogeograficzna układu krajobrazowego zlewnia jezioro i jej wpływ na tempo naturalnej eutrofizacji jezior, Funkcjonowanie i ochrona ekosystemów wodnych na obszarach chronionych, Wydawnictwo IRŚ, Olsztyn, 77 84. Bajkiewicz-Grabowska E., 2002, Obieg materii w systemach rzeczno jeziornych, Uniwersytet Warszawski, Warszawa. Giercuszkiewicz-Bajtlik M., 1990, Prognozowanie zmian jakości wód stojących, Instytut ochrony Środowiska, Warszawa. Hermanowicz W., DoŜańska W., Dojlido J., Koziorowski B., 1999, Fizyczno-chemiczne badanie wody i ścieków, Arkady, Warszawa. Hillbricht-Ilkowska A., Wiśniewski R. J., 1993, Trophic differentiation of lakes the Suwałki Landscape Park (North Eastern Poland) and its Buffer Zone Present State, Changes Over Years, Position in thropic classification of lakes, Ekol. Pol., 41(1-2): 195 219. Kajak Z., 1995, Eutrofizacja nizinnych zbiorników zaporowych, Biblioteka Monitoringu Środowiska, Łódź. Kudelska D., Cydzik D., Soszka H., 1994, Wytyczne monitoringu podstawowego jezior, Biblioteka Monitoringu Środowiska, Warszawa. Lossow K., Gawrońska H., 1993, Morfometria i chemizm wód jeziora Podkówka w Olsztynie z uwzględnieniem wpływu zlewni na zasilanie w związki biogenne, (maszynopis). Lossow K., Gawrońska H., 1998, External input to lake Wadąg Effective and estimate loadings, Polish Journal of Environmental Studies, vol. 7, No 2(1998), 95 98. Mapa Topograficzna Polski, 1999, 1:10000, Olsztyn Osiedle Podleśna, cz. 40, Główny Geodeta Kraju. Patalas K., 1960a, Mieszanie wody jako czynnik określający intensywność krąŝenia materii w róŝnych morfologicznie jeziorach okolic Węgorzewa, Rocz. Nauk Rol., 77(B 1), 223 242. Patalas K., 1960b, Charakterystyka składu chemicznego wody 48 jezior okolic Węgorzewa, Rocz. Nauk Rol., 77(B 1), 243 297. Standard methodsfor examination of water and wastewater, 1980, American Public HealthAssociation, AWWA, WPCF, Washington D.C. Szyper H., Kraska M., 1999, Ocena zewnętrznego obciąŝenia związkami biogennymi jezior Drawieńskiego Parku Narodowego, Mat. III Konf. Nauk. Tech.

Trophic condition of Lake Podkówka and the drainage basin role in the lake s eutrophication 99 nt. Naturalne i antropogeniczne przemiany jezior, 20 22 września 1999, Radzyń k. Sławy, 255 264. Szyper H., Gołdyn R., Romanowicz W., 1999. ObciąŜenie jezior Wielkopolskiego Parku Narodowego związkami azotu i fosforu, Funkcjonowanie i ochrona ekosystemów wodnych na obszarach chronionych, Wydawnictwo IRŚ, Olsztyn, 177 182. Vollenweider R. A., 1968, Scientific fundamentals of the eutrophication of lasek and flowing water, with particular reference to nitrogen and phosphorus as factor In eutrophication, Tech. report Organisation for Economic Cooperation and Development, Paris. Zdanowski B., Karpiński A., Prusik S., 1992, Warunki środowiskowe wód jezior Węgierskiego Parku Narodowego, Zesz. Nauk. PAN, 3, 35 62. Streszczenie Badania prowadzono na niewielkim (6,92 ha) i płytkim (6 m) jeziorze Podkówka (rys. 1), połoŝonym w północno zachodniej części Olsztyna. Zlewnia tego jeziora jest niewielka, wynosi zaledwie 34,1 ha. Największy udział (49,2%) mają w niej tereny zabudowane, 30,3% zajmują nieuŝytki, 9,1% lasy, zaś 6,1% bagna. Całkowite roczne obciąŝenie jeziora Podkówka azotem i fosforem (tab. 2), wyliczone według kryteriów podanych przez Giercuszkiewicz-Bajtlik (1990) wynosi 23,3 kg fosforu i 275,6 kg azotu, co w przeliczeniu na jednostkę powierzchni daje ładunek równy 0,337 g P/m 2 /rok i 3,983 g N/m 2 /rok, zaś w oparciu o wytyczne podane przez Lossowa i Gawrońską (1998): 20,9 kg fosforu i 242,4 kg azotu, co w przeliczeniu na jednostkę powierzchni daje ładunek 0,302 g P/m 2 /rok i 3,502 g N/m 2 /rok. Ładunek dopuszczalny i krytyczny dla tego jeziora wyliczony wg Vollenweidera (1968) wynosi odpowiednio: 0,046 g P/m 2 /rok i 0,093 g P/m 2 /rok oraz 0,748 g N/m 2 /rok i 1,496 g N/m 2 /rok. Porównanie rzeczywistego obciąŝenia jeziora azotem i fosforem z ładunkami wyliczonymi wg Vollenweidera (1968) wykazało, Ŝe obciąŝenie to przekracza kilkakrotnie nie tylko wartości dopuszczalne, ale takŝe krytyczne powodujące przyspieszoną eutrofizację. Zawartości związków biogenicznych wodach jeziora Podkówka były bardzo wysokie, sięgające 0,498 mg P/dm 3 i 8,18 mg N/dm 3 (tab. 1, rys. 2, rys. 3). O ogólnej ich ilości decydowały głównie formy organiczne. W badanym zbiorniku stwierdzono takŝe wysokie wartości BZT 5, dochodzące do 11,5 mg O 2 /dm 3 (tab. 1, rys. 4), znaczną zawartość ogólnego węgla organicznego, wahająca się przez cały okres wegetacyjny od 12,4 do 17,0 mg C/dm 3 (tab. 1), jak równieŝ niską przezroczystość wody wynosząca średnio 1,3 m (rys. 5). Jak wykazały badania, jezioro Podkówka jest zbiornikiem silnie zeutrofizowanym, co przy wysokim obcią- Ŝeniu ładunkiem zanieczyszczeń ze zlewni wskazuje na konieczność zastosowania działań ochronnych, polegających na zmniejszeniu obciąŝenia zewnętrznego. W sytuacji wysokiej podatności zbiornika na wpływy z zewnątrz (III kategoria) (Kudelska i in., 1994) dalsza zabudowa obszaru zlewni moŝe przyczynić się do jego całkowitej degradacji.