Application of Hardware in the Loop technology for testing servo drives with synchronous motor Dominik Rybarczyk*, Piotr Owczarek*, Jarosław Gośliński** *Faculty of Mechanical Engineering and Management, Poznań University of Technology **Faculty of Electrical Engineering, Poznań University of Technology Abstract: The article describes the proportional valve with synchronous motor type PMSM used in electrohydraulic servo drive. System has been tested using the Hardware in the Loop technique. It means that most of the elements, in addition to the synchronous motor, were implemented on the PLC as a discrete model. The time characteristics of the servo drive were checked by a step-response method. proportional valve, the slider is used for flow control. The movement of the slider is controlled by two coils, placed on opposite sides of the slider. In the case of the described valve, the coils have been replaced by a low-power synchronous motor, connected to the slider by a ball screw (fig. ). Authors used a resolver, mounted on the motor shaft for measurement of the slider. The resolver worked with resolution up to 42 pulses/rev. Keywords: electrohydraulic servo drives, synchronous motor, hardware in the loop Ball screw Slider I n the few last years, many efforts have been taken in order to improve the construction and ways of control electrohydraulic servo valves. Nowadays, most of the electrohydraulic servo drives are built on the basis of proportional valves, because of their low costs (in opposite to the servo valves). Their main disadvantage is the relatively low dynamic parameters. Without this problem are electrohydraulic servo valves. Unfortunately, they are characterized by high cost. For this reason, it is necessary to search for new solutions, which relate universality and high dynamic of the electrohydraulic servo valves. In the presented here work, authors proposed proportional valve, whose slider was controlled by a synchronous motor. Proposed valve has been tested using a rapid prototyping control method and hardware in the loop technology.. Current state of the art So far, scientific publications focused on the use of stepper motors or DC motors to control the hydraulic valves. The usage of electrohydraulic servo drive with stepping motor was described in []. The stepping motor was used to control the valve slider. Authors described the construction and some methods of control of this kind of drives. The dynamic characteristics of servo drives with stepping motor was described in [2]. Principles of selecting electrohydraulic stepping motors for electrohydraulic servo valves were presented in [3]. The design where drive based on a servomotor and cam used in the proportional valve was described in [4]. 2. Construction of the proportional valve with synchronous motor The construction of the proposed servo valve is based on the construction of the proportional valve. In the typical Synchronous motr with resolver Fig.. Electrohydraulic servo valves with synchronous motor Rys.. Elektrohydrauliczny zawór z silnikiem synchronicznym The proposed valve actuator was a permanent magnets synchronous motor type (PMSM). The motor has controlled by an servo inverter, generated independent signals for each motor phase (fig. 2). The advantage of this type of motor, opposed to the stepper motor, is much more dynamic parameters, together with high torque at the shaft over the entire range of velocity. Fig. 2. Synchronous motor type PMSM used in servo valve Rys. 2. Zastosowany w zaworze silnik synchroniczny z magnesami trwałymi Pomiary Automatyka Robotyka nr 2/23 46
NAUKA 3. Testbed Checking the effectiveness of the proposed design was made by using the hardware in the loop technology. This technique allows for testing the different control methods by using the object model instead of the real device. In this way the real object was protected from the potential error or damage (fig. 3). Master controller PLC with touch panel Power Panel 5 B&R CONFI G B&R IN _LOCAL LREAL wejscie_x Setpoint value of the Electrohydraulic servodrives.2 Ga in Sa tura tion 2 Lo ad Proportional regulator In In2 Out Elect rohyd rau lic servod rive B&R OUT _LOCAL LREAL sygnal_z_regulatora B&R OUT _LOCAL LREAL wyjscie_y Position of the electroh ydraulic servo drive x Matlab Simulink Automation Studio Electrohydraulic servodrive model Fig. 4. Model of electrohydraulic servo drives control system Fig. 4. Model of electrohydraulic servo drives control system Rys. 4. Model układu sterowania napędu elektrohydraulicznego Rys. 4. Model układu sterowania napędu elektrohydraulicznego Powerlink Powerlink Slave Unit Inverter Unit ACOPOS PID Resolver Power Stage Fig. 3. The control system schematic Rys. 3. Schemat układu sterowania Motor Ethernet TCP/IP PC For this aim, electrohydraulic servo drive have been modeled (fig. 4). The model consisted of a linear model of the hydraulic actuator with two, no symmetrical chambers (sided cylinder). Whole drive unit was controlled the proportional valve with synchronous motor. In addition, the valve dead zone have been implemented. The described model did not include non-linear properties of the servo drive (fig. 5). The only real object of the whole tested system was the motor and measuring system which was the resolver. Authors used PMSM B&R company motor type 8LSA25. The motor was controlled by the inverter type ACOPOS [6] (fig. 6). For safety reason, motor was supplied by 24 V, which greatly reduced its dynamics parameters. In the real object, controlled voltage of the motor should be higher 4 V. As the master controller, authors used a PLC unit with touch screen type Power Panel 5 [6]. The PLC unit was equipped with a processor, with core based on Intel Atom.6 and realtime system type Automation Runtime [6] (fig. 7). The model electrohydraulic servo drives was implemented in the master PLC. System was modeled by using Matlab Simulink software. In order to connect the real object, which was motor, and the other servo drives components, it became necessary to transfer the model to the PLC. For this regard, author used Simulink Coder library and Automation Target for Simulink library (B&R). This allowed to recompile the model of the servo drive to the C code, and then to implement it as one of the task class in the CPU unit. Due to the discrete work of the industrial controller, it was required to discretize the continuous model of electrohydraulic servo drive. The discrete time base was T =.8 s. The time base for the main system clock driver and the communication interface, between the master controller and the inverter, was T = 4 s.. 2 In2 Ga in2 B&R OUT _LOCAL LREAL wejscie_silnik B& R I N _LOCAL LREAL wyjscie_sil nik -K - Gai n5 Dea d Zone Gai n6 Gai n4 -K- Ga in K Ts z- Integrator3. Gai n3 In -K- /m K T s z- Integ rator4 Out Fri ct io n.5 Gain8 -K - Ga in K Ts z- Integrator6 -K - Ga in -K- PMSM motor unit with rezolver Dead zone of the valve. 5 Gain9 Chambers of the actuator Friction Fig. 5. Model of electrohydraulic servodrives Rys. 5. Model serwonapędu elektrohydraulicznego 462
PLC u nit with touch panel Power Panel 5 - mas ter control ler The of the motor shaft read from the resolver unit, The actual velocity of the motor. In order to avoid the appearance of stick-slip phenomenon, the slide was fitted in the oscillatory motion (dither) (fig. 8). Otherwise the slider was protected from deadlock in the event of adverse forces. 3 2 Dither motor actual Fig. 6. The experimental stand Rys. 6. Stanowisko badawcze Inverter unit ACOPOS - slave controller Position x [step] - -2-3.2.4.6.8 Resolver Inverter unit ACOPOS Powerlink interface card Fig. 8. Dither signal Rys. 8. Sygnał oscylacyjny dither The controller parameters were tuned using the Ziegler-Nichols method. The values of individual P coefficients were: the gain kp = 2 and kp =.8. In the case of the kp =.8 overshoot has not occured. The experiment results are shown in the charts below (fig. 9 4). PMSM motor 6 5 Position of the servo drive actuator x actual setpoint value Fig. 7. ACOPOS inverter unit [6] Rys. 7. Serwofalownik ACOPOS [6] 4. Experimental tests The study aimed to validate the work of the proposed control methods before testing on the actual object. Positioning system was tested in the absence of external load. To determine the object time characteristics parameters, the step response method was used. On the proportional valve a stepwise signal was gave. The resulting waveforms shows: The given signal, The actual of the servo drive, The given of the motor shaft signal, Position x [mm] 4 3 2 2 3 4 5 Fig. 9. Movement of the servo drive actuator (step response, kp = 2) Rys. 9. Ruch tłoka serwonapędu elektrohydraulicznego (odpowiedź skokowa, wmocnienie kp = 2) Pomiary Automatyka Robotyka nr 2/23 463
NAUKA 5 motor actual 5 4 Position of the servo drive actuator x actual setpoint value Position x [step] 5 Position x [mm] 3 2-5 - 2 3 4 5 Fig.. Movement of the motor shaft (step response, Fig.. Movement kp = 2) of the motor shaft (step response, kp Rys.. Ruch = 2) wału silnika pozycjonowanie (odpowiedź Rys.. skokowa, Ruch wału wzmocnienie silnika pozycjonowanie kp = 2) (odpowiedź skokowa, wzmocnienie kp = 2) 2 3 4 5 6 Fig. 2. Movement of the servo drive actuator (step response, Fig. 2. k Movement p =,8) of the servo drive actuator (step response, Fig. 2. Movement of the servo drive actuator (step response, Rys. 2. Ruch p,8) k tłoka serwonapędu (odpowiedź skokowa, p =,8) Rys. 2. wzmocnienie Ruch tłoka serwonapędu kp =,8) (odpowiedź skokowa, Rys. 2. Ruch tłoka serwonapędu (odpowiedź skokowa, wzmocnienie kp,8) wzmocnienie kp =,8) 3 2 3 Velocity 2 Position of PMSM motor motor actual shaft Velocity 2 3 2 motor actual setpoint value 2 motor actual Velocity setpoint value 2 Position of PMSM motor motor motor shaft actual setpoint value 2 8 2 8 8 motor actual 6 8 6 6 8 4 6 4 4 6 2 4-2 - 2 4 2 - -2-2 -2 2-2 2 3 4 5 6-2 -2 2 t 3[s] 4 5 6-3 -2 2 t 3[s] 4 5 6 2 3 4 5 2-3 t 3[s] 4 5 6 2 3 4 5-3 -2 2 3 4 5 2 3 4 5 6 Fig. 3. Movement of the motor shaft (step response, Fig.. Movement of the motor shaft velocity (step response, Fig. 3. Movement kp =,8) of the motor shaft (step response, Fig.. Movement kp = 2) of the motor shaft velocity (step response, Fig. 3. Movement of the motor shaft (step response, kp Rys. Fig. 3. 3. Ruch Movement,8) wału of the silnika motor shaft pozycjonowanie (step(odpowiedź response, Rys. Fig... Ruch kp Movement = 2) wału of silnika the motor prędkość shaft velocity (odpowiedź (step response, kp =,8) skokowa, Rys. 3. Ruch kp skokowa,,8) wału wzmocnienie silnika pozycjonowanie kp =,8) (odpowiedź Fig. Rys... Movement wzmocnienie Ruch kp = 2) wału of the silnika kp motor = 2) shaft prędkość velocity (odpowiedź (step response, skokowa, Fig. Rys. 3. Ruch wału silnika pozycjonowanie (odpowiedź Rys. 3. 3. Movement Ruch skokowa, of wału the wzmocnienie motor silnika shaft kp pozycjonowanie,8) (step response, (odpowiedź Rys.. wzmocnienie Ruch wału silnika kp = 2) kp = 2) prędkość (odpowiedź skokowa, skokowa, wzmocnienie kp =,8) kp =,8) skokowa, wzmocnienie kp,8) Rys.. Ruch wzmocnienie wału silnika kp = 2) prędkość (odpowiedź skokowa, Rys. 3. Ruch wału silnika pozycjonowanie (odpowiedź wzmocnienie kp = 2) skokowa, wzmocnienie kp =,8) Velocity Velocity [step/s] [step/s] Position x [step] Position Position x x [step] x x [step] 464
25 2 5 Velocity Velocity [step/s] 5-5 - -5 2 3 4 5 6 Fig. 4. Movement of the motor shaft velocity (step response, kp =.8) Rys. 4. Ruch wału silnika prędkość (odpowiedź skokowa, wzmocnienie kp =,8) The waveforms (fig., 2) have shown inertia between given setpoint signal value and response of the motor. This is due to the supply voltage of only 24 V, which has not provide the full dynamics of the used motor (in the future, the motor will be powered from 4 V three-phase voltage). Motor s haft movement Fig. 6. A visualization Rys. 6. Wizualizacja 5. Conclusion The stepper motors and DC motors were used in control of slider movement. However, there are still missing publications concerning on use of the synchronous motor in the hydraulic valves. The research was executed to verify the use of its capabilities in electrohydraulic servo control. Thanks to use of the powerful synchronous servo motor it will be possible to increase the dynamics parameters of the proportional valve. Because of the used Hardware in the Loop technology, the real object have been protected from damaged arising from incorrect operation of the control system. Also, the whole control system was closed in one type control environment (Automation Studio) that may help the work of future developers. The authors will continue research of the using the servo valves with synchronous motor. Verification requires first and foremost the system behavior under conditions of variable load and the use of nonlinear models. Also there is important to test the proposal valve on the real servo drive. Ongoing studies are aimed at designing a control algorithm, which can be implemented in an embedded system. Fig. 5. Movement of the motor s shaft Rys. 5. Ruch wału silnika Additional, the waveforms were shown on a touch panel screen of the central CPU unit (fig. 6). Acknowledgements The work described in this paper was supported by the Polish Ministry of Science and Education between 29 22 as a grant No. N52 26737. Pomiary Automatyka Robotyka nr 2/23 465
NAUKA References. Milecki A., Zasady sterowania silnikiem skokowym w układach suwakowych wzmacniaczy hydraulicznych, Maszyny Górnicze, 996, No. 56, 92. 2. Milecki A., Właściwości dynamiczne serwonapędów elektrohydraulicznych z silnikami skokowymi, Pomiary Automatyka Robotyka, 997, No. 5 6, 6 64. 3. Milecki A., Zasady doboru silnika skokowego do sterowania suwaka wzmacniacza hydraulicznego, Hydraulika i Pneumatyka, 997, No. 2, 3. 4. Milecki A., Myszkowski A., The usage of elecrohydraulic servo drive units with stepping motor in low velocity mechatronic drives, Proceedings of the 3rd International Conference Mechatronics, Robotics and Biomechanics, -2.9.2, Trest, Czech Republic, 25 22. 5. Wiegandt Marco, Development of a servomotor driven proportional valve, 7th International Fluid Power Conference Aachen, 2. 6. [www.br-automation.com] Testowanie elektrohydraulicznego serwonapędu z silnikiem synchronicznym w systemie Hardware in the loop Streszczenie: Artykuł opisuje zawór proporcjonalny, w którym elementem zadającym jest silnik synchroniczny typu PMSM. Zawór steruje siłownikiem hydraulicznym. Układ przetestowano przy użyciu techniki Hardware in the Loop. W tym celu większość elementów, oprócz silnika synchronicznego zaimplementowano na sterowniku PLC jako model dyskretny. Podczas testów zebrano charakterystyki czasowe układu. Słowa kluczowe: serwonapęd elektrohydrauliczny, serwozawór elektrohydrauliczny, silnik synchroniczny, hardware in the loop Dominik Rybarczyk, MSc Assistant in Division of Mechatronics Devices in Poznań University of Technology. His research interests include design of mechatronic devices, control of electrohydraulic servo drives, control of nonlinear object and artificial intelligence methods. e-mail: dominik.rybarczyk@put.poznan.pl Piotr Owczarek, MSc Assistant in Division of Mechatronics Devices Piotr Owczarek, in Poznań MSc University of Technology. Assistant His research in Division interests of include Mechatronics modern methods Piotr Devices Owczarek, in of Poznań digital image MSc University processing, of Technology. His intelligence research Division methods, interests of design include Mechatronics of modern elec- artificial Assistant tronic Devices methods devices in of Poznań digital and mechatronic image University processing, of devices. Technologycial His intelligence piotr.owczarek@ research methods, interests put.poznan.pl design include of modern elec- artifi- e-mail: methods tronic devices of digital and mechatronic image processing, devices. artificial e-mail: intelligence piotr.owczarek@ Gośliński, methods, MSc put.poznan.pl design of elec- Jarosław Received tronic devices the MSc and mechatronic degree in control devices. engineering e-mail: piotr.owczarek@ and robotics from put.poznan.pl Poznań University of Technology (Poland) in 2. He is currently Jarosław a Gośliński, PhD student MSc at the same university. Received the His MSc research degree interests control include engineering filtering and robotics and from processing, Poznań Univer- MEMS signal sensors, sity of Technology state observers, (Poland) control in 2. of He nonlinear currently and a underactuated PhD student objects, at the swarm same is robotics university. and His cyber research physical interests systems. include signal e-mail: jaroslaw.goslinski@doctorate.put.poznan.pl filtering and processing, MEMS sensors, state observers, control of nonlinear and underactuated objects, swarm robotics and cyber physical systems. e-mail: jaroslaw.goslinski@doctorate.put.poznan.pl 466