Tlenkowe Materiały Konstrukcyjne Sprężystość naprężenie wydłużenie 100 kg Wytrzymałość teoretyczna E siła odkształcenie 2 E t ; t 0, 1 E r 0 1
Kruche pękanie 2c 2 c c K c Y c W przypadku materiału pękającego w sposób kruchy o jego wytrzymałości decyduje wytrzymałość teoretyczna oraz wielkość występującego defektu. A.A. Griffith, The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London, A221 (1921) 163-198; Gdy naprężenia na wierzchołku szczeliny, c, osiągną wartość wytrzymałości teoretycznej, t, następuje kruche pękanie szczelina propaguje bez dodatkowego zewnętrznego obciążenia. Nastąpi to w sytuacji gdy: ( c) ½ osiąga pewną wartość krytyczną równą (E ) ½. K Ic Kruche pękanie E(c) energia szczeliny 2c c* długość szczeliny Z warunków kruchego pękania wynika, że pojawienia się w materiale szczeliny o wielkości krytycznej, dla danego obciążenia, prowadzi do jego zniszczenia. Wytrzymałość a Kruche pękanie Z zasady zachowania energii wynika, że kruche pękanie ma miejsce gdy szybkość wydzielania energii, K Ic2 /E, jest równa szybkości pochłaniania energii. Wzrost odporności na kruche pękanie można osiągnąć na dwa sposoby: Kc c c przez wzrost wytrzymałości przy stałej długości krytycznej pęknięcia materiały polikrystaliczne, kompozyty ziarniste, kompozyty z włóknami; przez zwiększenie długości krytycznej szczeliny przy stałej wytrzymałości - laminaty; 2
Twardość miara odporności na odkształcenie plastyczne, z reguły wgłębnikowanie, związana z poślizgiem dyslokacyjnym. Jest zależna od siły wiązań chemicznych i istnienia systemów poślizgu. F Właściwości sprężyste wysokie wartości modułu sprężystości, zależą one od głównie od rodzaju wiązań chemicznych, zależą od mikrostruktury materiału; Wytrzymałość wysokie wartości wytrzymałości teoretycznej, niskie wartości wytrzymałości rzeczywistej, silnie zależą zarówno od rodzaju wiązań jak i mikrostruktury; Odporność na kruche pękanie stosunkowo niskie wartości K c, silna zależność od występowania mechanizmów wzmacniania, bardzo silna zależność od mikrostruktury; Twardość od średniej do wysokiej, zależy od mikrostruktury; Wpływ mikrostruktury na właściwości mechaniczne ef wielkość ziarna 3
Kryteria decydujące o doborze materiałów ceramicznych do zastosowań konstrukcyjnych: charakter wiązań, cechy strukturalne, mikrostruktura zagęszczenie, rozkład wielkości ziaren, rozkład wielkości porów, kształt ziaren i spoin, stan granic międzyziarnowych, Mullit Mullit został odkryty na wyspie Mull w Szkocji a jego postać syntetyczną odkryto w 1847 r. w trakcie badań nad porcelaną. Przez długi czas mullit uważano za fazę nietrwałą o nieustalonym składzie. Dopiero w 1924 r. opracowano diagram fazowy układu Al 2 O 3 SiO 2. Mullit opisuje się zazwyczaj jako 3Al 2 O 3 2SiO 2 (Al 6 Si 2 O 13 ) aczkolwiek zawartość tlenku glinu wynosi od 60 do 63 %. Mullit Gęstość g cm -3 3,03 Temperatura topnienia C 1870 Moduł Younga Moduł ścinania Współczynnik rozszerzalności Wytrzymałość na zginanie cieplnej, K -1 5,3 10-6 MPa Przewodność cieplna, W (m K) -1 3,8 Przewodność elektryczna Twardość Vickersa Ω cm -1 10-14 130 250-280 KIc MPa m ½ 2-4 10 4
Mullit Spinel magnezowy Spinel magnezowy Gęstość g cm -3 3,6 Temperatura topnienia C 2130 Moduł Younga Moduł ścinania Współczynnik rozszerzalności Wytrzymałość na zginanie cieplnej, K -1 7,5 10-6 MPa Przewodność cieplna, W (m K) -1 6-25 280 190 180-250 KIc MPa m ½ 1,5-2 Twardość Vickersa 10 5
Spinel magnezowy Kordieryt Glinokrzemian magnezu, Mg 2 Al 3 [AlSi 5 O 18 ], rzadki minerał wykazujący pleochroizm ( kompas wikingów ) Kordieryt Gęstość g cm -3 2,5 Temperatura topnienia C Moduł Younga Moduł ścinania Współczynnik rozszerzalności Wytrzymałość na zginanie cieplnej, K -1 3,5 10-6 MPa Przewodność cieplna, W (m K) -1 2,5 150 100-120 KIc MPa m ½ > 2 Twardość Mohsa 7-7,5 6
Kordieryt Tlenek glinu Tlenek amfoteryczny o stechiometrii Al 2 O 3, odkryty w 1798 r. przez Grevilla. W naturze występuje z reguły w postaci uwodnionej. Znane są trzy wodorotlenki glinu: gibbsyt γ-al(oh) 3, bajeryt α-al(oh) 3, nordstrandyt Al(OH) 3 γ-al(oh) 3 α-al(oh) 3 starzenie Tlenek glinu Tlenek amfoteryczny o stechiometrii Al 2 O 3, odkryty w 1798 r. przez Grevilla. W naturze występuje z reguły w postaci uwodnionej. Znane są trzy wodorotlenki glinu: gibbsyt γ-al(oh) 3, bajeryt α-al(oh) 3, nordstrandyt Al(OH) 3 oraz dwa tlenowodorotlenki: boehmit: γ-alo(oh), diaspor: α-alo(oh) 7
Tlenek glinu Tlenek glinu posiada szereg odmian polimorficznych, których występowanie zależne jest od temperatury i rodzaju prekursora. Jedyną termodynamicznie stabilną formą tlenku glinu jest korund α-al 2 O 3. Oprócz korundu istnieje szereg metastabilnych tlenków o dwóch rodzajach ułożenia anionów tlenowych: regularnie ściennie centrowanych (fcc) odmiany γ, η, θ, oraz δ; heksagonalnie gęsto upakowanych (hcp) odmiany α, κ oraz χ. faza tlenku glinu układ krystalograficzny γ-al 2O 3 tetragonalny zdefektowany spinel δ-al 2O 3 tetragonalny potrójny blok spinelowy η-al 2O 3 regularny struktura spinelu θ-al 2O 3 jednoskośny izostrukturalny z β-ga 2O 3 χ-al 2O 3 heksagonalny struktura warstwowa o liczbie koordynacyjnej 6 κ-al 2O 3 heksagonalny duża komórka Tlenek glinu - polimorfizm diaspor korund gibbsyt drobnokrystaliczny c-al 2 O 3 k- Al 2O 3 korund gibbsyt grubokrystaliczny boehmit -Al 2 O 3 d-al 2 O 3 q-al 2 O 3 korund nieuporządkowana gibbsyt boehmit -Al2O3 q korund faza regularna próżnia, 270 C bajeryt h-al 2 O 3 q-al 2 O 3 korund 200 400 600 800 1000 1200 1400 TEMPERATURA, C Tlenek glinu γ-al 2 O 3 8
Tlenek glinu - korund Nazwa korund pochodzi z sanskrytu, kuruvinda oznacza rubinowy. W strukturze korundu jony tlenu mają strukturę heksagonalnego gęstego ułożenia (hcp) warstwy anionów ułożone są naprzemiennie ABABAB. Kationy glinu znajdują się są w położeniach oktaedrycznych, w tlenkach przejściowych kationy zajmują także pozycje tetraedryczne. Tlenek glinu - korund Nazwa korund pochodzi z sanskrytu, kuruvinda oznacza rubinowy. W strukturze korundu jony tlenu mają strukturę heksagonalnego gęstego ułożenia (hcp) warstwy anionów ułożone są naprzemiennie ABABAB. Kationy glinu znajdują się są w położeniach oktaedrycznych, w tlenkach przejściowych kationy zajmują także pozycje tetraedryczne. Monokryształy korundu zawierające niewielkie ilości zanieczyszczeń występują w naturze w postaci minerałów: rubin (z Cr) oraz szafiry (z Fe, Ti, Mg, V, Cr). Tlenek glinu - surowce Boksyt odkryty w 1821 przez Pierre Berthiera w okolicach wsi Les Baux (płd. Francja), zawiera 30-54 % Al 2 O 3 w postaci gibbsytu, boehmitu lub diasporu; zanieczyszczenia: tlenki żelaza, tlenek tytanu, kaolinit, krzemionka; główni producenci: Australia, Brazylia, Jamajka, Rosja, Chiny, Indie. 9
Tlenek glinu - surowce Pochodzenie boksytu Tlenek glinu - surowce Nefelin (Na,K,Fe)AlSiO 4, ok. 30% Al 2 O 3, (Stjernoyen) i na w Rosji (Półwysep Kola). złoża w Norwegii Metoda Bretsznajdera (kwaśna) prażenie gliny, rozkład produktu kwasem siarkowym w takich warunkach aby związki żelaza i tytanu nie przechodziły do roztworu, wytrącanie z roztworu siarczanu glinu, rozkład termiczny siarczanu glinu. 10
Metoda Le Chateliera (zasadowa) prażenie boksytu z węglanem sodowym w 1200 C, rozpuszczanie wytworzonego glinianu sodu w wodzie, wytrącanie wodorotlenku glinu dwutlenkiem węgla, filtrowanie, suszenie, prażenie. Metoda Bayera Podstawowa metoda otrzymywania tlenku glinu, opracowana przez austriackiego chemika Karla Bayera w 1887 r. Pierwsza instalacja przemysłowa powstała w 1893 r. Proces często łączony jest z otrzymywaniem czystego glinu metodą Halla-Héroulta. I. Rozpuszczanie Gibbsyt, boehmit i diaspor są rozpuszczane w wodorotlenku sodu (soda kaustyczna) w autoklawie: Al(OH) 3 + NaOH Al(OH) 4- + Na + AlO(OH) + NaOH + H 2O Al(OH) 4- + Na + Surowiec jest wstępnie mielony, a warunki procesu ustala się w zależności od jego składu: od 140 C (gibbsyt) do 240 C (boehmit). Nierozpuszczalne pozostałości (red mud), głównie krzemionka, tlenki żelaza i tytanu, są oddzielane od roztworu i poddawane utylizacji. Odpłukany roztwór jest zawracany do reaktora. 11
II. Wytrącanie Do ogrzanego roztworu glinianu sodu wprowadzana jest zawiesina drobnokrystalicznego gibbsytu po czym całość jest rozcieńczana i chłodzona z odpowiednią prędkością. Spadek rozpuszczalności powoduje krystalizację gibbsytu na zarodkach. Frakcja gruboziarnista jest oddzielana i poddawana dalszej przeróbce, frakcja drobnoziarnista służy jako zawiesina zarodków. III. Prażenie Osad czystego gibbsytu poddaje się prażeniu prowadzącego do rozkładu i krystalizacji tlenku glinu: 2 Al(OH) 3 Al 2O 3 + 3 H 2O Prażenie prowadzi się w piecu obrotowym w temperaturze ok. 1200 C. Metoda Spiekowo-Samorozpadowa Grzymka Metoda wykorzystująca nieboksytowe surowce o mniejszych zawartościach tlenku glinu. Proces służy jednocześnie do otrzymywania cementu. 1. Surowce (gliny, odpady) miesza się z wapieniem i pyłem węglowym po czym kalcynuje w piecu obrotowym; 2. W czasie kalcynacji powstały z rozkładu wapienia tlenek wapnia reaguje z surowcami tworząc głównie krzemian dwuwapniowy Ca 2SiO 4. jednym z produktów jest tlenek glinu. 3. Klinkier chłodzi się według specyficznej krzywej tak aby w temp. ok. 200C zaszła przemiana polimorficzna β-c 2S w γ-c 2S. Reakcja związana jest ze znaczną zmianą objętości właściwej, co powoduje spontaniczny rozpad spieku na ziarna poniżej 20 μm. 4. Tlenek glinu rozpuszcza się w wodnym roztworze węglanu sodu, z którego wytrąca się wodorotlenek glinu gazowym dwutlenkiem węgla. 5. Wytrącony wodorotlenek glinu kalcynuje się. Elektrokorund 1. Przygotowanie wsadu boksyt+koks+topniki; 2. Wytop w piecu łukowym >2000 C; 3. Bardzo wolne studzenie (przyczyna?); 4. Kruszenie, mielenie, segregacja; 12
Prażenie Prekursorów Proszki tlenku glinu o wysokiej czystości i kontrolowanej morfologii, do wytwarzania materiałów zaawansowanych, otrzymuje się zazwyczaj przez rozkład różnego rodzaju prekursorów: wodorotlenków, tlenowodorotlenków, związków organometalicznych (cytrynianu), dawsonitu, ałunu, Metoda Hydrotermalna Tlenek glinu - właściwości Gęstość g cm -3 3,96 Temperatura topnienia C 2051 Moduł Younga Moduł ścinania Współczynnik rozszerzalności Wytrzymałość cieplnej, K -1 8 10-6 MPa Przewodność cieplna W (m K) -1 20-30 Przewodność elektryczna Twardość Vickersa W cm -1 1 10-18 do 400 140-180 300-500 K Ic MPa m ½ 4-5 15-20 Wysoka odporność chemiczna; W temp. pokojowej nierozpuszczalny w kwasach, w wyższych temp. reaguje z HF i H 2SO 4, mniej odporny na działanie zasad; Odporny na działanie atmosfery redukcyjnej, próżni i węgla do wysokich temperatur ok. 1500 C; Względnie niska odporność na ścieranie; 13
Tlenek glinu zastosowanie Formy wyrobów korundowych Spieki wielofazowe zanieczyszczone SiO 2, MgO, CaO, ; Spieki wysokiej czystości, pow. 98%; Spieki korundu z innymi tlenkami w tym kompozyty ziarniste np. ZTA; Spieki korundu z nietlenkami węgliki, azotki, borki; Cermetale na bazie korundu; Laminaty i materiały włókniste; Monokryształy; Tlenek glinu zastosowanie 14