Tom XXVI ROŚLINY OLEISTE OILSEED CROPS 2005

Podobne dokumenty
Breeding of yellow-seeded summer rapeseed (Brassica napus L.) in West Siberia


Struktura plonu wybranych linii wsobnych żyta ozimego


Zarządzanie sieciami telekomunikacyjnymi

HODOWLA SOI I LNIANKI W KATEDRZE GENETYKI I HODOWLI ROŚLIN SOYBEAN AND CAMELINA BREEDING IN DEPARTMENT OF GENETICS AND PLANT BREEDING.

Organic plant breeding: EU legal framework and legislative challenges Ekologiczna hodowla roślin: ramy prawne UE i wyzwania legislacyjne

WZROST I PLONOWANIE PAPRYKI SŁODKIEJ (CAPSICUM ANNUUM L.), UPRAWIANEJ W POLU W WARUNKACH KLIMATYCZNYCH OLSZTYNA

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards


Ogólna zdolność kombinacyjna wybranych linii wsobnych i efekty heterozji mieszańców F 1 rzepaku ozimego

Charakterystyka podwojonych haploidów rzepaku ozimego uzyskanych z odmiany Bor

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

Has the heat wave frequency or intensity changed in Poland since 1950?

European Crime Prevention Award (ECPA) Annex I - new version 2014

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

Postępy prac nad tworzeniem gorczycy białej podwójnie ulepszonej

Zdolność kombinacyjna odmian lnu oleistego pod względem cech plonotwórczych

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Zakres zmienności i współzależność cech owoców typu soft flesh mieszańców międzygatunkowych Capsicum frutescens L. Capsicum annuum L.

Skuteczność oceny plonowania na podstawie doświadczeń polowych z rzepakiem ozimym o różnej liczbie powtórzeń

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions


INSTYTUT GENETYKI I HODOWLI ZWIERZĄT POLSKIEJ AKADEMII NAUK W JASTRZĘBCU. mgr inż. Ewa Metera-Zarzycka

Mutacja typu Virescens u rzepaku ozimego Brassica napus L.

DOI: / /32/37

Equipment for ultrasound disintegration of sewage sludge disseminated within the Record Biomap project (Horizon 2020)

Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Mikołaja Kopernika w Toruniu

Heterosis for yield and yield components in diallel crosses of Brassica napus L.

Unit of Social Gerontology, Institute of Labour and Social Studies ageing and its consequences for society


Institutional Determinants of IncomeLevel Convergence in the European. Union: Are Institutions Responsible for Divergence Tendencies of Some

SWPS Uniwersytet Humanistycznospołeczny. Wydział Zamiejscowy we Wrocławiu. Karolina Horodyska

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

SNP SNP Business Partner Data Checker. Prezentacja produktu

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Streszczenie rozprawy doktorskiej

Updated Action Plan received from the competent authority on 4 May 2017

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Employment. Number of employees employed on a contract of employment by gender in Company

OpenPoland.net API Documentation

Knovel Math: Jakość produktu


Cracow University of Economics Poland

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN POLONIA. Ocena przydatności wybranych odmian gryki Fagopyrum esculentum Moench


Country fact sheet. Noise in Europe overview of policy-related data. Poland

Elementy struktury plonu nasion i niektóre cechy morfologiczne mutantów łubinu andyjskiego (L. mutabilis Sweet) w 2001 roku Komunikat

Zmienność cech ilościowych w populacjach linii DH i SSD jęczmienia

Projekty Marie Curie Actions w praktyce: EGALITE (IAPP) i ArSInformatiCa (IOF)

Zastosowanie analizy współczynników ścieżek do badań zależności i współzależności plonu oraz wybranych cech plonotwórczych rzepaku ozimego

WULS Plant Health-Warsaw Plant Health Initiative Regpot (EU FP7)

Helena Boguta, klasa 8W, rok szkolny 2018/2019

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

Fizyka Procesów Klimatycznych Wykład 11 Aktualne zmiany klimatu: atmosfera, hydrosfera, kriosfera

Effect of cultivar on early yield of parsley grown from the late summer sowing

Few-fermion thermometry

Patients price acceptance SELECTED FINDINGS

Tom XX Rośliny Oleiste Franciszek Wielebski, Marek Wójtowicz Instytut Hodowli i Aklimatyzacji Roślin, Zakład Roślin Oleistych w Poznaniu

Krytyczne czynniki sukcesu w zarządzaniu projektami

Akademia Morska w Szczecinie. Wydział Mechaniczny

Multivariate statistical methods used for evaluation of DH lines of winter oilseed rape on account of various fatty acid compositions

Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH

deep learning for NLP (5 lectures)

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Effect of mineral fertilization on yielding of spring false flax and crambe

Definicje autora, twórcy i hodowcy odmiany rośliny uprawnej w ustawodawstwie polskim

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Auschwitz and Birkenau Concentration Camp Records, RG M

MULTI-MODEL PROJECTION OF TEMPERATURE EXTREMES IN POLAND IN

Ocena zmienności i współzależności cech ilościowych w kolekcji jarej pszenicy twardej pochodzenia afgańskiego

SNP Business Partner Data Checker. Prezentacja produktu

EPS. Erasmus Policy Statement

Organic Seeds: Transparency and availability / Ekologiczny material siewny: przejrzystość i dostępność

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL


ROZPRAWA DOKTORSKA. Mateusz Romanowski

Reakcja rzepaku jarego podwójnie ulepszonego na termin siewu

Evaluation of the main goal and specific objectives of the Human Capital Operational Programme

WIADRA I KASTRY BUDOWLANE BUILDING BUCKETS AND CONTAINERS

ROZPRAWY NR 128. Stanis³aw Mroziñski

Is there a relationship between age and side dominance of tubal ectopic pregnancies? A preliminary report

SPITSBERGEN HORNSUND

UMOWY WYPOŻYCZENIA KOMENTARZ

Ocena jakościowa odmian rzepaku ozimego za lata

ANNALES. Krystyna Szwed-Urbaś, Zbigniew Segit. Charakterystyka wybranych cech ilościowych u mieszańców pszenicy twardej

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA. mgr inż. Piotr Smurawski

Właściwości fizyczne i skład chemiczny nasion rzepaku ozimego o różnym kolorze okrywy nasiennej

ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS

OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ

WENTYLATORY PROMIENIOWE SINGLE-INLET DRUM BĘBNOWE JEDNOSTRUMIENIOWE CENTRIFUGAL FAN

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS

Transkrypt:

Tom XXVI ROŚLINY OLEISTE OILSEED CROPS 2005 Dmitry A. Potapov, Galina M. Osipova Siberian Research Institute of Fodder Crops, Russian Academy of Agricultural Sciences, Krasnoobsk, Novosibirsk Region Approaches to efficient use and to increase the diversity of genetic resources for the development of prospective breeding materials of yellow-seeded Brassica napus L. for conditions of Siberia Problemy użycia i poszerzania zmienności genetycznej rzepaku żółtonasiennego dla otrzymania wyjściowych materiałów hodowlanych Brassica napus L. dostosowanych do warunków Syberii Key words: Brassica napus L., canola, yellow seed, genetic resources, genetic diversity, database The advancement of crop quality of Brassica napus L., while keeping its early maturing and high yielding characteristics, requires the efficient use and diversification of genetic resources. Our breeding program utilizes the following approaches to achieve this task: (i) studies on a collection of yellow-seeded species of family Brassicaceae, (ii) genetic analysis of the seed coat colour and its relationship with other characters, (iii) increasing diversity of genetic resources through application of hybridization, inbreeding, in vitro propagation and selections, (iv) systematization of breeding material and efficient search for sources of desired breeding characters. The combination of applied approaches made it possible to optimize the breeding process of development of yellow-seeded B. napus for the conditions of Siberia, to enhance the diversity of initial material, and to increase the efficiency of search for the sources of desired breeding characters. Słowa kluczowe: Brassica napus L., canola, żółte nasiona, zasoby genetyczne, różnorodność genetyczna, baza danych Rzepak Brassica napus L. jest najważniejszą rośliną oleistą uprawianą w ekstremalnych warunkach klimatycznych Syberii. Zachowanie wysokiej jakości plonu nasion w sytuacji krótszego terminu jego dojrzewania wymaga stosowania różnych metod hodowlanych oraz poszerzenia zasobów genetycznych. Program badań został podzielony na następujące zadania: (I) Poznanie i gromadzenie żółtonasiennych gatunków z rodziny Brassicaceae (B. campestris, B. juncea i Sinapis alba) z pól o prowokacyjnych warunkach. Selekcję prowadzono pod kątem: wcześniejszego dojrzewania, wysokiego plonu nasion, odporności na choroby. Badania te dotyczyły form, które są aktualnie używane w programach hodowlanych. (II) Dla optymalizacji hodowli żółtonasiennych form zastosowano analizę genetyczną, tej cechy oraz jej współzależność z innymi cechami.

336 Dmitry A. Potapov... (III) Poszerzono zakres zróżnicowania genetycznego stosując następujące metody: krzyżowanie, chów wsobny, rozmnażanie in vitro i hodowlę. Prace te zapoczątkowano, ponieważ na Syberii używano wyłącznie odmian B. napus o różnobarwnej okrywie nasiennej. (IV) Opisano systematycznie zgromadzony materiał hodowlany oraz przeprowadzono efektywne poszukiwania materiałów które mogłyby być źródłami pożądanych cech. Aby realizować wyznaczone cele, utworzono syberyjską bazę danych dla rzepaku żółtonasiennego (Siberian Yellow-seeded Brassica Database SBDB), która obecnie liczy 1813 dostępnych danych. Dane zapisywano w standardowych lub niestandardowych polach (7 lub 14). Zapis niestandardowy dotyczył nowych form hodowlanych. Po użyciu wielu kombinacji w badaniach, prace przyczyniły się do wytworzenia nowych materiałów wyjściowych przeznaczonych do dalszej hodowli. Zastosowane metody pozwoliły powiększyć zakres zmienności genetycznej materiału, polepszyć skuteczność w poszukiwaniu pożądanych źródeł hodowlanych. Powyższe prace podjęto w celu wytworzenia nowych perspektywicznych żółtonasiennych form B. napus odpowiednich dla surowych warunków klimatycznych Syberii. Introduction Summer rapeseed (Brassica napus L.) is a primary oilseed crop grown in Siberia. The advancement of the crop quality, while maintaining its early maturing and high yielding characteristics along with resistance to the extreme climatic conditions of the region, requires the development of new, prospective breeding material. The efficient use and diversification of available genetic resources is an essential part of this research. The character of yellow seed coat is of high importance in the breeding of B. napus because it is associated with the improvement of feed value of meal and the increase of oil content in seeds (Shirzadegan, Röbbelen 1985; Simbaya et al. 1995; Marles, Gruber 2004). Naturally occurring germplasm of B. napus has black seed coat. A range of interspecific crosses has been used to enhance the diversity of available genetic resources. The character of yellow seed coat was transferred to B. napus from related species, such as Brassica campestris L. (syn. Brassica rapa L.), Brassica juncea (L.) Cern., and Brassica carinata Braun, the species had been used in different cross combinations (Chen et al. 1988; Meng et al. 1988; Rashid et al. 1994; Tang et al. 1997; Rahman 2001). By now the yellowseeded forms of B. napus have been obtained. As a rule, the seed yield of these forms does not exceed that of standard cultivars but the protein and oil content of some of them display higher values (Liu, Gao 1987; Shpota, Bochkaryova 1990; van Deynze, Pauls 1994; Chen, Heneen 1992; Baetzel et al. 1999; Rahman et al. 2001; Relf-Eckstein et al. 2003; Piotrowska et al. 2003; Zhi-wen et al. 2005). In spite of ongoing research carried out for several decades in different countries, the problem of the development of stable seed colour and productivity of yellowseeded B. napus cultivars remains unsolved. The aim of the present study was to optimize the breeding process for the development of yellow-seeded B. napus suitable for cultivation in Siberia. Our

Approaches to efficient use and to increase... 337 breeding program utilized the following approaches to achieve this task: (I) studies on a collection of yellow-seeded species of family Brassicaceae, (II) the genetic analysis of the seed coat colour and its relationship with other characters, (III) increasing the diversity of available genetic resources through the application of the methods of hybridization, inbreeding, in vitro propagation and selections, (IV) systematization of breeding material and efficient search for the sources of desired breeding characters. Results I. Studies on a collection of yellow-seeded species of family Brassicaceae Specific agro-climatic conditions of Siberia create significant problems in the breeding of summer rapeseed. The conditions are: continental climate with large fluctuation in daily, seasonal, and annual temperatures, severe winter unfavourable for growing of winter rapeseed, short vegetation season with late-spring and earlyfall frost, irregular time-distributed rainfall in the course of vegetation season, drought at the beginning and abundant humidity at the end of vegetation season that frustrate harvesting of late-maturing B. napus cultivars, a variety of soil types and unbalance of the elements of their fertility. Such conditions require the development of cultivars that display both high quality and stable yield of seeds. The collection of 258 accessions of the following four species of family Brassicaceae has been evaluated: B. napus, B. campestris, B. juncea and Sinapis alba L. from germplasm collection of N.I. Vavilov Institute of Plant Industry in St. Petersburg, Russia and material received from other Russian and foreign breeding institutions. Light-seeded samples were selected and studied under provocative field conditions in different years and at various locations. The results of tests on 55 selected accessions of Russian and foreign origin (9 countries) indicated that among all studied species the earliest maturing species were B. campestris and S. alba. They matured 5 to 21 days earlier than B. napus (cv. Shpat and SibNIIK 198) but had lower yield than B. napus. Accessions of B. juncea matured 3 to 5 days later than B. napus but had higher seed yield. These species were employed in crosses with B. napus as sources of the traits of yellow seed coat colour and/or early maturing. The results of our studies on the seed yield and vegetation period of the light-seeded samples are listed in Figure 1 where the values are compared with the corresponding values for dark-seeded standards. The main result of evaluating the accessions of the collection was the selection of several forms utilized further to transfer the yellow seed coat character to B. napus through interspecific crosses.

B. napus Shpat (Standard) No. 625 (Sweden) No. 624 (Sweden) B. campestris B. napus (Shpat) Candle (Canada) C-759 (Russia) S. alba B. napus (SibNIIK198) Karolina (Ukraine) UE04400163 (Japan) UE04400162 (Ukraine) No. 623 (Sweden) Lipchanka (Russia) UE04400161 (Russia) No. 622 (Sweden) No. 619 (Sweden) No. 615 (Sweden) No. 612 (Sweden) No. 345 (Sweden) No. 344-1 (Sweden) No. 344 (Sweden) No. 343-1 (Sweden) UE04400159 (India) UE04400107 (China) UE04400157 (Ukraine) UE04400156 (Germany) UE04400150 (Russia) No. 428 (Sweden) No. 313 (Sweden) 0 50 100 150 200 days, g/m 2 No. 343 (Sweden) No. 341-1 (Sweden) No. 341 (Sweden) UE04400147 (Russia) UE04400145 (India) UE04400143 (USA) UE04400131 (Germany) B. napus (Shpat) Yubileynaya (Russia) Ruzhena (Russia) 13-H13 (Russia) 13-H12 (Russia) No. 645 (Sweden) B. juncea No. 644 (Sweden) No. 643 (Sweden) No. 445 (Sweden) No. 444 (Sweden) No. 443 (Sweden) No. 442 (Sweden) UE04400115 (Russia) UE04400108 (India) UE04400103 (India) UE04400102 (India) UE04400099 (Denmark) UE04400095 (India) UE04400083 (Russia) UE04400080 (India) UE04400079 (Russia) 13-H11 (Russia) No. 441 (Sweden) No 24 (Russia) 0 50 100 150 days, g/m 2 0 50 100 days, g/m 2 0 100 200 300 days, g/m 2 Days to maturity Seed yield, g/m2 Fig. 1. Results of studies on a collection of yellow-seeded species of family Brassicaceae Liczba dni do dojrzałości roślin oraz plon nasion z 1 m 2 dla żółtonasiennych form Brassicaceae

Approaches to efficient use and to increase... 339 II. Genetic analysis of the seed coat colour and its relationship with other characters Our studies showed that the inheritance of the seed coat colour is controlled by two or three genes. The colour of light-pigmented seeds may vary from yellow to light-brown, including yellow with darker coloured spots, shades and hilum. To some extent these colour variations may be caused by meteorological factors. However, the major role is most probably played by genes-modifiers whose influence varies and changes with environmental conditions (Osipova and Potapov 1996). Some hybrid combinations were revealed with the segregation of seed colour not corresponding to the theoretically expected ratios of 15 : 1 and 63 : 1; it was impossible to determine the type of inheritance in these combinations. The material in which seed coat colour is controlled by three genes was found to be more stable through a number of generations than a material in which seed coat colour is controlled by two genes. For example, in line No. 39 seed coat colour was controlled by three genes and the variability of the character in six generations of inbreeding was lower in comparison with other lines (No. 283, 361) in which two genes were involved in the determination of seed colour. In general, the inheritance and variability of seed coat colour substantially depended on individual features of the initial material. The cluster analysis of 99 light-seeded lines evaluated during 1996 1999 allowed us to find a relationship among 17 agronomic and morphological characters and to identify several groups of related characters (Fig. 2). The analysis was based on maximum coefficients of correlation between the characters. At a low level of correlation (r = 0.3) three groups were revealed (I III, Fig. 2). At a higher level of correlation (r = 0.7) group I split into four groups (A D, Fig. 2) and group II included only two characters: weight of 1000 seeds and volume of seed. Thus, a pleiotropic effect of genes on genetic control of the studied characters cannot be excluded. III. Increasing the diversity of available genetic resources In our studies, increasing the diversity of genetic resources was achieved by applying several methods including interspecific hybridization, inbreeding, in vitro propagation, and selections. As a result, diversified initial and breeding material of B. napus was created with a variety of seed coat colours (Potapov, Osipova 2003). The tests of this material at different stages of the breeding process revealed a wide range of volumes within basic agronomic and morphological characters. Studies on the variability of these characters demonstrated higher variability of yellow-seeded lines as compared to black-seeded lines. Some yellow-seeded forms had higher values of seed yield and the seed yield components than blackseeded forms (Table 1). From the developed material, early maturing forms

Agronomic and morphological characters for light- and dark-seeded Brassica napus lines (1996 1999) Agronomiczna i morfologiczna charakterystyka linii jasno i ciemnonasiennych rzepaku Brassica napus L. (1996 1999) Table 1 Light-seeded lines (116 lines) Linie jasnonasienne (116 linii) Dark-seeded lines (84 lines) Linie ciemnonasienne(84 linie) Characters Charakterystyka average średnia range zakres coefficient of variation współczynnik zmienności [%] average średnia range zakres coefficient of variation współczynnik zmienności [%] Seed yield per plant Plon nasion z rośliny [g] 46.6 ± 5.5 2.4 272.1 127 49.6 ± 2.6 9.4 133.5 48 Number of pods per plant Ilość łuszczyn z rośliny 367 ± 42 62 1767 80 387 ± 17 88 785 40 Number of seeds per pod Ilość nasion z łuszczyny 25 ± 1* 12 39 25 28 ± 1 18 37 14 Number of pods per mainstem Ilość łuszczyn na gałązce 225 ± 17* 21 809 80 148 ± 6 45 314 39 Weight of 1000 seeds Masa 1000 nasion [g] 2.7 ± 0.1* 1.4 5.6 40 4.3 ± 0.1 2.3 6.0 16 Length of pod Długość łuszczyny [cm] 5.8 ± 0.1* 4.1 8.0 16 6.7 ± 0.1 5.1 8.1 12 Length of beak Długość dzioba [cm] 0.7 ± 0.1 0.4 1.0 20 0.8 ± 0.1 0.5 1.2 22 Volume of seed Objętość nasion [mm 3 ] 2.2 ± 0.1* 1.2 4.2 37 3.8 ± 0.1 2.4 4.9 23 Number of first-order branches per plant Liczba pierwszych rozgałęzień na roślinie 6 ± 0.1* 2 9 28 5 ± 0.2 2 8 29 Number of second-order branches per plant Liczba następnych rozgałęzień na roślinie 14 ± 0.4* 5 24 29 12 ± 0.3 7 23 31

ciąg dalszy tabeli 1 Light-seeded lines (116 lines) Linie jasnonasienne (116 linii) Dark-seeded lines (84 lines) Linie ciemnonasienne(84 linie) Characters Charakterystyka average średnia range zakres coefficient of variation współczynnik zmienności [%] average średnia range zakres coefficient of variation współczynnik zmienności [%] Height of plant Wysokość roślin [cm] 92 ± 1.7* 54 129 20 104 ± 2 76 140 12 Height of mainstem Długość gałązki [cm] 68 ± 1* 40 110 22 75 ± 2 45 120 18 Height to the first branching [cm] Długość pierwszego odgałęzienia [cm] 30 ± 1* 8 60 42 34 ± 1 20 55 21 Seedling-flowering [days] Od siewki do kwitnącej rośliny [dni] 40 ± 1 36 45 7 39 ± 1 32 47 10 Seedling maturing [days] Od siewki do dojrzałej rośliny [dni] 94 ± 1* 73 111 12 98 ± 1 88 106 6 Flowering maturing [days] Od kwitnącej rośliny do dojrzałej [dni] 53 ± 1* 30 75 20 61 ± 1 51 79 20 Flowering [days] Kwitnienie [dni] 25 ± 1* 16 33 21 29 ± 1 17 45 38 * The t-test indicates that the averages for light- and dark-seeded lines are different at 1% level T-test, różny na poziomie 1% dla linii jasno- i ciemnonasiennych

Fig. 2. Cluster dendrogram of quantitative characters of inbred lines of yellow-seeded B. napus (r is the coefficient of correlation) Dendrogram ilościowych zależności dla badanych cech linii żółtonasiennego rzepaku B. napus (r współczynnik korelacji)

Approaches to efficient use and to increase... 343 suitable for cultivation in the extreme conditions of West Siberia were selected; some of these forms had higher seed yields than a black-seeded check cultivar SibNIIK 198 (Potapov, Osipova 2004). Cluster analysis based on minimum euclidean distances was conducted on 99 lines for 17 agronomic and morphological characters. The analysis confirmed enhanced diversity of the material designed in our studies and made it possible to allocate eight groups of phenotypically homogeneous lines (Fig. 3). In general, the results of clustering were in good agreement with known pedigree relationships. However, some of the groups comprised phenotypically indistinguishable lines which originated from different genetic sources. Group I consisted of inbred lines derived from Swedish forms No. 615 and No. 624. Groups II and V contained inbred lines derived from crosses between B. napus and B. campestris as well as the inbred line derived from the form No. 615. Group III comprised inbred lines from crosses B. napus S. alba. Groups IV, VI and VIII included inbred lines from No. 615. Group VII was represented by inbred lines of hybrid pedigree B. napus B. juncea. Thus, the applied set of methods allowed us to create a diversified germplasm of summer rapeseed with various colours of seed coat and suitable for the conditions of Siberia. IV. Systematization of breeding material and efficient search for the sources of desired breeding characters Selection, evaluation and comprehensive analysis of the initial and breeding material may be greatly facilitated by the use of information technologies. Databases proved to be especially useful as a part of successful breeding programs (Stavelikova et al. 2002; Boukema et al. 2003). They intensify information retrieval, improve systematization and rationalization of available data and, eventually, make it possible to substantially optimize the breeding process. The development of Siberian Yellow-seeded Brassica Database (SBDB) was started at the Siberian Research Institute of Fodder Crops in 2002 (Osipova and Potapov 2003). By now, two passport databases have been created that account for the acquired and developed breeding material at the Institute. The Breeding Material Database and the Initial Material Database comprise data listed in 7 and 14 fields of passport descriptors, respectively. The descriptors comply with a standard multi-crop passport descriptor list developed by IPGRI (2001). In addition, non-standard descriptors have been developed in order to account for the specificity of the breeding material. The current version of SBDB retains 1813 accessions (Table 2).

344 Dmitry A. Potapov... No.624 I No.624 B.nap.xB.camp. II B.nap.xB.camp. B.nap.xB.camp. B.nap.xS.alba III IV B.nap.xB.camp. B.nap.xB.camp. V VI B.nap.xB.jun. VII VIII Fig. 3. Cluster dendrogram of inbred lines of yellow-seeded B. napus evaluated during 1996 1999 for 17 quantitative characters. On the horizontal axis the normalized distances are given; vertical columns groups (Roman numbers), pedigrees, lines (Arabic numbers) Dendrogram linii żółtonasiennego rzepaku B. napus dla 17 cech ilościowych (ocena w latach 1996-1999). W kolumnach pionowych zapisano: grupy (rzymskie numery), rody lub linie (arabskie numery)

Approaches to efficient use and to increase... 345 Table 2 The contents of Siberian Yellow-seeded Brassica Database subdivided by the seed coat colour of the samples Zawartość bazy danych dla syberyjskich żółtonasiennych form Brassica Seed coat colour Kolor okrywy nasiennej Number of accessions Liczba obiektów Light-yellow Jasno-żółte 29 Yellow Żółte 734 Light-brown Jasno-brązowe 711 Brown Brązowe 41 Dark-brown Ciemno-brązowe 14 Light-ochre Jasna ochra 10 Ochre Ochra 36 Dark-ochre Ciemna ochra 10 Black Czarne 228 Total Razem 1813 Conclusion The combination of approaches applied in our research proved to be fruitful for the development of new breeding material and for the optimization of the breeding process. The utilized strategy made it possible to increase the diversity of initial material, to improve the efficiency of search for the sources of desired breeding characters and to create new prospective yellow-seeded forms of B. napus suitable for specific conditions of Siberia. Acknowledgements The authors kindly acknowledge the support from the Organizing Committee of the XXVII Scientific Conference Rośliny Oleiste (Poznań 2005) that made it possible to present this work at the conference. References Baetzel R., Freidt W., Voss A., Lühs W.W. 1999. Development of yellow-seeded high-erucic acid rapeseed (Brassica napus L.). Proc. of 10th Int. Rapeseed Congr. Canberra, Australia. GCIRC, Paris.

346 Dmitry A. Potapov... Boukema I.W., Cristea N., van Hintum Th.J.L., Menting F. 2003. The European Brassica Database: version 2001. In: L. Maggioni, G. Thomas and E. Lipman, compilers. Report of a Working Group on Brassica, Extraordinary meeting 8-9 February 2002, Vila Real, Portugal, IPGRI, Rome, Italy, 14-18. Chen B.Y., Heneen W.K. 1992. Inheritance of seed colour in Brassica campestris L. and breeding for yellow-seeded B. napus L. Euphytica, 59: 157-163. Chen B.Y., Heneen W.K., Jönsson R. 1988. Resynthesis of Brassica napus L. through interspecific hybridization between B. alboglabra Bailey and B. campestris L. with special emphasis on seed colour. Plant Breeding, 101: 52-59. Liu H.L., Gao Y.T. 1987. Some fundamental problems conducted from the studies on the breeding of yellow-seeded Brassica napus L. Proc. 7th Int. Rapeseed Congr. Poznan, Poland, 2: 476-480. Marles M.A.S., Gruber M.Y. 2004. Histochemical characterisation of unextractable seed coat pigments and quantification of extractable lignin in the Brassicaceae. J. Sci. Food Agric., 84: 251-262. Meng J., Shi S., Gan. L., Li Z., Qu X. 1988. The production of yellow-seeded Brassica napus (AACC) through crossing interspecific hybrids of B. campestris (AA) and B. carinata (BBCC) with B. napus. Euphytica, 103: 329-333. Osipova G.M., Potapov D.A. 1996. Inheritance of seed coat colour in summer rapeseed. In: Proc. Meet. Plant Industry, Breeding and Biotechnology of Agricultural Plants in Siberia, 23-24 June, 1996, Krasnojarsk. Novosibirsk, Russia, 70-71. Osipova G.M., Potapov D.A. 2003. Development of databases of sources and donors of rapeseed (Brassica napus L.) with different seed coat colour. Information technologies, information and metering system and equipment in studying agricultural production processes. Materials of Int. conf., Novosibirsk, 22-23 October, 2003. Part I. Novosibirsk, Russia, 126-128. Piotrowska A., Krzymanski J., Bartkowiak-Broda I., Krotka K. 2003. Characteristic of yellow-seeded lines of winter oilseed rape. Proc. 11th Int. Rapeseed Congr. Copenhagen, Denmark, 1: 247-249. Potapov D.A., Osipova G.M. 2003. Development of yellow-seeded Brassica napus in Siberia. Proc. of 11th Int. Rapeseed Congr., Copenhagen, Denmark, 1: 250-252. Potapov D.A., Osipova G.M. 2004. Breeding of yellow-seeded summer rapeseed (Brassica napus L.) in West Siberia. Rośliny Oleiste Oilseed Crops, XXV (1): 61-70. Rahman M.H. 2001. Production of yellow-seeded Brassica napus through interspecific crosses. Plant Breeding, 120: 463-472. Rahman M.H., Joersbo M., Poulsen H. 2001. Development of yellow-seeded Brassica napus of double low quality. Plant Breeding, 120: 473-478. Rashid A., Rakow G., Downey R.K. 1994. Development of yellow-seeded Brassica napus through interspecific crosses. Plant Breeding, 112: 127-134. Relf-Eckstein J.-A., Rakow G., Raney J.Ph. 2003. Yellow-seeded Brassica napus a new generation of high quality canola for Canada. Proc. of 11th Int. Rapeseed Congr., Copenhagen, Denmark, 2: 458-460. Shirzadegan M., Röbbelen G. 1985. Influence of seed colour and hull proportions on quality properties of seeds in Brassica napus L. Fette Seifen Anstrichm., 87: 235-237. Shpota V.I., Bochkaryova E.B. 1990. Breeding of yellow-seeded rapeseed and turnip rape cultivars. Doklady VASHNIL, 10: 25-28 (in Russian). Simbaya J., Slominski V.A., Rakow G., Campbell L.D., Downey R.K., Bell J.M. 1995. Quality characteristics of yellow-seeded Brassica seed meals: protein, carbohydrates and dietary fiber components. J. Sci. Food Chem., 43: 2062-2066.

Approaches to efficient use and to increase... 347 Stavelikova H., Boukema I.W., van Hintum Th.J.L. 2002. The International Lactuca Database. Plant Genetic Resources Newsletter, 130: 16-19. Tang Z.L., Li J.N., Zhang X.K., Chen L., Wang R. 1997. Genetic variation of yellow-seeded rapeseed lines (Brassica napus L.) from different genetic sources. Plant Breeding, 116: 471-474. The multi-crop passport descriptor list. 2001. International Plant Genetic Resources Institute. Publications. http://www.ipgri.cgiar.org/publications/pdf/124.pdf. Van Deynze A., Pauls K.P. 1994. The inheritance of seed colour and vernalization requirement in Brassica napus using doubled haploids populations. Euphytica, 74: 77-83. Zhi-wen L., Ting-dong F., Jin-xing T., Bao-yuan C. 2005. Inheritance of seed colour and identification of RAPD and AFLP markers linked to the seed colour gene in rapeseed (Brassica napus L.). Teor. Appl. Genet., 110: 303-310.