RÓWNOLEGŁY FILTR AKTYWNY STEROWANY PREDYKCYJNIE

Podobne dokumenty
REGULATOR NAPIĘCIA DC HYBRYDOWEGO ENERGETYCZNEGO FILTRU AKTYWNEGO DC BUS VOLTAGE CONTROLLER IN HYBRID ACTIVE POWER FILTER

TRÓJFAZOWY RÓWNOLEGŁY ENERGETYCZNY FILTR AKTYWNY ZE Z ZMODYFIKOWANYM ALGORYTMEM STEROWANIA OPARTYM NA TEORII MOCY CHWILOWEJ

MODEL SYMULACYJNY JEDNOFAZOWEGO PROSTOWNIKA DIODOWEGO Z MODULATOREM PRĄDU

PORÓWNANIE WYBRANYCH ALGORYTMÓW STEROWANIA TRÓJFAZOWEGO RÓWNOLEGŁEGO FILTRU AKTYWNEGO

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych

LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy

Eliminacja wpływu napędów dużych mocy na sieć zasilającą

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7

Miernictwo I INF Wykład 13 dr Adam Polak

MODEL SYMULACYJNY ENERGOELEKTRONICZNEGO STEROWANEGO ŹRÓDŁA PRĄDOWEGO PRĄDU STAŁEGO BAZUJĄCEGO NA STRUKTURZE BUCK-BOOST CZĘŚĆ 2

PL B1. Sposób wyznaczania błędów napięciowego i kątowego indukcyjnych przekładników napięciowych dla przebiegów odkształconych

Efektywność środków ograniczających oddziaływanie napędów przekształtnikowych na sieć zasilającą

PL B1. C & T ELMECH SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Pruszcz Gdański, PL BUP 07/10

Teoria obwodów elektrycznych / Stanisław Bolkowski. wyd dodruk (PWN). Warszawa, Spis treści

WOJSKOWA AKADEMIA TECHNICZNA

Ćwiczenie 4 Badanie wpływu napięcia na prąd. Wyznaczanie charakterystyk prądowo-napięciowych elementów pasywnych... 68

Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści

Sposoby poprawy jakości dostawy energii elektrycznej

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

POMIARY MOCY (OBWODY JEDNO- I TRÓJFAZOWE). POMIARY PRĄDÓW I NAPIĘĆ W OBWODACH TRÓJFAZOWYCH

Spis treści 3. Spis treści

PRZEKSZTAŁTNIK REZONANSOWY W UKŁADACH ZASILANIA URZĄDZEŃ PLAZMOWYCH

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

PL B1. Sposób regulacji prądu silnika asynchronicznego w układzie bez czujnika prędkości obrotowej. POLITECHNIKA GDAŃSKA, Gdańsk, PL

HARMONICZNE W PRĄDZIE ZASILAJĄCYM WYBRANE URZĄDZENIA MAŁEJ MOCY I ICH WPŁYW NA STRATY MOCY

PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 20/10. JAROSŁAW GUZIŃSKI, Gdańsk, PL WUP 05/15. rzecz. pat.

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

ELEKTROTECHNIKA. Zagadnienia na egzamin dyplomowy dla studentów

Wykaz symboli, oznaczeń i skrótów

SPRAWOZDANIE LABORATORIUM ENERGOELEKTRONIKI. Prowadzący ćwiczenie 5. Data oddania 6. Łączniki prądu przemiennego.

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 14/12

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego

MODEL SYMULACYJNY ENERGOELEKTRONICZNEGO ZASILACZA AWARYJNEGO UPS O STRUKTURZE TYPU VFI

Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki

Ćwiczenie nr.14. Pomiar mocy biernej prądu trójfazowego. Q=UIsinϕ (1)

Ćwiczenie nr 4. Badanie filtrów składowych symetrycznych prądu i napięcia

SPIS TREŚCI PRZEDMOWA WYKAZ WAŻNIEJSZYCH OZNACZEŃ 1. PODSTAWOWE INFORMACJE O NAPĘDZIE Z SILNIKAMI BEZSZCZOTKOWYMI 1.1. Zasada działania i

PL B1. Sposób i układ pomiaru całkowitego współczynnika odkształcenia THD sygnałów elektrycznych w systemach zasilających

Ćwiczenie: "Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia"

Przekształtniki energoelektroniczne wielkich mocy do zastosowań w energetyce

IMPULSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Wykaz ważniejszych oznaczeń Podstawowe informacje o napędzie z silnikami bezszczotkowymi... 13

Katedra Elektrotechniki Teoretycznej i Informatyki

Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO

Laboratorium Podstaw Elektrotechniki i Elektroniki

2.Rezonans w obwodach elektrycznych

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C

Polepszenie jakości przekształcanej energii elektrycznej w układach prostownikowych mocy z modulatorem prądu

ĆWICZENIE 1 JEDNOFAZOWE OBWODY RLC. Informatyka w elektrotechnice ZADANIA DO WYKONANIA

ANALIZA PRACY SILNIKA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI W WARUNKACH ZAPADU NAPIĘCIA

Ćwiczenie nr 1. Badanie obwodów jednofazowych RLC przy wymuszeniu sinusoidalnym

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych

LABORATORIUM PRZEKŁADNIKÓW

Laboratorium Podstaw Elektrotechniki i Elektroniki

PN-EN :2012

Impedancje i moce odbiorników prądu zmiennego

Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, Spis treści

Przekształtnik sieciowy AC/DC przy sterowaniu napięciowym i prądowym analiza porównawcza

Pomiar mocy czynnej, biernej i pozornej

Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego:

ZESPOLONA TRANSFORMATA FOURIERA PRĄDÓW LUB NAPIĘĆ UKŁADU TRÓJFAZOWEGO OPARTA NA PRZEKSZTAŁCENIU CLARKE I ROZSZERZONYM PRZEKSZTAŁCENIU FORTESCUE

Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym

PL B1. Sposób pomiaru składowych impedancji czujnika indukcyjnego i układ pomiarowy składowych impedancji czujnika indukcyjnego

[RAPORT zapowiedź] CHARAKTźRYSTYKI OBCIĄ źnia TYPOWYCH ODBIORNIKÓW źnźrgii W GOSPODARSTWACH DOMOWYCH Jarosław Michalak*, Marcin Zygmanowski*

Badanie obwodów z prostownikami sterowanymi

PL B1. Układ falownika obniżająco-podwyższającego zwłaszcza przeznaczonego do jednostopniowego przekształcania energii

CYFROWY REGULATOR PRĄDU DIOD LED STEROWANY MIKROKONTROLEREM AVR *)

ZMODYFIKOWANY SZEROKOPASMOWY AKTYWNY KOMPENSATOR RÓWNOLEGŁY

Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI. Katedra Metrologii i Optoelektroniki. Metrologia. Ilustracje do wykładu

Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera.

OCENA PARAMETRÓW JAKOŚCI ENERGII ELEKTRYCZNEJ DOSTARCZANEJ ODBIORCOM WIEJSKIM NA PODSTAWIE WYNIKÓW BADAŃ

WPŁYW TOLERANCJI PARAMETRÓW ELEKTRYCZNYCH DŁAWIKA SPRZĘGAJĄCEGO NA CZUŁOŚĆ RÓWNOLEGŁEGO FILTRA AKTYWNEGO

Podstawy użytkowania i pomiarów za pomocą MULTIMETRU

14 Modulatory FM CELE ĆWICZEŃ PODSTAWY TEORETYCZNE Podstawy modulacji częstotliwości Dioda pojemnościowa (waraktor)

Problem stabilności energetycznych, równoległych napięciowych filtrów aktywnych

Pytania podstawowe dla studentów studiów II-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych

WIELOPOZIOMOWY FALOWNIK PRĄDU

PROTOKÓŁ POMIAROWY - SPRAWOZDANIE

KARTA MODUŁU KSZTAŁCENIA

Elektrotechnika Electrical Engineering

REGULATORY MOCY BIERNEJ DLA SYMETRYCZNYCH I ASYMETRYCZNYCH OBCIĄŻEŃ

AKTYWNY KOMPENSATOR MOCY BIERNEJ DLA ELEKTROWNI WODNEJ Z GENERATOREM INDUKCYJNYM

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015

BADANIE PRZEKŁADNIKÓW PRĄDOWYCH

JAKOŚĆ ENERGII ELEKTRYCZNEJ Odkształcenie napięć i pradów

ANALIZA WPŁYWU USZKODZEŃ CZUJNIKÓW PRĄDU STOJANA NA PRACĘ WEKTOROWEGO UKŁADU NAPĘDOWEGO KONCEPCJA UKŁADU ODPORNEGO

Wydział IMiC Zadania z elektrotechniki i elektroniki AMD 2014 AMD

Pytania podstawowe dla studentów studiów II-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych

Spis treści. Oznaczenia Wiadomości ogólne Przebiegi zwarciowe i charakteryzujące je wielkości

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych

Analiza porównawcza równoległych energetycznych filtrów aktywnych typowego (prądowego) i napięciowego, pracujących w sieciach o różnych topologiach

PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 10/16. JAROSŁAW GUZIŃSKI, Gdańsk, PL PATRYK STRANKOWSKI, Kościerzyna, PL

Metoda pomiaru błędu detektora fazoczułego z pierścieniem diodowym

Pomiary dużych prądów o f = 50Hz

Politechnika Białostocka

Elektronika przemysłowa

OBSZARY BADAŃ NAUKOWYCH

Transkrypt:

Daniel WOJCIECHOWSKI Ryszard STRZELECKI Bogdan BAŁKOWSKI RÓWNOLEGŁY FILTR AKTYWNY STEROWANY PREDYKCYJNIE STRESZCZENIE W artykule przedstawiono układ sterowania równoległym filtrem aktywnym z predykcyjnym algorytmem wyznaczania prądów kompensujących oraz predykcyjnym regulatorem prądu opartym na modelu obiektu. W układzie zastosowano estymator i predyktor zastępczej siły elektromotorycznej sieci, zapewniający poprawną pracę filtru bez pomiaru i niezależnie od odkształceń napięcia sieci w punkcie przyłączenia. Wymienione algorytmy zapewniają wysoką precyzję regulacji prądów kompensujących oraz dynamikę regulacji ograniczoną jedynie parametrami obwodowymi filtru. W artykule pokazano wyniki badań laboratoryjnych uzyskane dla filtru aktywnego o mocy 100 kva. Porównano właściwości filtru sterowanego z predykcją oraz bez predykcji prądów kompensujących. Słowa kluczowe: filtry aktywne, jakość energii elektrycznej, metody estymacji, sterowanie predykcyjne dr inż. Daniel WOJCIECHOWSKI, prof. dr hab. inż. Ryszard STRZELECKI Akademia Morska, Katedra Automatyki Okrętowej ul. Morska 81-87, 81-225 Gdynia mgr inż. Bogdan BAŁKOWSKI C&T Elmech sp. z o.o. ul. Podmiejska 5c, 83-000 Pruszcz Gdański PRACE INSTYTUTU ELEKTROTECHNIKI, zeszyt 231, 2007

152 D. Wojciechowski, R. Strzelecki, B. Bałkowski 1. WSTĘP W ostatnich latach obserwuje się znaczny wzrost poziomu odkształceń prądów zasilających, w szczególności w sieciach rozdzielczych niskiego napięcia. Związane jest to z coraz większą liczbą przyłączonych do sieci nieliniowych odbiorników energii elektrycznej. Głównymi skutkami występowania wyższych harmonicznych oraz niesymetrii prądów zasilających są odkształcenia napięć zasilających, zwiększenie strat mocy w urządzeniach energetycznych, lub też niepożądane zadziałanie wyłączników automatycznych. Odkształcenia napięć zasilających obniżają jakość energii elektrycznej dostarczanej do odbiorców i w wielu przypadkach powodują nieprawidłową pracę lub nawet niezdatność do pracy odbiorów przyłączonych do sieci, a także powodują występowanie prądów rezonansowych pojemnościowych kompensatorów mocy biernej, prowadzących w niektórych przypadkach do ich uszkodzenia. Najbardziej efektywnym sposobem ograniczania odkształceń prądów zasilających jest stosowanie równoległych lub szeregowych filtrów aktywnych [3], [4]. Filtry aktywne, w przeciwieństwie do pasywnych filtrów indukcyjno pojemnościowych, cechuje zdolność adaptacji do zmiennego poziomu kompensowanych odkształceń prądów. Sterowanie energetycznymi filtrami aktywnymi należy obecnie na świecie do aktualnych zagadnień naukowych w dziedzinie energoelektroniki. Coraz częściej rezultatem badań są wdrożenia wykorzystujące opracowane metody sterowania oraz rozwiązania układowe, przy czym wdrażane są najczęściej filtry równoległe (P-APF, ang.: Parallel Active Power Filter). Związane jest to z pewną wadą filtrów szeregowych, w których kompensacja odkształceń prądów zasilających realizowana jest poprzez odpowiednie odkształcenie napięć po stronie odbiorów, co może być zaakceptowane jedynie dla wybranej grupy odbiorników. Dodatkowym problemem jest konieczność stosowania w filtrach szeregowych zabezpieczeń przed prądami zwarciowymi sieci zasilającej, które zamykają się przez transformator filtru przyłączony do sieci szeregowo. W każdym układzie sterowania P-APF wyróżnić można, niezależnie od zastosowanych metod i algorytmów, nadrzędny blok wyznaczenia prądów kompensujących oraz podrzędny blok regulacji prądów fazowych. Bloki te mają decydujący wpływ na skuteczność kompensacji P-APF. Stosowana współcześnie cyfrowa implementacja sterowania wymusza konieczność uwzględnienia w algorytmach opóźnień występujących pomiędzy sprzężeniami i sterowaniem, związanych z czasem konwersji analogowo cyfro-

Równoległy filtr aktywny sterowany predykcyjnie 153 wej i czasem obliczeń. Najwyższą skuteczność filtracji P-APF sterowanego cyfrowo uzyskać można zatem jedynie przy zastosowaniu w układzie sterowania algorytmów predykcyjnych, zarówno do wyznaczania prądów referencyjnych jak i regulacji prądów fazowych, które zapewniają kompensację tych opóźnień. Algorytmy wyznaczania prądów kompensujących podzielić można na wykorzystujące reprezentację prądów w dziedzinie częstotliwości oraz w dziedzinie czasu. Metody oparte na reprezentacji widmowej pozwalają na selektywną kompensację harmonicznych, cechuje je jednak znaczny czas reakcji na zmianę kompensowanych prądów odbiorów nieliniowych, nie nadają się zatem do kompensacji nieperiodycznych odkształceń prądów zasilających. Metody wyznaczania prądów kompensujących w oparciu o reprezentację prądów w dziedzinie czasu pozwalają teoretycznie (przy pominięciu opóźnień) na natychmiastową reakcję na zmiany kompensowanych prądów oraz są mniej wymagające obliczeniowo i w rezultacie są stosowane częściej. Ważną podgrupę stanowią tu metody oparte na teorii mocy chwilowych [1], do których należy metoda predykcyjna zastosowana w przedstawionym układzie sterowania. Regulacja prądów fazowych realizowana może być bezpośrednio w układzie z modulatorem nadążnym, lub pośrednio, w układzie stanowiącym kaskadowe połączenie regulatora prądu wypracowującego zadane napięcie oraz modulatora szerokości impulsów determinującego strategię syntezy tego napięcia. Metody pośrednie pozwalają na uzyskanie wyższej dynamiki i precyzji regulacji prądów oraz zapewniają stałą częstotliwość kluczowania tranzystorów, co pozwala na lepsze kontrolowanie ich strat łączeniowych. W prezentowanym układzie sterowania P-APF zastosowano regulator predykcyjny oparty na modelu obiektu (MPC, ang.: Model based Predictive Control), który zapewnia dynamikę regulacji prądów fazowych ograniczoną jedynie parametrami obwodowymi układu. Regulator połączony jest kaskadowo z wektorowym modulatorem szerokości impulsów (SVM ang.: Space Vector Modulator). Jednym z istotnych kierunków badań związanych z filtracją aktywną są metody i algorytmy sterowania bezczujnikowego [2]. Metody takie umożliwiają zwiększenie niezawodności przekształtnika oraz redukcję kosztów. Umożliwiają one również odtwarzanie wielkości, których pomiar nie jest możliwy do zrealizowania, a których znajomość wpływa na poprawę właściwości układu sterowania. Przykładem jest zastosowany w proponowanym układzie sterowania P-APF precyzyjny algorytm estymacji i predykcji odkształconej i niesymetrycznej zastępczej SEM sieci [4], rozumianej jako zastępcze napięcie Thevenina widziane od strony zacisków P-APF. Algorytm zapewnia informację o SEM niezbędną dla poprawnej pracy zarówno algorytmu wyznaczania prądów kompensujących jak i regulatora prądów fazowych MPC.

154 D. Wojciechowski, R. Strzelecki, B. Bałkowski 2. OPIS MATEMATYCZNY UKŁADU W układzie sterowania zastosowano reprezentację zespoloną prądów oraz napięć fazowych układu trójfazowego trójprzewodowego f = fα + jfβ, gdzie składowe ortogonalne f α, f β wektora chwilowego f stanowiącego reprezentację geometryczną f określone są poprzez transformację Clarke z inwariantnością mocy. Reprezentacja zespolona pozwala na wykorzystanie w algorytmie sterowania metod przetwarzania sygnałów zespolonych, w szczególności zespolonej transformacji Fouriera zdefiniowanej jako: j ω1 jnω () = F 1t, () e f t + n= n e n t T 1 F n = f t dt T, (1) 1 gdzie F n oznacza zespoloną amplitudę, natomiast funkcję bazową n-tej harmonicznej. Wyrazy szeregu dla n > 0 oraz n < 0 oznaczają harmoniczne zespolone dla częstotliwości odpowiednio dodatnich i ujemnych. Na rysunku 1 pokazano przykładowe widma amplitudowe sygnału zespolonego reprezentującego przebiegi odkształconych napięć lub prądów w układach trójfazowych trójprzewodowych symetrycznym oraz niesymetrycznym. 0 j e nω t a) b) Rys. 1. Widma sygnałów zespolonych reprezentujących przebiegi odkształconych napięć lub prądów fazowych w układzie trójfazowym: symetrycznym (a) oraz niesymetrycznym (b)

Równoległy filtr aktywny sterowany predykcyjnie 155 Algorytm sterowania P-APF sformułowany został w oparciu o model liniowy (rys. 2) opisany układem równań: di R 1 = i + ( u e ), (2) dt L L dudc 1 p dt C u conv = (3) DC DC gdzie L =L I + L L oraz przyjęto R = 0. Moce chwilowe czynna, bierna i pozorna określone są zależnościami: =, qconv Im ( u i) pconv Re( u i) =, s = u i= pconv + jqconv. (4) conv Rys. 2. Model układu z równoległym filtrem aktywnym 3. UKŁAD STEROWANIA Na rysunku 3 pokazano schemat blokowy badanego układu sterowania P-APF. Pomiary oraz sterowanie realizowane są co okres próbkowania T s. Próbki odpowiadające chwili ostatnich pomiarów oznaczono indeksem (k 1).

156 D. Wojciechowski, R. Strzelecki, B. Bałkowski Próbki średnich napięć określone pomiędzy chwilami (n 1) oraz (n) oznaczono indeksem (n 1 n). Prądy kompensujące wyznaczane są w algorytmie predykcyjnym opartym na teorii mocy chwilowych [1], zgodnie z zależnością: set ( + 1) = ( + 1) + j ( + 1) ( + 1) i k p k q k e k e1,lim e1,lim 1, (5) gdzie p e1,lim oraz q e1,lim oznaczają wartości ograniczone mocy chwilowych, związane z podstawową harmoniczną zastępczej SEM sieci. Rys. 3. Schemat blokowy układu sterowania równoległym filtrem aktywnym Próbki (k + 1) mocy chwilowych wyznaczane są na drodze predykcji realizowanej podstawie próbek określonych w poprzednim okresie napięcia sieci, z wykorzystaniem bufora cyklicznego (rys. 4). Liczba próbek bufora cyklicznego równa jest ilorazowi częstotliwości próbkowania f s = 1/T s oraz częstotliwości napięcia sieci. Kompensowane składowe chwilowej mocy czynnej wyznaczane są z wykorzystaniem filtru dolnoprzepustowego (LPF).

Równoległy filtr aktywny sterowany predykcyjnie 157 Rys. 4. Algorytm wyznaczania prądu kompensującego P-APF Algorytm zastosowanego regulatora prądów typu MPC opisany jest równaniami wynikającymi z zależności (3): ( ) = ( 1) + set ( 1 ) ( 1 ) i k i k Ts u k k e k k L, (6) set set ( + 1) = ( + 1 ) ( ) + ( + 1) u k k L i k i k Ts e k k. (7) Regulator zapewnia pełne wykorzystanie obszaru pracy filtru aktywnego [4] oraz predykcję sterowania, co oznacza że zapewnia maksymalną dynamikę regulacji prądów fazowych możliwą do uzyskania dla danych parametrów obwodowych układu P-APF. Próbki podstawowej harmonicznej zastępczej SEM sieci e 1, wymagane w algorytmie wyznaczania prądów referencyjnych (zależność (5)), oraz próbki w ogólnym przypadku odkształconej i niesymetrycznej SEM e, wymagane w regulatorze prądu (zależności (6) i (7)), wyznaczane są w algorytmie estymacji i predykcji [4]. Wstępna estymata SEM wyznaczana jest zgodnie z zależnością: ( 2) i( k 1) i k set ecalc ( k 2 k 1) = L + u ( k 2 k 1). (8) T s

158 D. Wojciechowski, R. Strzelecki, B. Bałkowski Sygnał zespolony ecalc () t którego próbki wyznaczane są zgodnie z (8), zawiera wszystkie harmoniczne SEM sieci et. ( ) Harmoniczne te wyrażają odkształcenie i niesymetrię przebiegów fazowych zastępczej SEM (rys. 1). Próbki prądu wyjściowego i otrzymywane poprzez pomiary obarczone są błędami. Występujący w zależności (8) iloraz różnicowy mierzonego prądu wyjściowego powoduje zwielokrotnienie błędów pomiarowych. W konsekwencji próbki zastępczej SEM obliczone zgodnie z równaniem (8) zawierają błędy o charakterze szumu, które należy wyeliminować. Podstawowa harmoniczna zespolona SEM sieci wyznaczana jest przy wykorzystaniu chwilowego kąta odtwarzanego za pomocą pętli fazowej, oraz modułu SEM wyznaczanego na drodze filtracji cyfrowej. Pozostałe, dowolnie wybrane harmoniczne SEM reprezentujące odkształcenie i niesymetrię odtwarzane są na podstawie wyznaczonych amplitud zespolonych. Amplitudy te wyznaczane są na drodze korelacji funkcji bazowej jn e1 e n tej harmonicznej z sygnałem e calc : E n e -j calc e n e 1 =. (9) Iloczyn funkcji bazowej danej harmonicznej oraz amplitudy zespolonej wyznaczonej zgodnie z (9) stanowi odtwarzaną harmoniczną SEM. Predykcja odkształconej SEM sieci polega na odpowiednim przesunięciu w fazie poszczególnych harmonicznych SEM a następnie ich superpozycji: e n jn l Δ e1 ( k 2 + l k 1+ l) = e ( k 2 k 1) e, (10) n m, (11) m ( 2+ 1+ ) = ( 2+ 1+ ) e k l k l e k l k l gdzie symbolem l oznaczono horyzont predykcji, natomiast Δ e1 inkrementację kąta SEM sieci wyznaczaną w pętli fazowej. 4. WYNIKI BADAŃ LABORATORYJNYCH Badania przedstawionego układu sterowania przeprowadzono dla równoległego filtru aktywnego o mocy 100 kva o parametrach podanych w tab. 1. Pomiary wykonano przy wykorzystaniu oscyloskopu Tektronix DPO 7054. Przed-

Równoległy filtr aktywny sterowany predykcyjnie 159 TABELA 1 Podstawowe parametry układu P-APF Napięcie zasilające 3x400 V Indukc. dław. sieciowych 1 mh Napięcie w obwodzie DC 700 V Częstotl. modulacji SVM 10 khz Pojemność w obwodzie DC 5 mf Częstotl. próbkowania 20 khz stawiono wyniki uzyskane dla kompensacji zarówno odbioru nieliniowego o charakterze prądowym (prostownik diodowy obciążony rezystancją) (rys. 5, 7) oraz o charakterze napięciowym (prostownik diodowy obciążony równolegle połączoną rezystancją i pojemnością 1500 μf) (rys. 6). W celu lepszego zobrazowania skuteczności kompensacji P-APF w obydwu odbiorach nieliniowych nie zastosowano dławików sieciowych. Równoległy filtr aktywny bardziej skutecznie kompensuje prądy zasilające odbiorów o charakterze prądowym (por. rys. 5 oraz rys. 6). Na rysunkach 5...7a oraz 5...7b pokazano wyniki uzyskane przy sterowaniu bez predykcji oraz z predykcją prądów kompensowanych. Przy sterowaniu z predykcją P-APF zapewnia znacznie wyższą skuteczność filtracji w stanie ustalonym, natomiast wzrasta czas odpowiedzi na zmianę prądu odbioru nieliniowego (z wartości 100 μs do 20 ms). Wybór algorytmu zależy więc od aplikacji P-APF. a) b) e A e A i L,A i NL,A i A i L,A i NL,A i A THD = 2,86% THD = 29, 75% Rys. 5. Stan ustalony. Filtracja odkształceń prądów zasilających prostownika z obciążeniem R przy sterowaniu bez (a) oraz z predykcją (b) prądów Oznaczenia: e A napięcie sieci, i L,A sumaryczny prąd zasilający, i NL,A prąd odbiornika nieliniowego, i A prąd filtru aktywnego. Skala: 200 V/dz. oraz 50 A/dz.

160 D. Wojciechowski, R. Strzelecki, B. Bałkowski a) b) e A i L,A THD = 28,35% e A i L,A i NL,A THD = 94,19% i NL,A i A i A Rys. 6. Stan ustalony. Filtracja odkształceń prądów zasilających prostownika z obciążeniem RC przy sterowaniu bez (a) oraz z predykcją (b) prądów. Skala, odpowiednio: 200 V/dz. oraz 100 A/dz. a) b) e A e A i L,A i NL,A i L,A i NL,A i A i A Rys. 7. Załączenie odbioru nieliniowego. Filtracja odkształceń prądów zasilających przy sterowaniu bez (a) oraz z predykcją (b) prądów. Skala, odpowiednio: 200 V/dz. oraz 20 A/dz. 5. PODSUMOWANIE Pokazane wyniki badań potwierdzają wysoką skuteczność kompensacji P-APF sterowanego predykcyjnie bez pomiaru napięcia sieci, przyłączonego do sieci o odkształconym napięciu. W układzie możliwy jest wybór strategii stero-

Równoległy filtr aktywny sterowany predykcyjnie 161 Rys. 8. Filtr aktywny XINUS firmy C&T Elmech o mocy 150 kva zainstalowany w rafinerii LOTOS S.A. wania z predykcją lub bez predykcji prądów kompensujących, co pozwala na dostosowanie właściwości filtru do wymagań wynikających z rodzaju kompensowanych odbiorów nieliniowych. Przedstawiony w artykule układ sterowania P-APF zastosowano w rodzinie filtrów aktywnych XINUS o mocach znamionowych 50 kva, 100 kva oraz 150 KVA, wdrożonych przez firmę C&T Elmech. LITERATURA 1. Akagi H., Kanazawa H., Nabae A.: Generalized theory of the instantaneous reactive power in three-phase circuits. Proc. IPEC 1983 Int. Conf., Tokyo, 1983. 2. Lee D. C., Lim D. S.: AC voltage and current sensorless control of three-phase PWM rectifiers. IEEE Trans. Power Electron., vol. 17, Nov. 2002. 3. Strzelecki R., Supronowicz H.: Filtracja harmonicznych w sieciach zasilających prądu przemiennego. Wydawnictwo Adam Marszałek, Toruń, 1998. 4. Wojciechowski D.: Sterowanie przekształtnikiem sieciowym z predykcją siły elektromotorycznej. Rozprawa doktorska, Politechnika Gdańska, Gdańsk 2005. Rękopis dostarczono, dnia 27.02.2007 r. Opiniował: doc. dr hab. inż. Krzysztof Zymmer

162 D. Wojciechowski, R. Strzelecki, B. Bałkowski PARALLEL ACTIVE POWER FILTER WITH PREDICTIVE CONTROL D. WOJCIECHOWSKI, R. STRZELECKI B. BAŁKOWSKI ABSTRACT In the paper the control system of parallel active power filter with predictive calculation of reference currents and model based predictive current control is presented. In the system the estimator and predictor of equivalent grid emf is applied, which ensures correct operation of active filter without measurements of voltage at the point of common coupling, even at presence of distorted voltage. The algorithms mentioned above ensure high precision of current control and control dynamics limited only by circuit parameters of the active filter. There are presented experimental results for 100 kva active power filter. The active filter control properties in case of control with prediction and without prediction of reference currents has been compared.