Wydatek energetyczny procesu rozdrabniania różnych skał za pomocą autorskiego młynka udarowego

Podobne dokumenty
Oszacowanie wydatku energetycznego rozdrabniania skał metodą mielenia udarowego

ANALIZA ROZDRABNIANIA WARSTWOWEGO NA PODSTAWIE EFEKTÓW ROZDRABNIANIA POJEDYNCZYCH ZIAREN

BADANIE PROCESU ROZDRABNIANIA MATERIAŁÓW ZIARNISTYCH 1/8 PROCESY MECHANICZNE I URZĄDZENIA. Ćwiczenie L6

REJESTRACJA WARTOŚCI CHWILOWYCH NAPIĘĆ I PRĄDÓW W UKŁADACH ZASILANIA WYBRANYCH MIESZAREK ODLEWNICZYCH

LABORATORIUM: ROZDZIELANIE UKŁADÓW HETEROGENICZNYCH ĆWICZENIE 1 - PRZESIEWANIE

ANALiZA WPŁYWU PARAMETRÓW SAMOLOTU NA POZiOM HAŁASU MiERZONEGO WEDŁUG PRZEPiSÓW FAR 36 APPENDiX G

MODELOWANIE WARSTWY POWIERZCHNIOWEJ O ZMIENNEJ TWARDOŚCI

WPŁYW GĘSTOŚCI SUROWCA NA BILANSOWANIE PRODUKTÓW KLASYFIKACJI HYDRAULICZNEJ W HYDROCYKLONACH W OPARCIU O WYNIKI LASEROWYCH ANALIZ UZIARNIENIA**

OKREŚLENIE CIŚNIENIA ZŁOŻOWEGO METANU NA PODSTAWIE POMIARÓW METANONOŚNOŚCI ORAZ BADAŃ SORPCYJNYCH WĘGLA NA PRZYKŁADZIE KWK KRUPIŃSKI

NAPRĘŻENIA ŚCISKAJĄCE PRZY 10% ODKSZTAŁCENIU WZGLĘDNYM PRÓBEK NORMOWYCH POBRANYCH Z PŁYT EPS O RÓŻNEJ GRUBOŚCI

Ocena parametrów strukturalnych dolomitów z kopalni rud miedzi przy wykorzystaniu metod densymetrycznych i porozymetrycznych

ODPORNOŚĆ STALIWA NA ZUŻYCIE EROZYJNE CZĘŚĆ II. ANALIZA WYNIKÓW BADAŃ

dr inż. Paweł Strzałkowski

STATYCZNA PRÓBA ROZCIĄGANIA

Metody badań materiałów konstrukcyjnych

BADANIA MODELOWE OGNIW PALIWOWYCH TYPU PEM

Numeryczna symulacja rozpływu płynu w węźle

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA

BADANIA WŁASNOŚCI MECHANICZNYCH MATERIAŁÓW KONSTRUKCYJNYCH 1. Próba rozciągania metali w temperaturze otoczenia (zg. z PN-EN :2002)

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Parametry wytrzymałościowe łupka miedzionośnego

INSTRUKCJA DO CWICZENIA NR 5

Najnowsze rozwiązania stosowane w konstrukcji wirówek odwadniających flotokoncentrat i ich wpływ na osiągane parametry technologiczne

SKRÓCONY OPIS PROGRAMU NA ROK 2019

Temat: kruszyw Oznaczanie kształtu ziarn. pomocą wskaźnika płaskości Norma: PN-EN 933-3:2012 Badania geometrycznych właściwości

MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ

BADANIE ENERGOCHŁONNOŚCI REGENERACJI ZUŻYTYCH MAS FORMIERSKICH. R. DAŃKO 1 Wydział Odlewnictwa AGH, Kraków, ul. Reymonta 23

Kinetyka przemiału kwarcytu przy kaskadowym ruchu złoża nadawy

ANALIZA ENERGOCHŁONNOŚCI PROCESÓW ROZDRABNIANIA KRUSZYW MINERALNYCH

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 3(89)/2012

ZAPOTRZEBOWANIE MOCY PODCZAS ROZDRABNIANIA BIOMASY ROŚLINNEJ DO PRODUKCJI BRYKIETÓW

Wpływ promieniowania na wybrane właściwości folii biodegradowalnych

Urabianie mechaniczne realizowane może być poprzez

BADANIA ZRÓŻNICOWANIA RYZYKA WYPADKÓW PRZY PRACY NA PRZYKŁADZIE ANALIZY STATYSTYKI WYPADKÓW DLA BRANŻY GÓRNICTWA I POLSKI

SYMULACYJNA OCENA POTENCJAŁU ROZWOJOWEGO MIAST WOJEWÓDZTWA LUBUSKIEGO W KONTEKŚCIE WSPÓŁPRACY TRANSGRANICZNEJ Z BRANDENBURGIĄ

SPRAWOZDANIE LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW B Badanie własności mechanicznych materiałów konstrukcyjnych

Ćwiczenie: "Silnik prądu stałego"

Rozdrabnianie wygrzewanego ziarna zbóż

Temat: NAROST NA OSTRZU NARZĘDZIA

Temat 2 (2 godziny) : Próba statyczna ściskania metali

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Laboratorium z Elektrotechniki z Napędami Elektrycznymi

Ocena wpływu intensywności procesu regeneracji w regeneratorze REGMAS na stopień destrukcji osnowy kwarcowej

Mgr inż. Marta DROSIŃSKA Politechnika Gdańska, Wydział Oceanotechniki i Okrętownictwa

Charakterystyka naprężeniowo-odkształceniowa dla próbek piaskowca z szorstkimi i gładkimi pęknięciami

C O N S T R U C T I O N

ANALIZA ZALEŻNOŚCI POMIĘDZY CECHAMI DIELEKTRYCZNYMI A WŁAŚCIWOŚCIAMI CHEMICZNYMI MĄKI

WPŁYW CECH FIZYCZNYCH SUROWCÓW ROŚLINNYCH NA JAKOŚĆ I ENERGOCHŁONNOŚĆ WYTWORZONYCH BRYKIETÓW

Technologia Materiałów Drogowych ćwiczenia laboratoryjne

2. Metoda Hardgrove a oznaczania podatności przemiałowej [3, 4]

DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia

Woltamperometryczne oznaczenie paracetamolu w lekach i ściekach

Właściwości mechaniczne

ROZKŁAD TWARDOŚCI I MIKROTWARDOŚCI OSNOWY ŻELIWA CHROMOWEGO ODPORNEGO NA ŚCIERANIE NA PRZEKROJU MODELOWEGO ODLEWU

Laboratorium. Hydrostatyczne Układy Napędowe

INSTRUKCJA DO CWICZENIA NR 4

WYZNACZANIE WYTRZYMAŁOŚCI BETONU NA ROZCIĄGANIE W PRÓBIE ZGINANIA

CENTRUM CZYSTYCH TECHNOLOGII WĘGLOWYCH CLEAN COAL TECHNOLOGY CENTRE. ... nowe możliwości. ... new opportunities

Uwagi na temat stosowania gazów obojętnych (azotu, dwutlenku węgla) do gaszenia pożaru w otamowanym polu rejony wydobywczego

Fizyczne właściwości materiałów rolniczych

OPTYMALIZACJA ZBIORNIKA NA GAZ PŁYNNY LPG

PL B1. ECOFUEL SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Jelenia Góra, PL BUP 09/14

dr inż. Paweł Strzałkowski

ZIARNA HYDROFILOWE W PRZEMYSŁOWYM PROCESIE FLOTACJI WĘGLI O RÓŻNYM STOPNIU UWĘGLENIA

WYMAGANIA EDUKACYJNE FIZYKA ROK SZKOLNY 2017/ ) wyodrębnia z tekstów, tabel, diagramów lub wykresów, rysunków schematycznych

A. PATEJUK 1 Instytut Materiałoznawstwa i Mechaniki Technicznej WAT Warszawa ul. S. Kaliskiego 2, Warszawa

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

PRZECIWZUŻYCIOWE POWŁOKI CERAMICZNO-METALOWE NANOSZONE NA ELEMENT SILNIKÓW SPALINOWYCH

WPŁYW TECHNICZNEGO UZBROJENIA PROCESU PRACY NA NADWYŻKĘ BEZPOŚREDNIĄ W GOSPODARSTWACH RODZINNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

WYBRANE ASPEKTY ANALIZY MATERIAŁOWO-ENERGETYCZNEJ DLA FAZY BUDOWY AUTOBUSU

Materiałowe i technologiczne uwarunkowania stanu naprężeń własnych i anizotropii wtórnej powłok cylindrycznych wytłaczanych z polietylenu

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Wpływ warunków górniczych na stan naprężenia

Badanie silnika indukcyjnego jednofazowego i transformatora

SPRAWOZDANIE: LABORATORIUM Z WYTRZYMAŁOŚCI MATERIAŁÓW B Badanie własności mechanicznych materiałów konstrukcyjnych

Pytania (w formie opisowej i testu wielokrotnego wyboru) do zaliczeń i egzaminów

Dobór silnika serwonapędu. (silnik krokowy)

Badania nad zastosowaniem kondycjonowania spalin do obniżenia emisji pyłu z Huty Katowice S.A w Dąbrowie Górniczej

WPŁYW ZAKŁÓCEŃ PROCESU WZBOGACANIA WĘGLA W OSADZARCE NA ZMIANY GĘSTOŚCI ROZDZIAŁU BADANIA LABORATORYJNE

Sposób mielenia na sucho w młynie elektromagnetycznym. Patent nr P z dn r.

Eksperymentalnie wyznacz bilans energii oraz wydajność turbiny wiatrowej, przy obciążeniu stałą rezystancją..

WPŁYW ODKSZTAŁCENIA WZGLĘDNEGO NA WSKAŹNIK ZMNIEJSZENIA CHROPOWATOŚCI I STOPIEŃ UMOCNIENIA WARSTWY POWIERZCHNIOWEJ PO OBRÓBCE NAGNIATANEM

Egzamin z MGIF, I termin, 2006 Imię i nazwisko

MASA WŁAŚCIWA NASION ZBÓś W FUNKCJI WILGOTNOŚCI. Wstęp. Materiał i metody

Powtarzalność wyznaczania izoterm sorpcji gazu na różnych aparaturach badawczych przy wielokrotnych cyklach pomiaru

ROZDRABNIANIE CEL ROZDRABNIANIA

BADANIA MODUŁÓW SPRĘŻYSTOŚCI I MODUŁÓW ODKSZTAŁCENIA PODBUDÓW Z POPIOŁÓW LOTNYCH POD OBCIĄŻENIEM STATYCZNYM

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2.

POMIAR WILGOTNOŚCI MATERIAŁÓW SYPKICH METODĄ IMPULSOWĄ

OCENA PARAMETRÓW JAKOŚCI ENERGII ELEKTRYCZNEJ DOSTARCZANEJ ODBIORCOM WIEJSKIM NA PODSTAWIE WYNIKÓW BADAŃ

Wyboczenie ściskanego pręta

Instrukcja do ćwiczeń laboratoryjnych. Sterowanie odbiornikiem hydraulicznym z rozdzielaczem typu Load-sensing

SPRAWOZDANIE Z BADAŃ

METODYKA BADAŃ MAŁYCH SIŁOWNI WIATROWYCH

ĆWICZENIE 15 WYZNACZANIE (K IC )

WPŁYW WARUNKÓW UTWARDZANIA I GRUBOŚCI UTWARDZONEJ WARSTEWKI NA WYTRZYMAŁOŚĆ NA ROZCIĄGANIE ŻYWICY SYNTETYCZNEJ

Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia.

Rok akademicki: 2015/2016 Kod: GGiG GO-s Punkty ECTS: 4. Kierunek: Górnictwo i Geologia Specjalność: Górnictwo odkrywkowe

Badania właściwości zmęczeniowych bimetalu stal S355J2- tytan Grade 1

Transkrypt:

Prace Instytutu Mechaniki Górotworu PAN Tom 18, nr 4, grudzień 2016, s. 139-145 Instytut Mechaniki Górotworu PAN Wydatek energetyczny procesu rozdrabniania różnych skał za pomocą autorskiego młynka udarowego MATEUSZ KUDASIK, NORBERT SKOCZYLAS Instytut Mechaniki Górotworu PAN, ul. Reymonta 27; 30-059 Kraków Streszczenie Ocena wydatku energetycznego procesu rozdrobnienia danego materiału jest niezwykle istotna przy projektowaniu, budowie, czy też doborze urządzeń rozdrabniających. W Pracowni Mikromerytyki IMG PAN powstał prototyp urządzenia do rozdrabniania skał w kontekście oceny gazu zawartego w ich porach. W ramach przeprowadzonych prac zbadano moc i energię niezbędną do rozdrabniania różnych skał za pomocą zbudowanego urządzenia. Do badań użyto próbki dolomitu, anhydrytu, piaskowca, wapienia, węgla i granitu, pochodzące z różnych polskich kopalń. W pracy podjęto doświadczalną próbę odpowiedzi na pytanie: od jakich parametrów skały zależny jest wydatek energetyczny procesu jej rozdrabniania? Przeprowadzone badania nie wykazały korelacji pomiędzy wybranymi właściwościami mechanicznymi skał (twardością i wytrzymałością) i fizycznymi (gęstością), a mocą i energią niezbędną do ich rozdrobnienia. Eksperymenty potwierdziły teorię twierdzącą, że energia rozdrabniania materiałów jest zależna od objętości rozdrabnianego materiału, a także od nowoutworzonej powierzchni. Słowa kluczowe: rozdrabnianie skał; mielenie udarowe; energia rozdrabniania 1. Wstęp Rozdrabnianie to proces w wyniku którego następuje rozpad ziarn materiału pod wpływem działań mechanicznych [Zawada, 1998]. Oprócz zmniejszania rozmiarów ziarn, rozdrabnianie wywołuje również zmianę ich kształtów, zwiększenie powierzchni właściwej, wzrost ich liczby, a także zmianę ich właściwości strukturalnych i mechanicznych. Celem rozdrobnienia jest najczęściej zwiększenie powierzchni właściwej rozdrabnianego materiału lub też uzyskanie produktu o określonym rozmiarze cząstek. Procesy rozdrabniania znajdują swoje główne zastosowanie w przetwórstwie surowców i minerałów prowadzącym do produkcji kruszyw naturalnych o określonych właściwościach. Surowce skalne pozyskiwane metodami górniczymi i przeznaczone do produkcji kruszyw, stanowią zwykle urobek ziarnowy o frakcji powyżej kilkudziesięciu milimetrów. Urobek w takiej formie nie nadaje się do bezpośredniej produkcji kruszyw budowlanych. Konieczne jest jego rozdrobnienie, a następnie wyselekcjonowanie odpowiednich frakcji ziarnowych, które mogą zostać przeznaczone do dalszej produkcji. W przemyśle górniczym proces rozdrabniania odbywa się wyłącznie na drodze działania mechanicznych sił zewnętrznych. Stąd też proces ten je niezwykle energochłonny, a energia ta zależna jest od wielu czynników, do których należą między innymi: rodzaj i forma rozdrabnianego materiału, właściwości mechaniczne, fizyczne i chemiczne rozdrabnianego materiału, wielkość i kształt ziarn, trajektoria i prędkość przemieszczania się ziarn w urządzeniu rozdrabniającym, parametry technologiczne urządzeń rozdrabniających. Szacuje się, że przemysł górniczy, na procesy związane z rozdrabnianiem, pochłania około 5% wytworzonej na świecie energii [Foszcz i in., 2006]. W australijskich kopalniach miedzi i złota, energia zużywana na procesy związane z rozdrabnianiem stanowi 36% całkowitej energii pochłanianej przez te kopalnie [Ballantyne i Powell, 2014]. Ocena ilości energii koniecznej do rozdrobnienia danego materiału jest niezwykle istotna

140 Mateusz Kudasik, Norbert Skoczylas przy projektowaniu układu technologicznego, a w szczególności doboru urządzeń zarówno pod względem typu, jak i wielkości. W skali przemysłowej obliczenie energii potrzebnej do rozdrobnienia jest zagadnieniem niezwykle złożonym. Istniejące teorie wydatku energetycznego procesu rozdrabniania opierają się głównie na powiązaniu stopnia rozdrabniania z zużytą energią. Teoria Rittinger a zakłada, że energia rozdrabniania, zużywana na pokonanie sił spójności międzycząsteczkowej materiałów stałych, jest wprost proporcjonalna do nowoutworzonej powierzchni [Rittinger, 1867]. Z kolei teoria Kick a mówi, że energia rozdrabniania zużywana jest na wytworzenie odkształcenia, przy którym nastąpi przekroczenie naprężenia krytycznego, a praca rozdrabniania jest proporcjonalna do objętości rozdrabnianego materiału [Kick, 1885]. Połączeniem obu teorii jest teoria Bond a, która proces rozdrabniania dzieli na dwie fazy: w pierwszej powstaje odkształcenie doprowadzające do wystąpienia naprężenia krytycznego, a w drugiej odpowiedni dodatek energii powoduje zniszczenie sił spójności międzycząsteczkowej [Bond, 1952]. Wymienione teorie rozdrabniania nie dają zadowalającej odpowiedzi na problemy dotyczące energochłonności procesów rozdrabniania i jedynie teoria Bond a znalazła szersze zastosowanie w skali przemysłowej [Naziemiec i Saramak, 2012]. W skali laboratoryjnej możliwe jest doświadczalne oszacowanie wydatku energetycznego niezbędnego do rozdrabniania skał poprzez pomiar mocy pobieranej przez silnik napędzający element rozdrabniający materiał skalny [Kudasik i in., 2016b]. Celem prezentowanej pracy było oszacowanie wydatku energetycznego rozdrabniania różnych skał za pomocą autorskiego urządzenia pracującego w oparciu o mielenie udarowe. Prototyp urządzenia rozdrabniającego był już wielokrotnie opisywany w pracach [Kudasik i in., 2014, 2016a; Kudasik i Skoczylas, 2016]. Jednym z najistotniejszych elementów jego budowy jest silnik napędzający noże tnące. W zbudowanym urządzeniu zastosowano wysokoobrotowy silnik bezszczotkowy, model Toro X8 KV2650 o mocy 2.2 kw. Silnik ten pozwala na nadanie prędkości obrotowej noża na poziomie 21 000 obr/min. Ocena wydatku energetycznego rozdrabniania skał opierała się na pomiarze mocy pobieranej przez ten silnik w trakcie jego pracy. Istniejące badania i teorie procesu rozdrabniania materiałów uzależniają energię mielenia od: jego właściwości mechanicznych (twardość, wytrzymałość, plastyczność i inne), jego właściwości fizycznych (gęstość, porowatość i inne), nowoutworzonej powierzchni rozdrobnionego materiału, objętości rozdrabnianego materiału innych parametrów. W pracy podjęto doświadczalną próbę odpowiedzi na pytanie: od jakich parametrów skały zależny jest wydatek energetyczny procesów rozdrabniania? 2. Metodyka pomiarowa Wydatek energetyczny rozdrabniania różnych skał za pomocą autorskiego urządzenia wyznaczany był analogicznie jak w pracy [Kudasik i in., 2016b]. Schemat stanowiska pomiarowego przedstawiono na rysunku 1. Rys. 1. Schemat stanowiska pomiarowego do oceny bilansu energetycznego rozdrabniania skał

Wydatek energetyczny procesu rozdrabniania różnych skał za pomocą autorskiego młynka... 141 Silnik urządzenia rozdrabniającego zasilany jest z akumulatora o pojemności 10 Ah i napięciu 14.8 V. Badania mocy niezbędnej do rozdrabniania skał dolomitów polegały na pomiarze spadku napięcia (U p ) na jednym z przewodów zasilających silnik oraz na pomiarze napięcia na silniku (U s ), w trakcie pracy urządzenia. Moc niezbędna do rozdrobnienia próbek wyznaczana była ze wzoru: Pt IU s I0 Us0 Up Up0 Pt Us U R R p gdzie: P(t) moc pobierana przez silnik z akumulatora, [W], t czas, [s], U p, U p0 spadek napięcia na przewodzie zasilającym silnik przy rozdrabnianiu skał i przy pracy jałowej, [V], U s, U s0 napięcie zasilające na silniku przy rozdrabnianiu skał i przy pracy jałowej, [V], R p rezystancja przewodu zasilającego silnik, [Ω], I, I 0 prąd w obwodzie przy rozdrabnianiu skał i przy pracy jałowej silnika, [A]. Energia niezbędna do rozdrobnienia próbek wyznaczana była ze wzoru: E t gdzie: E(t) energia pobierana przez silnik z akumulatora, [J]. t 0 p s0 (1) P t dt (2) 3. Materiał badawczy Do badań użyto kawałkowe próbki anhydrytu, dolomitu, piaskowca, wapienia, węgla kamiennego i granitu. Początkowa wielkość próbek skał przeznaczonych do rozdrabniania była podobna i stanowiły ją sześciany o krawędzi około 1.5-2.0 cm. Pochodzenie oraz niektóre właściwości próbek skał użytych do badań przedstawiono w tabeli 1. Skała Tab. 1. Pochodzenie i niektóre parametry próbek skał użytych do badań Kopalnia Masa próbki, [g] Gęstość helowa próbki, [g/cm 3 ] Wytrzymałość na jednoosiowe ściskanie, [MPa] Twardość w skali Mohsa Anhydryt Lubin 42.3 2.955 19.47 3.0-3.5 Dolomit Lubin 41.7 2.873 73.68 3.5-4.0 Piaskowiec Tumlin-Gród 39.8 2.674 42.97 6.5-7.0 Wapień Czatkowice 41.6 2.704 29.77 3.0-4.0 Węgiel kamienny Brzeszcze 39.0 1.335 14.59 1.0-1.5 Granit Strzelin 37.7 2.631 81.02 6.0-7.0 Do określenia gęstości helowej (szkieletowej) próbek wykorzystano analizator AccuPyc II 1340 (firmy Micromeritics). Gęstość helową próbek określono na podstawie objętości szkieletowej próbki, poprzez pomiar ilości helu wnikniętego do porów w próbce kawałkowej. Wytrzymałość na jednoosiowe ściskanie wyznaczono w testach wykonanych na prasie hydraulicznej. Twardość w skali Mohsa określana jest zwykle dla czystych minerałów, jednak dostępne są również w literaturze i tabelach szacunkowe wartości twardości Mohs a dla skał, które to wartości zostały przedstawione w tabeli 1 [World Mineral Exchange, 2016]. 4. Wyniki Wyniki pomiarów mocy (wyznaczonej ze wzoru (1)), jaką pobrał silnik podczas rozdrabniania skał, w przeliczeniu na jednostkową ich objętość, znajdują się na rysunku 2. Zmienność rejestrowanej mocy występuje do około 30 sekundy jest to okres, w którym dokonuje się zasadnicze rozdrobnienie skał. W dalszej

142 Mateusz Kudasik, Norbert Skoczylas części, praktycznie cała pobierana przez silnik moc wykorzystywana jest do utrzymania energii kinetycznej złoża fluidalnego, czemu towarzyszy znaczna emisja ciepła na skutek wzajemnego tarcia rozdrobnionych ziarn skały oraz ziarn względem obudowy i noży. Rys. 2. Moc rozdrabniania różnych skał w przeliczeniu na 1 cm 3 próbki Analizując wykres mocy pobranej przez silnik (Rys. 2), przypadającej na jednostkę objętości mielonej skały, można zauważyć, że z upływem czasu mielenia, któremu odpowiada stopień rozdrobnienia skał, moc rośnie asymptotycznie. Wzrost mocy towarzyszący stopniowi rozdrobnienia może potwierdzać teorię Rittinger a [Rittinger, 1867], która mówi, że wydatek energetyczny procesu rozdrabniania materiału jest zależny od objętości nowoutworzonej powierzchni. Na rysunku 3 przedstawiono wyniki pomiarów energii (wyznaczonej ze wzoru (2)), jaką pobrał silnik podczas rozdrabniania skał, w przeliczeniu na jednostkową ich objętość. Rys. 3. Energia rozdrabniania rożnych skał w przeliczeniu na 1 cm 3 próbki

Wydatek energetyczny procesu rozdrabniania różnych skał za pomocą autorskiego młynka... 143 Jak widać na rysunku 3, najwięcej energii pochłonęło rozdrobnienie skał dolomitu, piaskowca i anhydrytu, w przeliczeniu na jednostkową ich objętość. Energia niezbędna do rozdrobnienia skał wapienia, granitu i węgla była najmniejsza. Próbując zestawić uzyskane wyniki wydatku energetycznego rozdrabniania poszczególnych skał, trudno zauważyć korelację uzyskanych wyników z wybranymi właściwościami fizycznymi i mechanicznym, zestawionymi w tabeli 1. Przykładowo, rozdrabnianie granitu, wykazującego największą wytrzymałość na jednoosiowe ściskanie i jedną z największych twardości w skali Mohsa, pochłonęło około dwa razy mniej energii od dolomitu, posiadającego niższą wytrzymałość i twardość. Jedynie rozdrabnianie węgla kamiennego, o najniższej wytrzymałości na jednoosiowe ściskanie i twardości, pochłonęło najmniej energii w przeliczeniu na 1 cm 3 próbki. Na rysunku 4 i 5 przedstawiono podobne wykresy mocy i energii rozdrabniania skał, jednak w tych przypadkach wyniki przeliczono na jednostkę ich masy. Rys. 4. Moc rozdrabniania różnych skał w przeliczeniu na 1 kg próbki Rys. 5. Energia rozdrabniania rożnych skał w przeliczeniu na 1 kg próbki

144 Mateusz Kudasik, Norbert Skoczylas Prezentując wyniki mocy i energii procesu rozdrabniania skał, w przeliczeniu na jednostkową ich masę (Rys. 4 i 5), można zauważyć, iż węgiel kamienny, posiadający najniższe wartości twardości i wytrzymałości na ściskanie oraz najniższą gęstość, wymagał dostarczenia zdecydowanie najwięcej mocy podczas jego rozdrabniania. Wyniki kalkulacji wydatku energetycznego rozdrabniania pozostałych skał, w przeliczeniu na jednostkę ich masy, wykazały podobną tendencję, jak w przypadku prezentacji ich w przeliczeniu na jednostkową objętość. W tym przypadku również ciężko wskazać jakąkolwiek korelację pomiędzy mocą i energią rozdrabniania skał, a ich właściwościami fizycznymi i mechanicznymi. Rozdrobniony materiał poddano analizie sitowej w celu określenia składu granulometrycznego. Sumaryczny rozkład granulometryczny rozdrobnionych próbek różnych skał przedstawiono na rysunku 6. Rys. 6. Sumaryczny rozkład granulometryczny rozdrobnionych próbek różnych skał Analiza granulometryczna rozdrobnionych skał wykazała, że dla wszystkich próbek, po 60 sekundach mielenia sumaryczna zawartość 90% udziału masowego stanowiły ziarna o wielkości nie większej niż 120 mm. Ponadto efektywność rozdrabniania anhydrytu była największa, a wapienia i piaskowca najniższa. 5. Wnioski Wykonane zostały badania mające na celu określenie parametrów opisujących energetykę procesu rozdrabniania różnych skał. Zmienność rejestrowanej mocy pobieranej przez silnik urządzenia występuje do około 30 sekundy jest to okres, w którym dokonuje się zasadnicze rozdrobnienie skał. W dalszej części, praktycznie cała moc wykorzystywana jest do utrzymania energii kinetycznej złoża fluidalnego. Badania granulometryczne wykonane po jednominutowym procesie rozdrabniania wskazują, iż anhydryt, węgiel oraz dolomit osiągnęły podobny stopień rozdrobnienia (50% ziarn < 25 mm). Nieznacznie niższy stopień rozdrobnienia uzyskał granit, piaskowiec i wapień. Przeprowadzone badania wskazują, iż korelacja pomiędzy energetyką procesu mielenia skał, a podstawowymi ich parametrami jest niewielka. Wytrzymałość w konwencjonalnym teście jednoosiowego ściskania nie odzwierciedla aspektów dynamiki procesu kruszenia prawdopodobnie lepiej skorelowane wyniki dałby test dynamiczny, ze stałym i szybkim posuwem tłoka. Gęstość helowa oraz twardość w skali Mohsa także nie pozycjonują skał w aspekcie wymaganej energii kruszenia. Można przypuszczać, iż badania dylatancji (niesprężystego wzrostu objętości skały w warunkach działania przyłożonych naprężeń różnicowych), która jest zjawiskiem poprzedzającym kruche zniszczenie ośrodka skalnego, bądź poszukiwanie granicy liniowości odkształceń poprzecznych skał, mogłyby dostarczyć parametrów skorelowanych z energetyką ich kruszenia.

Wydatek energetyczny procesu rozdrabniania różnych skał za pomocą autorskiego młynka... 145 Niniejsza praca została sfinansowana ze środków Narodowego Centrum Badań i Rozwoju w ramach projektu pt.: Nowatorski system wspomagania oceny zagrożeń gazowych w kopalniach rud miedzi (numer projektu: LIDER/003/408/L-4/12/NCBR/2013). Literatura Ballantyne G.R., Powell M.S., 2014: Benchmarking comminution energy consumption for the processing of copper and gold ores. Minerals Engineering, Vol. 65, p. 109-114. Bond F.C., 1952: The third theory of comminution. Trans. AIME 193, p. 484-494. Foszcz D., Gawenda T., Krawczykowski D., 2006: Comparison of real and theoretically estimated energy consumption for ball grinder. AGH Journal of Mining and Geoengineering, Vol. 30, Issue 3/1, p. 79-90. Kick F., 1885: Das Gesetz der Proportionalen Widerstande und Seine Anwendung. Arthur Felix, Leipzig. Kudasik M., Skoczylas N., Murzyn T., Wierzbicki M., 2014: Efektywność rozdrabniania skał w kontekście oceny zawartego w nich gazu. Prace Instytutu Mechaniki Górotworu PAN, Tom 16, nr 3-4, s. 81-84. Kudasik M., Skoczylas N., Murzyn T., Wierzbicki M., 2016a: Ocena zawartości gazu w rozdrabnianych skałach. Wiadomości Górnicze, nr 7-8, s. 450-457. Kudasik M., Skoczylas N., Nurkowski J., 2016b: Oszacowanie wydatku energetycznego rozdrabniania skał metodą mielenia udarowego. Prace Instytutu Mechaniki Górotworu PAN, Tom 18, nr 3, s. 75-82. Kudasik M., Skoczylas N., 2016: Stopień rozdrabniania skał w zależności od czasu mielenia udarowego. Prace Instytutu Mechaniki Górotworu PAN, Tom 18, nr 3, s. 11-18. Naziemiec Z., Saramak D., 2012: The energy-consumption analysis in mineral aggregates crushing processes. Prace Naukowe Instytutu Gornictwa Politechniki Wrocławskiej, Vol. 134, No. 41, p. 209-220. Rittinger P.R., 1867: Lehrbuch der Aufbereitungskunde. Ernst and Korn, Berlin. World Mineral Exchange, http://www.mineralszone.com/, 28.09.2016. Zawada J., 1998: Wstęp do mechaniki procesów kruszenia. Wydawnictwo Technologii Eksploatacji, Radom. Energy consumption of comminution process of various rocks by an original impact mill Abstract Estimating the energy of comminution process of various materials is very important in the design, construction, or the choice of grinding equipment. In the Laboratory of Micrometrics of the Strata Mechanics Research Institute of the Polish Academy of Sciences a device for rock comminution by impact milling was constructed. The purpose of the device is to assess the gas content in rocks. The power and energy required for grinding various rock samples using the developed device was examined. For the research dolomite, anhydrite, sandstone, limestone, hard coal and granite samples, which were obtained from different Polish mines, were used. The authors of this paper attempted to answer the question: Which parameters does the energy consumption of rocks comminution process depend on? Based on the obtained results the authors did not find any dependency of the energy of rocks comminution process in relation to mechanical (hardness, strength) and physical (density) properties of rocks. The test confirmed the theory that the energy of rocks comminution depends on the input volume of the sample and the new surface area of crushed sample. Keywords: rocks comminution; impact milling; energy of comminution process