Spotkanie z promieniotwórczością - - Podstawowe pojęcia fizyki jądrowej

Podobne dokumenty
doświadczenie Rutheforda Jądro atomowe składa się z nuklonów: neutronów (obojętnych elektrycznie) i protonów (posiadających ładunek dodatni +e)

Promieniowanie w naszych domach. I. Skwira-Chalot

SYMULACJA GAMMA KAMERY MATERIAŁ DLA STUDENTÓW. Szacowanie pochłoniętej energii promieniowania jonizującego

I ,11-1, 1, C, , 1, C

Promieniowanie jonizujące

Promieniotwórczość naturalna. Jądro atomu i jego budowa.

Promieniowanie jonizujące

OCHRONA RADIOLOGICZNA PACJENTA. Promieniotwórczość

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św.

Spis treści. Trwałość jądra atomowego. Okres połowicznego rozpadu

Dawki promieniowania jądrowego

Odkrycie jądra atomowego - doświadczenie Rutherforda 1909 r.

ODKRYCIE PROMIENIOTWÓRCZOŚCI PROMIENIOWANIE JĄDROWE I JEGO WŁAŚCIWOŚCI

Autorzy: Zbigniew Kąkol, Piotr Morawski

Fizyka promieniowania jonizującego. Zygmunt Szefliński

Podstawowe własności jąder atomowych

Energetyka konwencjonalna odnawialna i jądrowa

Wyższy Urząd Górniczy. Zagrożenie radiacyjne w podziemnych wyrobiskach górniczych

W2. Struktura jądra atomowego

Reakcje rozpadu jądra atomowego

Poziom nieco zaawansowany Wykład 2

Zadanie 3. (2 pkt) Uzupełnij zapis, podając liczbę masową i atomową produktu przemiany oraz jego symbol chemiczny. Th... + α

A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów

Reakcje jądrowe dr inż. Romuald Kędzierski

Promieniowanie w środowisku człowieka

CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra

Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu

Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan

Prawo rozpadu promieniotwórczego. Metoda datowania izotopowego.

FIZYKA IV etap edukacyjny zakres podstawowy

Fizyka 2. Janusz Andrzejewski

1. Co to jest promieniowanie jonizujące 2. Źródła promieniowania jonizującego 3. Najczęściej spotykane rodzaje promieniowania jonizującego 4.

Promieniowanie jonizujące

pobrano z serwisu Fizyka Dla Każdego - - zadania z fizyki, wzory fizyczne, fizyka matura

WYZNACZANIE PROMIENIOWANIA RADONU Instrukcja dla uczniów szkół ponadpodstawowych

Ochrona radiologiczna

Promieniowanie jonizujące

Opracowała: mgr Agata Wiśniewska PRZYKŁADOWE SPRAWDZIANY WIADOMOŚCI l UMIEJĘTNOŚCI Współczesny model budowy atomu (wersja A)

Promieniotwórczość NATURALNA

P O L I T E C H N I K A W R O C Ł A W S K A

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość

II. Promieniowanie jonizujące

Rozpady promieniotwórcze

Podstawowe własności jąder atomowych

Rozpady promieniotwórcze

Zagrożenia naturalnymi źródłami promieniowania jonizującego w przemyśle wydobywczym. Praca zbiorowa pod redakcją Jana Skowronka

Promieniowanie jonizujące

Oddziaływanie promieniowania jonizującego z materią

Atomowa budowa materii

Biologiczne skutki promieniowania

MATERIAŁ SZKOLENIOWY SZKOLENIE WSTĘPNE PRACOWNIKA ZATRUDNIONEGO W NARAŻENIU NA PROMIENIOWANIE JONIZUJĄCE. Ochrona Radiologiczna - szkolenie wstępne 1

dr Natalia Targosz-Ślęczka Uniwersytet Szczeciński Wydział Matematyczno-Fizyczny Wpływ promieniowania jonizującego na materię ożywioną

1. JĄDROWA BUDOWA ATOMU. A1 - POZIOM PODSTAWOWY.

METODY DETEKCJI PROMIENIOWANIA JĄDROWEGO 3

Promieniotwórczość Zarys fotochemii. Zakład Chemii Medycznej Pomorskiego Uniwersytetu Medycznego

Oddziaływanie cząstek z materią

Własności jąder w stanie podstawowym

PROMIENIOTWÓRCZOŚĆ. A) równa B) mniejsza C) większa D) nie mniejsza (sumie) od sumy mas protonów i neutronów wchodzących w jego skład.

Fizyka 3. Konsultacje: p. 329, Mechatronika

Anna Grych Test z budowy atomu i wiązań chemicznych

Detekcja promieniowania jonizującego. Waldemar Kot Zachodniopomorskie Centrum Onkologii w Szczecinie

Budowa atomu. Wiązania chemiczne

Wykłady z Geochemii Ogólnej

W-28 (Jaroszewicz) 36 slajdy Na podstawie prezentacji prof. J. Rutkowskiego. Fizyka jądrowa cz. 1. budowa jądra atomowego przemiany promieniotwórcze

1) Rozmiar atomu to około? Która z odpowiedzi jest nieprawidłowa? a) 0, m b) 10-8 mm c) m d) km e) m f)

Fizyka atomowa i jądrowa

Promieniowanie jonizujące

Zadanie 2. (1 pkt) Jądro izotopu U zawiera A. 235 neutronów. B. 327 nukleonów. C. 143 neutrony. D. 92 nukleony

Elementy Fizyki Jądrowej. Wykład 3 Promieniotwórczość naturalna

Widma atomowe. Fizyka atomowa i jądrowa. Dawne modele atomu. Widma atomowe. Linie emisyjne kwantowanie poziomów energetycznych

Energetyka Jądrowa. Wykład 28 lutego Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Doświadczenie Rutherforda. Budowa jądra atomowego.

PODSTAWY DOZYMETRII. Fot. M.Budzanowski. Fot. M.Budzanowski

Dozymetria promieniowania jonizującego

Energetyka w Środowisku Naturalnym

2008/2009. Seweryn Kowalski IVp IF pok.424

Promieniowanie jonizujące

Wyk³ady z Fizyki. J¹dra. Zbigniew Osiak

Promieniowanie jonizujące

IV. PROMIENIOTWÓRCZOŚĆ ŚRODOWISKA

Jądro atomowe Wielkości charakteryzujące jądro atomowe

Dozymetria promieniowania jonizującego

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a

Energetyka Jądrowa. Wykład 3 14 marca Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

CHEMIA 1. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna ATOM.

DAWKA SKUTECZNA I EKWIWALENTNA A RYZYKO RADIACYJNE. EFEKTY STOCHASTYCZNE I DETERMINISTYCZNE. Magdalena Łukowiak

OCHRONA RADIOLOGICZNA 2. Osłony. Jakub Ośko

dn dt Promieniotwórczość

Fizyka promieniowania jonizującego. Zygmunt Szefliński

Tworzenie protonów neutronów oraz jąder atomowych

Elementy fizyki jądrowej

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN ŚRÓROCZNYCH I ROCZNYCH FIZYKA - ZAKRES PODSTAWOWY KLASA I

r. akad. 2012/2013 Wykład IX-X Podstawy Procesów i Konstrukcji Inżynierskich Fizyka jądrowa Zakład Biofizyki 1

Podstawy fizyki subatomowej. 3 kwietnia 2019 r.

O egzotycznych nuklidach i ich promieniotwórczości

Budowa atomu Wiązania chemiczne

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 40 FIZYKA JĄDROWA

Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań.

Pomiary prądu w gazach zjonizowanych.

Transkrypt:

Spotkanie z promieniotwórczością - - Podstawowe pojęcia fizyki jądrowej

Model atomu według Nielsa Bohr a Energia emitowana jest wtedy, gdy elektron przechodzi z orbity o większym promieniu (większej energii) na orbitę o mniejszym promieniu (mniejszej energii). Częstotliwość emitowanego światła spełnia związek: E = h v (gdzie: E - różnica energii elektronów na obu orbitach, v - częstotliwość, h - stała Plancka) Bohr wyjaśnił genezę promieni X: powstają przy przejściu elektronów z powłok zewnętrznych na orbity położone blisko jądra.

Zdolność jądra atomu do emitowania promieniowania nazywamy promieniotwórczością Pierwiastki promieniotwórcze emitują 3 rodzaje promieniowania: alfa, beta i gamma alfa: dodatni ładunek elektryczny, jądra helu (dwa protony + dwa neutrony) (cząstki alfa) [krótki zasięg, pochłaniane przez kartkę papieru] beta: ujemny ładunek, elektrony [pochłaniane przez folię aluminiową] (cząstki beta) gamma: bez ładunku, (częstotliwość > (2.42 Ehz***)) (fale elektromagnetyczne) [wnikają na kilka cm w płyty ołowiane] Mimo podobnych częstotliwości gamma różni się od promieniowania X ***Ehz - exahertz (10 18 Hz)

H - 1 proton He - 2 protony Li - 3 protony Izotopy Każdy następny pierwiastek w układzie okresowym ma o 1 proton więcej Liczba atomowa: liczba protonów w jądrze

Liczba neutronów w jądrze danego pierwiastka może się zmieniać! Chlor: 17 protonów, 17 elektronów, 20 / 18 neutronów Atomy mające tę samą liczbę protonów ale różniące się liczbą neutronów nazywamy izotopami Przykłady:

Liczba masowa (A) - całkowita liczba nukleonów (protony + neutrony) w jądrze. Liczba atomowa (Z) - liczba protonów w jądrze

Naturalna promieniotwórczość - przyczyny Gdy zwiększa się liczba nukleonów w jądrze, to siły odpychania kolumbowskiego (pomiędzy protonami) zaczynają przeważać nad przyciągającymi siłami jądrowymi. Jądro takie jest niestabilne i rozpada się. Niestabilne jądro emituje cząstkę alfa lub beta zamieniając się w inne jądro. Oznaczmy jako A i Z liczbę masową i atomową atomu przed rozpadem. Jeżeli rozpadający atom emituje cząstkę alfa to liczba masowa atomu pochodnego wyniesie A-4, a liczba atomowa Z-2. Przemiana alfa A Z X A Z 4 Y + 2 4 2 He Cząstki alfa zderzają się z innymi atomami ośrodka i jonizują je. W końcu ulegają zobojętnieniu i przechodzą w atom helu. Przemiana beta A Z X Z A 0 1 1 Y + + e Jądro emituje elektron! Skąd w jądrze elektron? W czasie przemiany beta jeden z neutronów zmienia się w proton, elektron i antyneutrino.

Dlaczego atomy są promieniotwórcze? Dodatnio naładowane i ciasno upakowane protony w jądrze odpychają się ogromnymi siłami elektrycznymi. [siły elektryczne są dalekozasięgowe] Działają pomiędzy nimi jeszcze silniejsze siły jądrowe (między wszystkimi protonami i neutronami w jądrze) - jest to tzw. oddziaływanie silne ( kolorowa siła działająca między kwarkami, utrzymując je blisko siebie poprzez wymianę gluonów ). Zasięg działania sił jądrowych jest bardzo mały, rzędu 10-15 metra [siły bliskozasięgowe] Kwarki górne: +2/3 ładunku protonu Kwarki dolne: -1/3 ładunku protonu Proton składa się z 3 kwarków: dwóch górnych i jednego dolnego Neutron zawiera jeden kwark górny i dwa dolne. Gdy protony znajdują się blisko siebie to siły przyciągania jądrowego przeważają nad odpychaniem elektrycznym, przy większych odległościach przyciąganie może być słabsze od odpychania. Dlatego jądra większe są mniej stabilne od małych.

Para neutron-proton jest silniej związana niż para proton-proton oraz neutron-neutron Jądro doświadcza wielkiego konfliktu zachodzącego pomiędzy dwoma największymi siłami natury: silnym oddziaływaniem jądrowym oraz elektromagnetycznym, więc nie powinno zaskakiwać występowanie niestabilnych izotopów, które podlegają rozpadowi. Intense conflict

W obrębie każdej pary protonów istnieje odpychanie, ale nie dla każdej pary istnieje znacząca siła przyciągająca. Każdy proton w jądrze uranu odpycha pozostałe 91 protonów, zarówno te bliskie, jak i bardziej odległe od niego. Silne przyciąganie istnieje tylko między tymi protonami (i neutronami), które w danej chwili są blisko siebie. Wszystkie jądra mające więcej niż 82 protony są nietrwałe i ulegają rozpadowi alfa i beta. Nucleus of U-235: protons in red, neutrons in grey. (Art by Blake Stacey.) proton neutron

Rozpad Alfa 234 4 92 U 90 Th + 2 He 238 2 + Przyczyną rozpadu alfa jest nadmierna liczba protonów w jądrze, które się odpychają. Emisja jądra helu zmniejsza to odpychanie. Cząstka alfa jest ekstremalnie stabilna - cechuje się ekstremalnie dużą energią wiązania. Chmura prawdopodobieństwa odpowiadająca cząstce alfa rozciąga się nieznacznie poza obszar jądra, co oznacza, że istnieje szansa znalezienia się tej cząstki poza jądrem.

Cząstki alfa z uwagi na dużą masę oraz ładunek elektryczny mają bardzo krótki zasięg. W ciele człowieka mają zasięg rzędu dziesiątych części milimetra!

Rozpad Beta Rozpad beta zachodzi wtedy gdy proporcja miedzy liczbą neutronów a liczba protonów jest zbyt duża, co prowadzi do niestabilności jądra. Neutron rozpada się na proton, elektron oraz antyneutrino. Elektron emitowany w przemianie beta nie istnieje przedtem w jądrze, tworzy się dopiero w chwili przemiany neutronu w proton.

Rozpad Gamma W jądrze istnieją poziomy energii, podobne do poziomów odpowiadających orbitom elektronowym, Przejścia elektronów na niższe orbity powodują emisję fotonów światła, natomiast przejścia miedzy orbitami jądrowymi związane jest z emisją promieni gamma. Różni się od promieni X tym, że pochodzi z jądra atomowego. Jądro podlegające rozpadowi gamma jest w stanie wzbudzonym, który towarzyszy najczęściej rozpadowi alfa lub beta. Jądro przechodzi w podstawowy poziom energetyczny (o najniższej energii) emitując foton. Po przemianie alfa lub beta jądro jest najczęściej w stanie wzbudzenia (nastąpiła zmiana liczby atomowej!). W trakcie rozpadu gamma liczba atomowa pozostaje bez zmian. Promieniowanie gamma jest przenikliwe. Posiada nieco wyższą energię niż promienie X Wykorzystuje się w radioterapii. Niebezpieczne dla zdrowia.

Rodzajów rozpadów radioaktywnych - podsumowanie Americium 241 is a familiar example, commonly found in household smoke detectors. Ameryk 241 jest przykładem izotopu cechującego się rozpadem alfa - znajduje zastosowanie w detektorach dymu

Carbon-14 (C-14) is a radioisotope of carbon, which undergoes beta decay and may be familiar for its use to establish the age of ancient artifacts ("carbon dating"). Węgiel 14 C podlega rozpadowi beta - wykorzystywany jest do datowania

Zmianie liczby protonów w jądrze towarzyszy rekonstrukcja ich ułożenia w jądrze z czym wiąże się emisja pr. gamma

Okres połowicznego rozpadu Podczas rozpadu pierwiastków związanego z emisją cząstek tworzą się inne pierwiastki. Szybkość rozpadu określona jest przez wielkość zwaną okresem połowicznego rozpadu. Okres ten równy jest czasowi, po którym rozpadowi uległa połowa pierwotnej ilości izotopu promieniotwórczego.

Decay of 226 Ra Rozpad Radonu 226

Spadkowi koncentracji danego izotopu towarzyszy wzrost koncentracji innego izotopu, w który zamienia się izotop macierzysty wzrost spadek http://www.colorado.edu/physics/2000/isotopes/radioactive_decay3.html

Okres połowicznego rozpadu to szybkość zaniku substancji promieniotwórczej. Im krótszy okres, tym większa aktywność substancji. Parent Isotope Uranium-238 Uranium-235 Stable Daughter Product Lead-206 Lead-207 Half-Life Values 4.5 billion years 704 million years Thorium-232 Rubidium-87 Lead-208 Strontium-87 14.0 billion years 48.8 billion years Potassium-40 Samarium-147 Argon-40 Neodymium-143 1.25 billion years 106 billion years

W wyniku emisji cząstki alfa lub beta powstaje jądro innego pierwiastka. Następuje przemiana jednego pierwiastka w drugi. Naturalne przemiany pierwiastków

Serie rozpadów promieniotwórczych uranu, toru i plutonu

Skład izotopowy wypalonego paliwa jądrowego (+ czasy połowicznego rozpadu)

Wpływ promieniowania jonizującego na organizm ludzki Cząstki Alfa - stanowią zagrożenie gdy radionuklidy dostaną się do wnętrza organizmu (oddychanie, jedzenie lub rany w skórze), bezpośrednio do komórek, tkanek. Duża gęstość jonizacji. Cząstki Beta - rozrywają cząsteczki, produkują jony i wolne rodniki. Jony i wolne rodniki mogą zrywać wiązania w innych cząsteczkach lub tworzyć nowe silne wiązania. Powstają nowe cząsteczki, które są bezużyteczne lub szkodliwe dla komórki. Promieniowanie Beta wnika do ok. 1 cm w tkankę, więc niszczy jedynie zewnętrzne tkanki, a nie organy wewnętrzne, dopóki nie dostanie się do wnętrza organizmu. Promienie Gamma - jonizuje, odrywa elektrony, które przemieszczają się wzdłuż tkanki i oddziałują podobnie. Stanowi największe zagrożenie dla życia. Fotony gamma i cząstki beta o dużej energii wnikają głęboko w materię, cząstki alfa wywołują uszkodzenia na krótszych odcinkach. Energia zdeponowana w tkankach rozprasza się jako ciepło. Promieniowanie niszczy strukturę DNA w jądrze komórki (bezpośrednio lub poprzez wytworzone rodniki OH).

Jednostki dawki pochłoniętej Dawka pochłonięta - ilość energii zdeponowanej przez promieniowanie jonizujące w jednostce masy ciała. Gray (Gy); 1Gy = 1 J / kg, 1 mgy = 0.001 Gy [ jednostka US: Rad, 1 Rad = 0.01 Gy ] Równoważnik dawki - dawka pochłonięta przemnożona przez współczynnik (q) jakości promieniowania charakteryzujący sposób w jaki dany rodzaj promieniowania deponuje energię w tkankach. Ta miara jest proporcjonalna do stopnia biologicznej szkodliwości promieniowania. 1 Gy związany z cząstkami alfa jest bardziej szkodliwy w porównaniu z 1 Gy zdeponowanym przez cząstki beta (większa masa, ładunek, duża gęstość jonizacji) Sievert (Sv), 1 msv = 0.001 Sv [ jednostka US: Rem, 1 Rem = 0.01 Sv ] Promieniowanie gamma (q=1), cząstki beta - współczynnik q = 1-1.7, dla cząstek alfa, q = 20. Dawka efektywna - równoważnik dawki przemnożony przez współczynnik charakteryzujący ryzyko uszkodzenia danej tkanki, danego organu wewnętrznego.

Jednostki radioaktywności Becquerel - radioaktywność 1 Bq oznacza, że w danym materiale promieniotwórczym średnio co 1 sekundę następuje rozpad 1 jądra izotopu (1 kbq = 1000 Bq) [stara jednostka US: 1 Curie (1 Ci) = 3.7 x 10 10 Bq] Przykłady: Mikołajki: przed awarią w Czarnobylu - 0.1 Bq / m 3, po awarii - 571 Bq / m 3 powietrza Radioaktywność K-40 w glebie wynosi 35-1100 Bq / kg (w Polsce maks. 560) Typowa radioaktywność gleby na północy Polski: 50 Bq / kg Typowa radioaktywność gleby na południu Polski: 75-750 Bq / kg Dane dla Warszawy Trawa: przed awarią - 223 Bq / kg, po awarii ( 1 V 1986r) - 28328 Bq / kg Warzywa zielone: przed awarią - 132 Bq / kg, po awarii - 19505 Bq / kg Powietrze: przed awarią - 0.1 Bq / m 3, po awarii - 3.9 Bq / m 3 Gleba: przed awarią - 481 Bq / kg, po awarii - 2198 Bq / kg

Jednostki ekspozycji Dawka ekspozycyjna oznacza ilość ładunku elektrycznego indukowanego w materii (w jednostkowej masie powietrza) przez promieniowanie jonizujące. 1C/kg = 1 Kulomb w 1 kg powietrza 1 Rentgen = 0.58 x 10-4 C/kg Naturalna dawka promieniowania (roczne) Ze źródeł zewnętrznych i wewnętrznych

Regiony geograficzne charakteryzujące się wysokim poziomem dawki naturalnej.

Ramsar - Iran [~280 msv/rok; Rad-226; paradoks radiacyjny ; najwyższe promieniowanie na Ziemi; dawki 1000 razy większe od średniej]

Guarapari - Brazylia [5-130 mikrosv/h; monazyt - zawiera tor; maks. 1100 msv / rok; dawki 100 razy większe od średniej; średnia 40 msv/rok]

Kerala - Indie [monazyt - zawiera tor; ok. 50 msv / rok; dawki kilkadziesiąt razy większe od średniej; średnia 15 msv/rok]

Flinders Ranges - Australia [radon w wodach geotermalnych; radioaktywność ok. 11 000 Bq / m 3 ]

Radioaktywność w metrze w Helsinkach Ryzyko zachorowania na raka płuc w zależności od koncentracji radonu: > 400 Bq / m 3 - ryzyko = 1,8. (w porównaniu z zachorowalnością w powietrzu pozbawionym radonu) Koncentracja może wzrosnąć do 2000 Bq m -3 jeżeli pojawią się problemy z wentylacją metra

Naturalne źródła promieniowania - promieniowanie kosmiczne - skorupa ziemska - wnętrze ciała człowieka Sztuczne źródła promieniowania

W ciągu każdej sekundy w ciele człowieka następuje około 4000 rozpadów potasu 40 K pochodzącego z zasobów naturalnych Ziemi.

Promieniowanie kosmiczne (głównie protony i cząstki alfa) Wskutek oddziaływania cząstek promieniowania kosmicznego w atmosferze Ziemi powstają promieniotwórcze izotopy: 3 H, 7 Be, 10 Be, 14 C, 22 Na, 32 P, 33 P, 35 S, 39 Cl W każdej sekundzie przez ciało człowieka przenika ok. 30 cząstek promieniowania kosmicznego. Dawka związana z GCR rośnie dwukrotnie przy wzroście wysokości o ok. 1800 m

Źródła promieniotwórcze w skorupie ziemskiej Pierwiastki promieniotwórcze w skorupie ziemskiej: 40 K, 50 V, 87 Rb, 115 In, 138 La, 144 Nd, 147 Sm, 176 Lu, 187 Re, 235 U, 238 U, 232 Tr Potas, uran i tor stanowią stałe składniki gleby i większości minerałów (najwięcej w fosforytach oraz fosfatach). Produktami rozpadu uranu i toru są gazy szlachetne: radon i toron. Gazy te migrują z gleby ku powierzchni Ziemi i dostają się do atmosfery. Przy powierzchni Ziemi jest warstwa powietrza o zwiększonej zawartości tych gazów. Gazy te mogą kumulować się w nieodpowiednio zbudowanych budynkach jak pod kloszem, stając się czasem źródłem istotnego zagrożenia. Wdychanie do płuc powietrza zawierającego radon i toron powoduje napromieniowanie tkanki płucnej. Średnio w ciągu sekundy w każdym metrze sześciennym powietrza następuje około 10 rozpadów jąder radonu pochodzącego z naturalnych zasobów Ziemi. Wyższe zagrożenie występuje na Pogórzu Sudeckim (skały granitowe) W pomieszczeniach zamkniętych, gdzie spędzamy większość czasu stężenie radonu jest średnio 10 razy większe niż na zewnątrz.

Dawka progowa ~50 msv /rok Dawka progowa ~50 msv /rok

Dawka śmiertelna: 3000-5000 msv / godz

Hipotezy o wpływie promieniowania jonizującego na zdrowie człowieka

HORMEZA LNT

Efekt Hormezy

Efekt Hormezy

Efekt Hormezy