Opracowanie: Joanna Kulczycka. Algorytm postępowania do wyznaczenia CF

Podobne dokumenty
Zarządzanie narzędziem śladu węglowego w przedsiębiorstwie - innowacyjność, cel i korzyści

EKOLOGICZNA OCENA CYKLU ŻYCIA W SEKTORZE PALIW I ENERGII. mgr Małgorzata GÓRALCZYK

Life Cycle Assessment (LCA) - ocena cyklu życia ŚRODOWISKOWA OCENA CYKLU ŻYCIA - ENVIRONMENTAL LIFE CYCLE ASSESSMENT (ELCA):

prof. dr hab. Tadeusz Filipek, dr Monika Skowrońska Uniwersytet Przyrodniczy w Lublinie

LCA (life-cycle assessment) jako ekologiczne narzędzie w ulepszaniu procesów technologicznych

ŚLAD WĘGLOWY

EFEKTYWNOŚĆ ŚRODOWISKOWA PRODUKTÓW, A MOŻLIWOŚCI OCENY CYKLU ŻYCIA Z UŻYCIEM INTERNETOWEGO NARZĘDZIA LCA to go

Bazowa inwentaryzacja emisji CO 2

POLSKI RUCH CZYSTSZEJ PRODUKCJI NOT

Strategia Zrównoważonego Rozwoju 2030 firmy Henkel

ZRÓWNOWAŻONA OCENA NA PRZYKŁADZIE MATERIAŁU TERMOIZOLACYJNEGO

ŚLAD ŚRODOWISKOWY NARZĘDZIE DO ZARZĄDZANIA W BRANŻY SPOŻYWCZEJ

Indorama Ventures Public Company Limited

Ocena Cyklu Życia płytek obwodów drukowanych doświadczenia producenta

Wiarygodna baza danych jako nieodzowne narzędzie udanej eliminacji niskiej emisji

Upowszechnianie zasad gospodarki cyrkularnej w sektorze MŚP - wprowadzenie do projektu ERASMUS+

Polityka energetyczna w UE a problemy klimatyczne Doświadczenia Polski

Ocena cyklu życia (LCA) w systemie gospodarki odpadami

ANNEX ZAŁĄCZNIK. rozporządzenia Komisji

Wojciech Piskorski Prezes Zarządu Carbon Engineering sp. z o.o. 27/09/2010 1

LOGISTYKA POWTÓRNEGO ZAGOSPODAROWANIA ODPADÓW I MOŻLIWOŚCI JEJ ZASTOSOWANIA W PRZEDSIĘBIORSTWACH HUTNICZYCH

WPŁYW TECHNOLOGII INFORMACYJNO-KOMUNIKACYJNYCH NA JAKOŚĆ ŚRODOWISKA

KARTA INFORMACYJNA R-32

Społeczna odpowiedzialność biznesu podejście strategiczne i operacyjne. Maciej Bieńkiewicz

Środowiskowa ocena cyklu życia procesu produkcji energii elektrycznej z biogazu rolniczego na przykładzie wybranej biogazowni. Izabela Samson-Bręk

ISO w przedsiębiorstwie

Nowa ustawa o gospodarce opakowaniami i odpadami opakowaniowymi oraz sposoby optymalizacji kosztów

PRAKTYCZNE ASPEKTY WDRAŻANIA BAT W SEKTORZE PRODUKCJI

Deklaracja Środowiskowa Wyrobu ślad węglowy dla cementów CEM I, CEM II i CEM III produkowanych w Polsce

Zarządzanie środowiskiem w przezdsiębiorstwie. Tomasz Poskrobko

PODSTAWOWE ZAŁOŻENIE ZRÓWNOWAŻONEGO ROZWOJU:

Plan Działań SEAP AGENCJA ENERGETYCZNA. Warszawa,

Gospodarka o obiegu zamkniętym. wad ale trudne do pełnego wdrożenia. Konferencja POWER RING. rozwiązanie co do zasady pozbawione

Koszty cyklu życia kryteria oceny. Zmiany w Ustawie Prawo Zamówień Publicznych

Tradycyjne podejście do kosztów pośrednich

PERSPEKTYWY IMPLEMENTACJI W POLSCE KONCEPCJI ZERO WASTE

Projekt Prove It PL! o mierzeniu oddziaływania i kapitału społeczno-ekonomicznego w przedsiębiorczości społecznej

Strategia w gospodarce odpadami nieorganicznymi przemysłu chemicznego

Normy środowiskowe w zarządzaniu firmą. dr Adam Jabłoński

Wymagania dla środków zarządzania środowiskowego na przykładzie normy ISO 14001:2015. Identyfikacja aspektów środowiskowych.

Analiza Cyklu Życia (Life Cycle Assessment - LCA) w projekcie LCAgri

TEMAT 2. Bazowa Inwentaryzacja Emisji (BEI)

ZARZĄDZANIE ŚRODOWISKIEM

Plan gospodarki niskoemisyjnej w Gminie Igołomia - Wawrzeńczyce

Zał.3B. Wytyczne w zakresie określenia ilości ograniczenia lub uniknięcia emisji zanieczyszczeń do powietrza

PROJEKT PLANU GOSPODARKI NISKOEMISYJNEJ DLA MIASTA OLSZTYNA KONSULTACJE SPOŁECZNE

FOOTWEAR CARBON FOOTPRINT (LIFE12 ENV/ES/000315) Ankieta dotycząca śladu węglowego skierowana do firm obuwniczych

Opracowanie i przygotowanie do wdrożenia Planu Gospodarki Niskoemisyjnej dla Miasta Opola

Nieznane życie. tworzyw sztucznych

POLITECHNIKA ŚLĄSKA. Organizacja i Zarządzanie. Ekologia Zasobów Naturalnych i Ochrona

ZAŁĄCZNIK KOMUNIKATU KOMISJI DO PARLAMENTU EUROPEJSKIEGO, RADY, KOMITETU EKONOMICZNO-SPOŁECZNEGO I KOMITETU REGIONÓW

G S O P S O P D O A D R A K R I K NI N SK S O K E O M

PLAN GOSPODARKI NISKOEMISYJNEJ DLA MIASTA NOWY DWÓR MAZOWIECKI. lipiec, 2015

Opracowanie charakterystyki energetycznej wg nowych wymagań prawnych

Założenia Narodowego Programu Rozwoju Gospodarki Niskoemisyjnej oraz działania na rzecz zrównoważonej produkcji i konsumpcji

Profile PVC EcoPowerCore od Inoutic w zgodzie ze środowiskiem

Wpoprzedniej części cyklu (nr 11/2009) Studium przypadku Rachunek kosztów działań w przedsiębiorstwie MK. 12

W ramach zarządzania jednostką można wyróżnić następujące rodzaje audytu:

Planowanie Gospodarki Niskoemisyjnej proekologiczne rozwiązania w transporcie. Marcin Cholewa Instytut Gospodarki Surowcami Mineralnymi i Energią PAN

Realizacja działań i wskaźniki monitorowania SEAP (Sustainable Energy Action Plan) i Planów Gospodarki Niskoemisyjnej

Plan Gospodarki Niskoemisyjnej

Zarządzanie środowiskowe w przedsiębiorstwie c.d.

Analiza cyklu życia w ocenach środowiskowych. Dr inż. Anna M. Wiśniewska

Załącznik 4 - Karty przedsięwzięć

Doświadczenia Warszawy w opracowaniu i realizacji Planu Działań na Rzecz Zrównoważonego Zużycia Energii

Gospodarka niskoemisyjna

Co kryje się pod. pojęciem gospodarki niskoemisyjnej

Polityka Środowiskowa Skanska S.A.

ROZPORZĄDZENIE DELEGOWANE KOMISJI (UE) / z dnia r.

DBAMY O CIEBIE DBAMY O ŚWIAT

GOSPODARKA O OBIEGU ZAMKNIĘTYM:

Seria norm ISO 14000

Społeczna odpowiedzialność biznesu dobre praktyki prowadzone przez przedsiębiorstwa w Polsce. mgr Monika Wilewska

Janusz Turowski. Przemysł spożywczy w świetle raportów o zrównoważonym rozwoju

Planowanie gospodarki odpadami w Polsce w świetle. Krajowego planu gospodarki odpadami 2010

The fresh taste of the land

Sikla stawia na ochronę zasobów i zrównoważony rozwój

KARTA PRZEDMIOTU. zaliczenie na ocenę

Marlena Ballak Obowiązki podmiotów publicznych i podmiotów gospodarczych w ramach narodowego programu rozwoju gospodarki niskoemisyjnej

TAURON EKO Biznes. produkt szyty na miarę. Małgorzata Kuczyńska Kierownik Biura Produktów Rynku Biznesowego

Audyt funkcjonalnego systemu monitorowania energii w Homanit Polska w Karlinie

Do kogo skierowana jest oferta?

Izabela Ratman-Kłosińska

Energetyka odnawialna w procesie inwestycyjnym budowy zakładu. Znaczenie energii odnawialnej dla bilansu energetycznego

Strategia Społecznej Odpowiedzialności Biznesu firmy EPRD Sp. z o.o.

Załącznik 4 - Karty przedsięwzięć PGN

Użyteczność publiczna/infrastruktura komunalna

Wartość dodana podejścia procesowego

Sylabus kursu. Tytuł kursu: Program szkoleniowy z energooszczędnej renowacji starych budynków. Dla Projektu ETEROB

Lokalny Plan Działań dotyczący efektywności energetycznej. Plan działań na rzecz zrównoważonej energii

Aktywne formy kreowania współpracy

Element realizacji celów redukcji emisji określonych w pakiecie klimatyczno-energetycznym.

Działanie 4.1 Odnawialne źródła energii (typ projektu: Infrastruktura do produkcji i dystrybucji energii ze źródeł odnawialnych)

CELE I ZAŁOŻENIA PROJEKTU: PROPAGOWANIE WZORCÓW PRODUKCJI I KONSUMPCJI SPRZYJAJĄCYCH PROMOCJI ZASAD TRWAŁEGO I ZRÓWNOWAŻONEGO ROZWOJU

System handlu emisjami a dywersyfikacja źródeł energii jako wyzwanie dla państw członkowskich Unii Europejskiej. Polski, Czech i Niemiec

PLAN DZIAŁANIA KT 270. ds. Zarządzania Środowiskowego

6. Działania zmierzające do poprawy sytuacji w zakresie gospodarki odpadami

Audyt energetyczny podstawą dobrej termomodernizacji budynków Źródła finansowania przedsięwzięć termomodernizacyjnych i ekoenergetycznych

Wprowadzenie do oceny cyklu ycia (LCA) nowej techniki w ochronie œrodowiska

Dobry klimat dla powiatów I Samorządowa Konferencja Klimatyczna

Transkrypt:

Opracowanie: Joanna Kulczycka Algorytm postępowania do wyznaczenia CF

W Komunikacie Komisji do Rady i Parlamentu Europejskiego Wyjść poza PKB Pomiar postępu w zmieniającym się świecie KOM(2009) 433 z dnia 20.8.2009 r. wskazano, iż Komisja zamierza opracować całościowy indeks środowiskowy, który można stosować do oceny w skali makroekonomicznej. Jednoczesnie identyfikuje dwa istniejące narzędzia: ślad ekologiczny i ślad węglowy. Ślad węglowy CF (carbon footprint) definiowany jest jako całkowita ilość emisji CO 2 i innych gazów cieplarnianych w odniesieniu do produktu, emisji wynikającej z cyklu życia tego produktu włączając jego składowanie i unieszkodliwianie (Europejska Platforma LCA). CF dotyczy wyłącznie emisji gazów cieplarnianych i bazując na ilości gazów cieplarnianych wyemitowanych w związku z działalnością człowieka, (zarówno bezpośrednią, jak i pośrednią) oblicza się ilość ekwiwalentów ditlenku węgla wyrażoną w jednostce masowej (najczęściej Mg CO 2 e). Według 5 Raportu IPPC emisje pochodzą głównie sektorów energetycznego i transportu W celu obliczenia wartości wskaźnika CF zgodnie z nową metodyką zaproponowano następujący algorytm postępowania: 1. Przeprowadzić analizę prawną oraz społeczno-gospodarczą warunków funkcjonowania analizowanej branży oraz zidentyfikować główne przyczyny jej wpływu na zmiany klimatu w cyklu życia. 2. Dokonać identyfikacji i oceny znaczących aspektów środowiskowych procedura taka może być prowadzona zgodnie z wymogami ISO 14001 lub EMAS, tzn. doborze odpowiednich kryteriów i przypisanych im wag (np. punktów 1-3, przy czym 3 punkty przypisuje się w przypadku, gdy dany aspekt wymaga decyzji administracyjnej, 2 - wymagane są zgłoszenia, rejestracje, wnoszenie opłat lub zawarte zostały umowy cywilno-prawne, a 1 - nie ma żadnych wymagań prawnych, a aspekt uznany jest za znaczący; jeżeli suma punktów ze wszystkich kategorii dla danego aspektu jest większa lub równa 6 lub

wymagania prawne i inne oceniono na 2 lub 3) 1. Identyfikacji można również dokonać wykorzystując metodykę LCA, której wyniki wskazują potencjalne miejsca najwyższej presji na środowisko oraz wpływ poszczególnych elementów wejść (zużycie energii, materiałów) i wyjść (emisje, odpady). 3. Ustalić cel środowiskowy oraz zakres badań analizowanej branży lub danego obiektu i zidentyfikować działania pozwalające na stopniowe zmniejszanie negatywnego oddziaływania na środowisko. Opracować różne opcje rozwiązania mającego za zadanie ograniczenie wpływu na środowisko, a przede wszystkim wpływu na zmiany klimatu, np. wprowadzenie OZE, ocieplenia budynków, nowych procesów technologicznych, ograniczenia transportu, ekobiuro, itp. Identyfikować różne opcje zarządzania, technologiczne realizacji celu środowiskowego wraz ze wstępną oceną. 4. Dla rozwiązań o podobnej funkcji ustalić jednostkę funkcjonalną oraz granice systemu dla wybranej opcji. Jednostka funkcjonalna to najmniejsza jednostka przyjęta do badań i stanowiąca ilościowy efekt systemu produkcji LCA. Głównym zadaniem jednostki funkcjonalnej jest dostarczenie płaszczyzny odniesienia dla normalizowania danych wejściowych i wyjściowych systemu. Z tego też względu powinna być ona jasno zdefiniowana i mierzalna. Prowadzenie badań dla wybranej jednostki funkcjonalnej jest istotą analizy LCA, która odróżnia tę technikę od innych techniki zarządzania środowiskowego. Jednostkami funkcjonalnymi mogą być: pojedyncze wyroby czy urządzenia/maszyny (np. samochód tej samej klasy), pojedyncze produkty jednak gdy szczegółowo określi się ich funkcję, np. w przypadku proszków do prania ilość gramów na 1 pranie - dla silnych detergentów odnosi się do ilości dozowanej na 4,5 kg ładunku (suche tekstylia), a dla słabych detergentów odnosi się do ilości dozowanej na 2,5 kg ładunku (suche tekstylia) w pralce (decyzja Komisji przyznawania wspólnotowego oznakowania ekologicznego detergentom pralniczym 1999 r., Dz. U. L 187 z 20.7.1999 r.). Jednak przede wszystkim jako jednostkę funkcjonalną powinno określać się funkcję (efekt jaki zostanie osiągnięty), jaką spełniają różne urządzenia, np.: przetransportowanie osób na odległość 10 km (porównanie różnych środków transportu), możliwość prowadzenia 1000 godzin rozmów przez telefon, pomalowanie 1 m 2 ściany (porównanie wpływu na środowisko przy zastosowaniu różnego rodzaju farb), wypranie 5 kg bielizny (przy wymaganej ilości środka piorącego), pokrycie m 2 wielowarstwowej drewnianej podłogi przeciętnie zużywanej w ciągu 50 lat (funkcją jest pokrycie powierzchni biura), wysuszenie dłoni po umyciu (jako funkcja ręczników papierowych i suszarki elektrycznej), oświetlenie określonym strumieniem światła pomieszczenia o danej powierzchni użytkowej przez okres 1000 godzin, utrzymanie w określonej temperaturze przestrzeni o określonej pojemności przez okres 15 lat przy zdefiniowanej temperaturze otoczenia (dla chłodziarek), 1 http://www.emas.mos.gov.pl

przepompowanie 1x107 m 3 wody o temperaturze 100 C, ph 6-8 i gęstości około 1 kg/m 3 w ciągu 50 tys. godzin pracy 2, używanie 6 pieluszek dziennie przez 30 miesięcy (porównanie pieluszek jednorazowych i wielokrotnego użytku przy czym cykl życia obejmował 30 miesięcy a dla pieluszki tetrowej ujmował dodatkowo pranie i suszenie), odbiór programów telewizji kolorowej na ekranie telewizora 28 cali przez 6 godzin podczas 18 lat użytkowania. Podsumowując specyficznymi cechami jednostki funkcjonalnej jest jej ilość, czas i intensywność użytkowania, stopień zużycia oraz warunki, w jakich musi funkcjonować. Ujęcie funkcjonalne wyrobów staje się na tyle istotne z punktu widzenia zrównoważonego rozwoju, iż w literaturze 3 opisano możliwość przejścia do gospodarki, w której sprzedaje się funkcje spełniane przez wyroby zamiast samych wyrobów Przedmiotem badania jest wpływ zdefiniowanej jednostki funkcjonalnej na środowisko, którą w szczególności może być: produkt i usługa (wyrób), np. ekspres do kawy, wybrany proces czy stosowana technologia, np. składowanie odpadów, określona czynność, np. używanie samochodu, wybrany system np. gospodarki odpadami komunalnymi, działalność danej organizacji, np. zakład produkcyjny, branża przemysłu, gospodarka danego kraju, itp. 4. Z kolii granice systemu determinują, jaki zbiór procesów jednostkowych zostanie ujęty w analizie. Z punktu widzenia stopnia złożoności najprostszy jest układ od wejścia do wyjścia samego systemu produkcyjnego (from gate to gate). Najbardziej skomplikowana jest ocena całego cyklu życia produktu, od wydobycia surowców naturalnych do końcowej likwidacji produktu (from cradle to grave). Czasami stosowane są także ujęcia od narodzin (from cradle) do wyjścia (to gate) lub od wejścia (from gate) do śmierci (to grave). Określając granice systemu powinno się także uwzględnić: obszar geograficzny dla którego prowadzone są badania, zidentyfikować jego infrastrukturę (np. dostępność energii, transport, itp.), horyzont czasu, w którym prowadzi się badania, granice pomiędzy poszczególnymi systemami dla których wykonuje się ocenę; ponieważ większość podejmowanych działań oddziałuje wzajemnie na siebie, stąd ich analizy w miarę możliwości powinny być rozdzielone (alokacja), odbiorcę i cel prowadzanych badań, tj. czy mają być podane do publicznej wiadomości, czy też są przeprowadzane na wewnętrzny użytek firmy. 2 Lewandowska A., LCA. Środowiskowa...,op.cit., s. 1-160. 3 Stahel W., The utilization-focused service economy: resource efficiency and product life extension. The Greening of Industrial Ecosystem, National Academy of Engineering. Washington, 1994. http://books.nap.edu/openbook.php, s.180 4 W celu unikania wyliczania całej listy możliwych jednostek funkcjonalnych przy omawianiu zasad LCA dla stosowano jedno pojęcie wyrób.

W granicach systemu powinny być zawarte procesy jednostkowe obejmujące 99% przepływów materiałów i energii oraz przynajmniej w 90% oddziałujące na środowisko dla każdej analizowanej kategorii wpływu. Jednak nie wszystkie dane są znane w początkowym etapie, a tym bardziej trudno jest ustalić jaki jest procent tych udziałów (takie dane mogą być dostępne po zebraniu dla całego systemu 5 ) dlatego w praktyce weryfikację granic systemu można dokonywać w kolejnych etapach (iteracja). Istotne znaczenie w pierwszym etapie badań mają zatem jakość danych, ich przedział czasowy, obszar geograficzny, dokładność, kompletność i reprezentatywność, a w przypadku prowadzenia analiz porównawczych (np. inwestycji) również równoważność założeń metodycznych i przyjęcie takiej samej jednostki funkcjonalnej. 5. W celu zidentyfikowania wszystkich czynników wpływu należy opracować ankietę na podstawie której pozyskiwane będą dane o wpływie na efekt cieplarniany lub na środowisko istniejącego i docelowego rozwiązania 6. Opracowanie i weryfikacja danych do bilansu materiałowego i energetycznego, tzn. dane z ankiet zostały przeliczone na zaproponowaną wielkość jednostki funkcjonalnej. Praca polega na identyfikacji i obliczeniu dla określonych jednostek funkcjonalnych w systemie elementów wchodzących (np. wielkość zużywanej energii, materiałów) ze środowiska oraz elementów wychodzących z tego systemu do środowiska (np. emisje CO 2 do powietrza). Obejmuje on analizę procesu technologicznego (istniejącego lub projektowanego), bilanse strumieni przepływów surowców, energii i materiałów pomocniczych, oraz bilans wytwarzanych produktów i zrzucanych odpadów i emisji. Bilans zawiera ilościowe zestawienie materiałów i energii zużywanych i generowanych we wszystkich. W efekcie otrzymuje się katalog wszystkich wykorzystywanych materiałów i energii oraz wszystkich generowanych emisji i odpadów, który bazuje na zasadach bilansu materiałowego i energetycznego. 7. Oszacowanie wielkości zużycia materiałów i energii oraz emisji i odpadów oraz powierzchni zajmowanego terenu dla docelowego rozwiązania (zakres 1). 8. Oszacowanie wielkości zużycia materiałów i energii oraz emisji i odpadów oraz powierzchni zajmowanego terenu dla docelowego rozwiązania występujących w łańcuch dostaw, na które przedsiębiorca ma ograniczony wpływ, np. transport (tzw. zakres 2). W praktyce gromadzone dane mogą zawierać zarówno dane zmierzone i obliczone jak również oszacowane. 9. Weryfikacja danych zazwyczaj weryfikacji powinna dokonać osoba, która nie prowadziła analizy i nie zbierała danych. 10. Opracowanie wskaźników CF - na podstawie wielkości emisji gazów cieplarnianych i zgodnie z metodyką CF można zsumować wszystkie wielkości emisji gazów cieplarnianych, a następnie przeliczyć je na wartości równoważne zgodnie z metodyką ICCP. Międzyrządowy Panel ds. Zmian Klimatu (IPCC) przedstawił pierwszą koncepcję obliczania wielkości wskaźnika potencjału globalnego ocieplenia (GWP- Global Warming Potential) w 1990 r. IPCC zdefiniował GWP jako wskaźnik, który odzwierciedla efekt możliwej względnej zmiany klimatu w odniesieniu do kilograma gazu cieplarnianego w określonym przedziale czasowym, takim jak np. 100 lat (GWP100). Tym 5 Raynolds M., Franser R.A., Checkel M.D., The relative mass-energy-economic (RMEE) method for system boundaries selection Part 1: A means to systematically and quantitatively select LCA Boundaries, Int J LCA 5 (1), 2001, s.37-46

sposobem określił, jaki jest potencjał gazów do wywoływania ocieplenia w stosunku do tej samej masy ditlenku węgla, któremu przypisano wartość GWP=1. Wielkość GWP dla poszczególnych gazów zależy od stopnia absorpcji, trwałości gazu w atmosferze w określonym czasie odniesienia (obecnie: TH=100 lat), a obliczana jest zgodnie z równaniem: gdzie: a i chwilowe wymuszone promieniowania ze względu na wzrost jednostkowego stężenia śladowych ilości i-gazu, C i stężenie śladowe i-gazu pozostałe w czasie t po jego emisji, H czas odniesienia, tj. liczba lat, w ciągu, których dokonywane są obliczenia. W efekcie na podstawie zmian stężenia danej ilości gazu bada się poziom absorpcji promieniowania podczerwonego, a mając je obliczone dla różnych substancji wylicza się ich wzajemne względne relacje wyrażone np. w ilości równoważnego CO 2, co powoduje iż można je sumować. Przykładowe wartości współczynnika globalnego ocieplenia w relacji do emisji ditlenku węgla przedstawiono w tab. 1. Tab.1. Wartości współczynnika globalnego ocieplenia dla okresu 100 lat (kg równoważnego CO 2 / kg emisji) Emisja GWP 100 (4th Report IPCC) GWP 100 (5th Report IPCC) CO 2 1 1 CH 4 25 28 N 2 O 298 265 CF4 7 390 6630 CFC-11 4 750 4660 Źródło: IPCC 5th Assessment Report: Climate Change 2013 (AR5), http://www.ipcc.ch/publications_and_data/publications_and_data_reports.htm Można również w celu usprawnienia analiz skorzystać z informacji o poszczególnych procesach z istniejących baz danych (wpływa to jednak na jakość i szczegółowość prowadzonych analiz), w których są informacje o przepływach dla procesów jednostkowych czy wieloprocesowych zidentyfikowanych w danym kraju czy wybranej branży zapisywane są w jednym z dwóch powszechnie używanych formatów tj. SPOLD (Society for Promotion of Life Cycle Assessment Development) lub SPINE (Sustainable Product Information Network for the Environment). W celu ujednolicenia formatów i doboru najbardziej wiarygodnych danych oba formaty zostały połączone dla opracowania normy ISO/TR 14048 6. Zakres prac dotyczący zarówno założeń metodologicznych jak i rozszerzania danych o kolejne procesy nasilił się w ostatnich latach, gdy z inicjatywy Komisji Europejskiej pod auspicjami JRC- Ispra UE utworzono Europejską Platformę LCA, gdzie tworzona jest międzynarodowy referencyjny system LCI (International Reference Life Cycle Data System), w którym znajdują się m.in. dane dostarczone przez wiele stowarzyszeń branżowych (np. Europejska Konfederacja Przemysłu Żelaza i Stali (EUROFER) wykazujące dane średnie dla poszczególnych procesów i wyrobów). Obecnie najbardziej 6 ISO/TR 14048:2002 Zarządzanie środowiskowe - Ocena cyklu życia - Format dokumentowania danych

popularna baza danych o procesach to stworzona w Szwajcarii Ecoinvent, zawierająca dane o energii, transporcie, materiałach budowlanych, chemikaliach, detergentach, papierze, produktach rolniczych oraz o gospodarce odpadami.. Do najważniejszych korzyści wynikających z oszacowania CF należą: Poznanie realnej wielkości emisji gazów cieplarnianych podczas procesu produkcji każdego produktu, oraz uświadomienie, który element ma największy wpływ na zanieczyszczenie środowiska, Zoptymalizowanie procesu produkcyjnego poprzez min. zwiększenie efektywności energetycznej, korzystanie z dostawców lokalnych, zlikwidowanie tzw. pustych przebiegów w transporcie, Dokładne określenie swojej pozycji na rynku względem innych podobnych zakładów, biorących pod uwagę ślady węglowe swoich produktów, Możliwość bycia firmą transparentną, zaufaną i konkurencyjną (raportowanie do CDP) w porównaniu do innych które śladu węglowego nie policzyły, Możliwość opracowania charakteryzującej się niskim CF, zielonej koncepcji projektowej, ograniczenie zużycia surowców i zintensyfikowanie współpracy z dostawcami o niskim bilansie węgla, Przedsiębiorca znając swoje wielkości CF, powinien wspierać lokalne działania podejmowane w celu redukcji emisji przez badania alternatywnych konfiguracji produktów, surowców i procesów oraz identyfikowanie lokalnych źródeł emisji, Spełnianie oczekiwań najbardziej wymagających klientów w celu zdobycia pozycji lidera rynku i zwiększenia świadomości konsumentów w zakresie ochrony środowiska, Możliwość używania niezależnego oznakowania weryfikacyjnego w marketingu i komunikacji, Obliczenie śladu węglowego w firmie, oprócz wyżej wymienionych korzyści, jest również częścią CSR możliwość wpisania danych z obliczeń do strategii odpowiedzialnego biznesu, Oprócz dodatkowych, ale także dobrowolnych pozytywnych aspektów z policzonego śladu węglowego, firma może bez przeszkód przedstawiać oferty swoich produktów zagranicznym kontrahentom, którzy wymagali informacji o wartości CF. LCA (Life Cycle Assessment) - (Ekologiczna/Środowiskowa) Ocena Cyklu Życia - jest jedną z technik zarządzania środowiskowego dotyczącą oceny zagrożeń środowiskowych powodowanych przez wyroby, procesy i działania (np. funkcjonowanie zakładu). Wymaga ona opracowania ekobilansu dotyczącego ilości zużytych materiałów, energii oraz odpadów (i emisji) wprowadzanych do środowiska, które są wprowadzane do opracowanych modeli środowiskowych w celu określania potencjalnego wpływ obiektów na środowisko. Tak szczegółowa ocena wskazuje i hierarchizuje miejsca w cyklu życia obiektu przyczyniające się do największego zagrożenia dla środowiska i umożliwia ocenę uzyskanego efektu ekologicznego po wprowadzeniu działań naprawczych (modernizacyjnych). Dokonana w ten sposób ocena dotyczy zazwyczaj całego okresu życia przedsięwzięcia lub wyrobu, począwszy od wydobycia, poprzez przetwórstwo surowców

mineralnych, proces produkcji, transport, dystrybucję, zastosowanie, wtórne wykorzystanie, aż po recykling i końcowe zagospodarowanie. Głównym założeniem i niewątpliwą zaletą techniki LCA jest dążenie do uwzględniania wszystkich czynników, które potencjalnie mogą mieć wpływ na środowisko, a związane są z danym obiektem na każdym etapie cyklu życia. Prowadzenie badań i analiz techniką LCA pozwala na efektywne gospodarowanie zasobami pod względem ekologicznym, ponieważ bazuje na rzeczywistych danych wejściowych i wyjściowych analizowanego procesu, chociaż sama ich identyfikacja jest bardzo pracochłonna, ale obligatoryjna.