Arch. Min. Sci., Vol. 55 (2010), No 4, p. 961 972 Electronic version (in color) of this paper is available: http://mining.archives.pl 961 ELEONORA SOLIK-HELIASZ* GEOTHERMAL ENERGY RESOURCES IN WATERS FROM SUBSURFACE HARD COAL, ZINC AND LEAD ORE MINES IN THE UPPER SILESIAN COAL BASIN ZASOBY ENERGII GEOTERMALNEJ ZAWARTE W WODACH KOPALŃ WĘGLA KAMIENNEGO ORAZ RUD CYNKU I OŁOWIU W GZW The waters flowing into 54 subsurface hard coal, lead and zinc ore mines in the Upper Silesian Coal Basin contain considerable quantities of thermal energy. The assessed stream of thermal energy amounts to 270 MJ per second. Such a quantity is interesting from the viewpoint of economy, therefore an analysis of factors conditioning the possibility of its gaining was carried out. Among the main factors were counted: magnitude and variability of inflows and temperature of waters as well as parameters characterizing the course of pumping of waters from mine workings to the surface. The factors result from natural geological determinants (water saturation of the rock mass) and technical conditionings (course of exploitation and dewatering or flooding of mine workings). The projects of geothermal installations must take into consideration the variability of factors mentioned above and contain appropriate protections. The thermal energy gained from mine waters can be locally utilized for space heating and/or the generation of electric current in hybridized systems, as e.g. binary plant technology. Keywords: Upper Silesian Coal Basin (GZW), geothermal energy, mine waters, resources of thermal energy, geothermal installations, energy gaining from mine waters. W regionie górnośląskim z kopalń czynnych i zlikwidowanych wypompowywana jest znaczna ilość wód o temperaturze od kilkunastu do ponad 20 C (Rys. 1 i 2). Zasoby energii związane z tymi wodami są znaczne. Mimo tego nie są one wykorzystywane, a relatywnie ciepłe wody odprowadzane są do cieków powierzchniowych. Niewykorzystanie energii geotermalnej wydaje się oczywistą stratą z punktu widzenia ekologicznego i ekonomicznego. Mając to na uwadze przeprowadzono badania, których celem było określenie ilości/zasobów energii związanej z wodami kopalnianymi oraz możliwości jej zagospodarowania. Zasoby energii nie są stałe; są skutkiem zróżnicowanej wielkości dopływów i temperatury wód kopalnianych. Czynniki te podlegają znacznym fluktuacjom w zależności od uwarunkowań geologicznych i górniczych. Również możliwości pozyskania wód zależą od szeregu czynników naturalnych i technicznych. Dane dotyczące wielkości i zmienności dopływów wód są istotne z punktu widzenia odbioru energii oraz budowy instalacji geotermalnych. Niemniej istotne są informacje dotyczące utrzymania odwodnienia wyrobisk w skali długoterminowej (w latach). Od połowy lat 90-tych zarysowuje się korzystna tendencja * CENTRAL MINING INSTITUTE, PL. GWARKÓW 1, 40-166 KATOWICE, POLAND; e-mail:esolik@gig.eu
962 likwidacji lokalnych pompowni w kopalniach podziemnych, i tworzenia w ich miejsce dużych, zbiorczych pompowni, ujmujących dopływy z kilku kopalń. Tworzenie dużych pompowni jest gwarancją dostawy dużej ilości wód przez długi okres czasu. Sprzyja to pozyskaniu energii geotermalnej i budowie instalacji o dużej mocy. Ważnym czynnikiem jest również temperatura wód. Wody pochodzące z dopływu naturalnego mają temperaturę zgodną z temperaturą otaczającego górotworu. Jednak w kopalniach podziemnych temperatura wód znacznie odbiega od pierwotnej temperatury górotworu (Solik-Heliasz, red., 2009). Jest ona niższa, a powodem ochłodzenia jest: wentylacja wyrobisk górniczych, ich odwadnianie, mieszanie się wód pochodzących z różnych poziomów wydobywczych kopalń (chłodniejszych z cieplejszymi). Zasoby energii zawarte w wodach kopalnianych oszacowano na 270,2 MJ na sekundę Tab. 1. Z tej ilości dla: wód dopływających do kopalń węgla kamiennego wynoszą one ponad 265 MJ, wód dopływających do kopalń rud cynku i ołowiu, 4,6 MJ. Z łącznych zasobów energii geotermalnej, około 184 MJ (68,1%) związane jest z wodami odprowadzanymi z czynnych kopalń węgla i około 81,6 MJ (30,2 %) z wodami zlikwidowanych kopalń węgla (Rys. 4). Możliwości pozyskania energii z wód kopalnianych zależą od szeregu czynników naturalnych, technicznych oraz ekonomicznych. Wykonane prace aplikacyjne wykazały (Solik-Heliasz, 2009; Solik-Heliasz, Skrzypczak, 2009), że do najważniejszych czynników należą: odległość od źródła energii do odbiorcy oraz przebieg pompowania wód kopalnianych Przykładowy przebieg pompowania przedstawiono na Rys. 7. Zróżnicowanie natężenia pompowania należy uwzględnić w pracach projektowych nad instalacją geotermalną. Energia geotermalna może być wykorzystana do ogrzewania obiektów oraz do odladzania nawierzchni dróg i mostów (Ostaficzuk i Heliasz, 2000). Jednak ze względu na możliwe przerwy w pompowaniu, do układów instalacji geotermalnych należy wprowadzić zabezpieczenia (Solik-Heliasz i Skrzypczak, 2009), na przykład w postaci zbiorników retencyjnych pozwalającym pozyskać energię w okresie przerw w odwadnianiu wyrobisk, lub dodatkowego szczytowego zasilania w energię pochodzącą ze źródeł konwencjonalnych (kotła gazowego, olejowego lub węglowego). Dotychczasowe prace aplikacyjne wykazały, że przy obecnej specyfice pompowania wód oraz obowiązujących cenach na konwencjonalne nośniki energii, do pozyskania energii z wód kopalnianych nadają się głównie sprężarkowe pompy ciepła oraz agregaty kogeneracyjne, produkujące prąd elektryczny do napędu pomp i/lub na potrzeby odbiorcy. Zasoby energii cieplnej zawarte w dopływach wód do kopalń są znaczne i kwalifikują się do wykorzystania gospodarczego. Pozyskaniu energii geotermalnej sprzyja Polityka Energetyczna Polski i Unii Europejskiej. W warunkach GZW jest to tym prostsze, że kopalnie będą musiały być odwadniane jeszcze przez minimum kilkadziesiąt lat - do zakończenia działalności górniczej. Przy tym koszt wyprowadzenia wód kopalnianych na powierzchnię będzie ponosił skarb Państwa. W tych niezwykle sprzyjających warunkach, celowe będzie pozyskanie energii z lokalnych instalacji geotermalnych, które mogą być budowane przy poszczególnych kopalniach. Instalacje te będą bezkolizyjne i nie będą ingerowały w gospodarkę wodno-ściekową kopalń. Zaleca się bowiem odbiór energii w najprostszym układzie technologicznym, czyli po wypompowaniu wód na powierzchnię i przed ich zrzutem do cieków powierzchniowych. Słowa kluczowe: GZW, energia geotermalna, wody kopalniane, zasoby energii cieplnej, instalacje geotermalne, pozyskanie energii z wód kopalnianych 1. Introduction In the Upper Silesian region from operating and abandoned mines a considerable quantity of waters of temperature from a dozen or so to more than 20 C is pumped out. The energy resources connected with these waters are considerable. In spite of this fact they are not utilized, and warm waters are discharged into surface flows. Non-utilization of geothermal energy seems to be a self-evident loss from the ecological and economic point of view. Taking into consideration this factor, investigations were carried out aiming at the determination of the quantity/resources of energy connected with mine waters and possibilities of their management. The geothermal
963 energy resources are not constant; they depend among others on the magnitude of inflows and temperature of mine waters. These factors are subject to considerable fluctuations according to geological and mining determinants. Also the possibilities of water gaining depend on a number of natural and technical factors. In the present work efforts have been made to approach the specificity of these problems. The presented subject matter was the object of investigations performed in the framework of the research project No T12B 03429 entitled Geothermal waters of the Upper Silesian region energy gaining aiming at utility. 2. Water inflows into mines The waters flowing into mine workings in the Upper Silesian Coal Basin (GZW) are the carrier of a considerable quantity of thermal energy. Energy gaining for utilitarian objectives requires the recognition of the specificity and character of these waters and changes, to which they can be subject. The magnitudes of inflows depend on: geological conditions, depth of mining exploitation, area of deposit development, quantity of mineral mined-out (Rogoż & Posyłek, 1980) as well as on water saturation in the rock mass including the dependence on the possibilities of feeding of mine workings with cool waters infiltrating from the terrain s surface as well as on the magnitude of precipitation. On the scale of the entire mining sector in the Upper Silesian Coal Basin the extraction of more and more deeper parts of coal deposits results in the gradual decrease of the magnitude of water inflows into mines. While in 1997 the water inflows amounted in total to 873 thousand m 3 /d, in the period 2004-2007 they decreased to about 650 thousand m 3 /d. Between individual mines these exists a considerable differentiation of the magnitude of inflows, what has been presented in Fig. 1 and 2. The results of measurements indicate that in regions discovered from the viewpoint of hydrogeology the water inflows into coal mines (e.g. Jan Kanty, Jaworzno-Sobieski, Sosnowiec, Porąbka-Klimontów, Niwka-Modrzejów and other mines) are on the average 4-8 times higher 100000 80000 60000 40000 20000 0 R. Czeczott Szczyg³owice Pniówek Jas-Mos Zofiówka Knurów R. Anna Piekary Marcel Chwa³owice Krupiñski Pokój R.Œl¹sk Staszic Borynia i ory R. Silesia Mys³owice Wujek R.I Polska-Wirek Budryk Kazimierz-Juliusz Jankowice Soœnica-Makoszowy 3 Water inflows, m /d Temperature, C R. Bobrek Bielszowice i Pokoj R. Brzeszcze Wieczorek R. Centrum Halemba Weso³a R. Piast R. Rydu³towy Boles³aw Œmia³y JaninaR.I Murcki Ziemowit Sobieski-Jaworzno Fig. 1. Temperature and water inflows into operating coal mines in the Upper Silesian Coal Basin 25 20 15 10 5 0
964 60000 40000 20000 0 SzombierkiiBytomII Powstañców Bytom I Grodziec Por¹bka-Klimontów Kleofas Katowice Sosnowiec Gliwice Niwka-Modrzejów P. Siemianowice Pary Dêbieñsko P.Chorzów Pstrowski P. Bolko Saturn Jan Kanty 3 Water inflows, m /d Temperature, C 25 20 15 10 5 0 Fig. 2. Temperature and water inflows into abandoned coal and ore mines in the Upper Silesian Coal Basin than into mines located in regions hydro-geologically covered (e.g. Zofiówka, Krupiński, Anna, Chwałowice and other mines). The presence of permeable deposit overburden can be also the reason of considerable inflow fluctuation according to the magnitude of precipitation. In dry years the inflows of waters into mines are by 10-20% lower than in wet years. In many mines we can determine the shift in time of inflows in relation to the occurring precipitation. By way of example, after intensive precipitation in 1997 in coal mines of the north-eastern part of the Upper Silesian Coal Basin Paryż, Sosnowiec, Niwka-Modrzejów intensive water inflows into mine workings already after 3 months of precipitation arising were observed. The data concerning the magnitude and variability of water inflows are essential from the point of view of energy receiving and construction of geothermal installations. All the same essential is information concerning the planned maintenance of mine workings dewatering on the long-term scale. Currently both workings at operating and abandoned mines are dewatered. In operating hard coal mines about mine workings dewatering maintaining decide the mineral resources and economic factors. In turn in abandoned mines dewatering is conducted for the safety of neighboring mines. Also on this account dewatering of abandoned zinc and lead ore mines of the Bytom region is maintained. On the level 125 near the shaft Bolko is functioning a collective pumping station, into which flow waters deriving from the abandoned Orzeł Biały, Marchlewski and Waryński mines. The dewatering of ore mine workings is the condition of safe mining exploitation in located below mine workings of hard coal mines. Since the half of the nineties we observe an advantageous tendency of closure of local pumping stations in underground mines and creation of large, collective pumping stations, gathering inflows from several mines. The reduction of the number of pumping stations aims at the decrease of costs of pumping waters towards the terrain s surface. Simultaneously the establishment of big pumping stations is the guarantee of supply of a great quantity of waters through a longer period of time. This factor favors geothermal energy gaining and construction of installations of high capa city. Apart from the collective pumping station near the shaft Bolko, the establishment of subsequent stations is planned in the Saturn and Centrum coal mines (Frolik & Solik-Heliasz et al., 2004).
965 3. Thermal conditions of mine waters and surrounding rock mass Waters from the natural inflow into mines have temperature consistent with the temperature of the surrounding rock mass. This concerns inflows into new, developed parts of deposits and extraction levels. According to investigations realized by Karwasiecka (Karwasiecka, 1996, 2009), in the Upper Silesian region there exists considerable, local differentiation of rock mass temperature. The observed in the lithostratigraphic profile temperature distribution is differentiated and dependent on a number of factors. From among them an essential role play the thermal conditions of rocks, conditioning heat transport on the way of conduction and dynamics of underground waters, responsible for the share of the convection component in heat transport. The parameter characterizing effectively the internal Earth s heat is the density of the surface thermal stream. The density of the thermal stream changes in the Upper Silesian Coal Basin in wide limits, from 53.0 to 95.7 mw/m 2 and reaches the average value 70.4±8.5 mw/m 2. The surface distribution of changes of the analyzed parameter indicates that the Upper Silesian region is not homogeneous from the point of view of the heat field characteristics. There appears a general trend of decrease of density of the thermal stream in the direction from south to north. The effect of differentiation of thermal properties of the rock mass is the variability of temperature, which on the average level of mining exploitation conducting in the Upper Silesian Coal Basin, amounting to -500 m, reaches 22-36 C (Solik-Heliasz, edit., 2009). However, in underground mines the temperature of waters considerably departs from the primary temperature of the rock mass. The reason of water cooling is mining activity, and especially: ventilation of mine workings and their dewatering, mixing of waters originating from different mining levels of mines (cooler with warmer waters), introduction of technological processes (spraying of mined coal, application of hydraulic stowing, use of mine waters for fire-fighting objectives etc.). In turn the use of technical equipment (cutter-loaders, belt conveyors etc.) leads to temperature increase in mine workings. The reason of the highest temperature losses of waters is the ventilation of mine workings drifts, extraction longwalls and shafts. It results from the preliminary analysis that in consequence of mining activities, the primary temperature of underground waters is subject to decrease by several to more than 20 C. In regions hydro-geologically covered the drop of temperature of waters in mine workings is relation to the primary temperature of the rock mass is higher, than in hydro-geologically uncovered regions, or in regions of hindered water infiltration. In the south-western part of the Upper Silesian Coal Basin the decrease of the temperature of collective waters in mine workings reaches 20 C, in the north-western part about 12 C, and in the north-eastern part about 8 C. In general in mines with high natural inflows the cooling of waters is relatively lower than in mines with small inflows. It should be added than in the future the temperature of waters can be subject to further change, along with subsequent modifications introduced into the dewatering or mine workings ventilation systems. The differentiated temperatures of waters at the outlet from shafts have been presented in Fig. 1 and 2.
966 4. Geothermal energy resources contained in mine waters Within the period 2004-2007 the total water inflows into hard coal mines and zinc and lead ore mines amounted on the average to 680 thousand m 3 /d. Of them 63.2% constituted inflows into operating hard coal mines, 33.2% into abandoned coal mines and 3.6% into zinc and lead ore mines (Fig. 3). The temperature of waters discharged to the terrain s surface was differentiated within the interval from 12 C to 23 C. The resources of geothermal energy were estimated using the formula presented below (Górecki, 2006): Q = Z w Tρ w c w (1) where: Q geothermal energy resources, J per second; Z w water inflow intensity, m 3 /s; T temperature difference (water cooling magnitude), C; ρ w water density, kg/m 3 ; c w specific heat of water, J/kg C. 3,6 % Operating hard coal mines 33,2 % 63,2 % Abandoned zinc and lead ore mines Abandoned zinc and lead ore mines Fig. 3. Share of water inflows in individual groups of mines in the Upper Silesian Coal Basin The energy resources amount jointly to 270.2 MJ per second (Table 1). Regarding this quantity, for: waters flowing into hard coal mines they amount to more than 265 MJ, waters flowing into zinc and lead ore mines they amount to 4.6 MJ. As regards the total geothermal energy resources, about 184 MJ (68.1%) are connected with waters discharged from operating coal mines and about 81.6 MJ (30.2%) with waters from abandoned coal mines (Fig. 4). In Fig. 5 and 6 in a growing series the geothermal energy resources contained in inflows into individual mines, operating and abandoned, have been presented. The highest energy resources, amounting to above 10 MJ per second, were ascertained in inflows into the mines: Sobieski- Jaworzno, Ziemowit and Rydułtowy as well as Pstrowski and Pumping Station Chorzów (of the former Barbara-Chorzów mine).
967 Thermal energy resources in water inflows into hard coal mines and zinc and lead ore mines in the Upper Silesian Coal Basin TABLE 1 No Objects Number of mines Geothermal energy resources, MJ per second Total * Minimum in mines Maximum in mines 1. Operating hard coal mines 37 184.0 0.4 24.5 2. Abandoned hard coal mines 16 81.6 1.5 11.1 3. Abandoned zinc and lead ore mines 3 4.6 - - Total 54 270.2 * average of the years 2004-2007. 1,7 % Operating hard coal mines 30,2 % Abandoned zinc and lead ore mines 68,1 % Abandoned zinc and lead ore mines Fig. 4. Share of energy resources in waters of mines in the Upper Silesian Coal Basin 25 20 MJ per second 15 10 5 0 Piast R. Czeczott Szczyg³owice Pniówek Jas-Mos Rydu³towy R. Anna Zofiówka Chwa³owice Knurów Piekary Mys³owice Krupiñski Wujek R. Œl¹sk Staszic Marcel Pokój Borynia i ory Kazimierz-Juliusz Fig. 5. Geothermal energy resources in waters of operating coal mines in the Upper Silesian Coal Basin Brzeszcze R. Silesia Wujek R. I Polska-Wirek Centrum Jankowice Brzeszcze R. I Budryk Soœnica-Makoszowy Janina R. I Bobrek Wieczorek Weso³a Bielszowice i Pokój Boles³aw Œmia³y Piast R. I Halemba Murcki Rydu³towy R. I Ziemowit Sobieski-Jaworzno
968 15 MJ per second 10 5 0 Grodziec Powstañców Bytom I Por¹bka Klimontów Szombierki Bytom II Sosnowiec Pary Kleofas Katowice Gliwice P. Siemianowice P. Bolko Saturn Niwka-Modrzejów Dêbieñsko Jan Kanty Pstrowski P. Chorzów Fig. 6. Geothermal energy resources in waters flowing into abandoned coal and ore mines in the Upper Silesian Coal Basin 5. Possibilities of utilization of geothermal energy contained in mine waters The possibilities of thermal energy gaining from mine waters depend on a number of natural factors (magnitude of water inflows, temperature), technical (course of water pumping, infrastructure existing on the terrain s surface: buildings, tracks, roads, rivers etc.) and economic ones. The application operations carried out have pointed out that to the most important factors belong: distance from the energy source to its receiver and course of pumping out mine waters. The results of the economic analysis indicate that the optimum distance for energy transmission should not exceed 0.5 km (Solik-Heliasz & Skrzypczak, 2002). This means that geothermal energy should be utilized generally at the spot, best of all for local objectives. 5.1. Characteristics of the course of mine waters pumping out From the point of view of geothermal energy receiving essential is the information concerning the durability of mine waters pumping in the long-term period (in years), as well as course of pumping in individual seasons of the year (summer, winter) and days of the month and week. Mine waters are not pumped with constant efficiency. The quantity of discharged waters depends on a number of factors. In operating hard coal mines the waters are pumped in a quantity that guarantees safe course of deposit extraction. This means on the one hand the continuity of pumping, and on the other hand fluctuations, dependent on the course of mining operations, i.e. development of new deposit parts and exploitation longwalls. In turn in abandoned mines pumping is maintained in order to ensure safe mining exploitation in neighboring operating mines, and in order to maintain the determined level of water rise in other abandoned mines. The mines
969 located in the northern part of the Upper Silesian Coal Basin are hydraulically mutually connected. These connections cause that flooding of one mine should mean flooding of neighboring mines, what should be avoided. In closed mines has not been determined the destination time, up to which dewatering of mine workings will be conducted. We estimate that this will be the period of minimum a dozen or so years however, this will depend on geological and mining conditions, mineral resources and factors of economic character. Till now in abandoned coal mines the workings occurring on the deepest levels were flooded. For each mine the permissible level of water rise was determined, dependent on the originate of the deepest hydraulic connection with workings of neighboring mines (Table 2). The surplus of waters is pumped out to the terrain s surface and discharged into surface flows. Only at the mines Siersza and Morcinek full flooding of mine workings is anticipated, till the settlement of primary hydrodynamic conditions. Permissible flooding levels of mine workings in abandoned hard coal mines in the Upper Silesian Coal Basin (December, 2008) TABLE 2 No Name of mine Permissible level of water rise, m Remarks 1. Pumping station Chorzów -327.00 2. Czeczott lack of data in the course of flooding 3. Dębieńsko -460.00 4. Gliwice -261.33 5. Grodziec 90.00 6. Jan Kanty 10.00 7. Janina, R. II 230.00 8. Katowice -177.50 9. Kleofas -294.20 10. 1 Maja -317.00 in the course of flooding 11. Morcinek 0.00 in the course of flooding 12. Niwka Modrzejów -145.00 13. Paryż 90.00 14. Porąbka Klimontów -190.00 15. Powstańców-Bytom I -497.00 16. Pstrowski -555.00 17. Saturn 90.00 18. Pompownia Siemianowice -31.00 19. Siersza 350.00 in the course of flooding 20. Sosnowiec 90.00 21. Szombierki -507.96 22. Żory -405.00 The permissible rise level influences the quantity of waters, which can be discharged to the terrain s surface (Rogoż, 1987). The rise of the water level results in the decrease of inflow from higher occurring formations and in consequence decrease of the quantity of waters, which can be pumped out outside. It can be expected that in the case of closure of the subsequent mine or
970 change of the water rise level, for mines being in hydraulic connection new rise levels will be determined, causing the change of the quantity of waters discharged to the terrain s surface. Currently, in relation to water pumping, operating tariffs for electric energy are taken into consideration, which apart from the energy peaks are lower, thus only in the case of necessity pumping takes place during the day. Possible are also pumping breaks, caused by the repairs of pumping equipment, temporary lack of electric energy supply or other factors (Vademecum, 2008). These breaks can last from several hours to several days. Theoretically possible are also longer breaks caused by filling of emergency reservoirs. These reservoirs were established because of safety reasons in underground workings of closed mines and their task is to receive the full emergency inflow during the period up to 14 days. In this case the lack of pumping will mean a break in water supply, and thus in geothermal energy gaining. Pumping of mine waters can be carried out with various intensity, according to the season of the year and day of the week. An exemplary course of pumping for a typical mine in the Upper Silesian Coal Basin has been presented in Fig. 7. In this mine, in the summer months, the quantity of discharged waters was generally higher, than in the winter months. Also in individual days of the week the differences in the quantity of discharged waters were considerable and reached up to 100%. 10,0 10,0 8,0 8,0 m /min 3 6,0 4,0 m /min 3 6,0 4,0 2,0 2,0 0,0 1-6-2008 11-6-2008 21-6-2008 1-7-2008 Fig. 7. Course of pumping of waters from the closed Katowice mine a) summer months b) winter months 0,0 1-12-2008 11-12-2008 21-12-2008 31-12-2008 a) b) The differentiation of pumping intensity should be taken into consideration in design work regarding a geothermal installation. Geothermal energy can be used for the heating of objects and deicing of the pavement of roads and bridges (Ostaficzuk & Heliasz, 2000). In our climatic zone thermal energy gaining for heating purposes requires, however, steady supply of geothermal waters. On account of possible breaks in pumping, into the systems of geothermal installations additional protections have been introduced (Solik-Heliasz, 2009; Solik-Heliasz & Skrzypczak, 2009). In technical solutions hitherto solutions with a storage reservoir were applied, allowing to gain energy in the period of pumping breaks, or additional, peak supply with energy originating from conventional sources (gas, oil or coal boiler). We can expect that in the case of equalization of charges for energy in
971 the night and day tariff, possible will be the change of hours of mine waters pumping what would be advantageous from the viewpoint of exploitation of future geothermal installations. Hitherto application operations have pointed out that under the current specificity of mining waters pumping and operative prices for energy carriers (Staśko & Kaliski, 2006), for gaining heat from mine waters are suitable chiefly compressor heat pumps and cogeneration sets, producing electric current for pump drives and/or for the needs of the receiver. 6. Summary The geothermal energy resources contained in waters flowing into mines are considerable and are qualified for economic utilization. Energy gaining favors the Energy Policy of Poland and the European Union, as well as Poland s obligations to increase gaining of energy originating from the so-called renewable energy sources. In conditions of the Upper Silesian Coal Basin it is more simple, because the mines must be dewatered still through the minimum of several dozens of years till the end of mining activity. At the same time the costs of discharging of mine waters to the surface will be always born by the State Treasury. In these excessively favorable conditions useful will be to gain energy from local geothermal installations, which can be constructed at individual mines. These installations will be free from the possibility of collisions and will not interfere in the water/wastewater management of mines. It is recommended to receive energy in the simplest technological system, i.e. after pumping out the waters to the surface and before their discharging into surface flows. The initiator of installation construction should be the territorial self-government, and the energy should be used among others for the supply of communal objects (housing estates, stadiums, swimming-pools etc.). The offered means from Polish and European Union s funds could be used for this objective. References Frolik A., Solik-Heliasz E., Kubica J., Chećko J., Gzyl G., Kura K., 2004. Masterplan techniczno-ekonomiczna analiza odwadniania zlikwidowanych kopalń w GZW. Dokumentacja Głównego Instytutu Górnictwa (nie publikowana). Górecki W., red., 2006. Atlas zasobów geotermalnych na Niżu Polskim. Formacje mezozoiku. Kraków. Karwasiecka M., 1996. Atlas Geotermiczny Górnośląskiego Zagłębia Węglowego (skala 1: 300000). Wydawnictwo Kartograficzne Polskiej Agencji Ekologicznej S.A. Warszawa. Karwasiecka M., 2009. Mapy temperatur górotworu na poziomach ścięcia od -500 m do -3000 m, co 250 m. (w:) Atlas zasobów energii geotermalnej w regionie górnośląskim. Utwory neogenu, karbonu i dewonu, red. Solik-Heliasz, Katowice. Ostaficzuk S., Heliasz Z., 2000. Ekologiczne możliwości utylizacji zamykanej kopalni węgla restrukturyzacja z perspektywą. Prace Wydz. Nauk o Ziemi U. Śl. Rogoż M., 1987. Zmiana wodoprzepuszczalności górotworu szczelinowatego wskutek zmniejszenia ciśnienia wody. Przegląd Górniczy, nr 1. Rogoż M., Posyłek E., 1980. Prognozowanie dopływów wody do kopalń zmodyfi kowanymi metodami trendu i współczynnika wodoprodukcyjnego. Prace GIG, Komunikat nr 711. Solik-Heliasz E., Skrzypczak S., 2002. Wybór optymalnego systemu grzewczego z wykorzystaniem geotermalnego odzysku ciepła z wód dołowych dla obiektów w rejonie szybu Barbara, ZG Bytom II. Dokumentacja Głównego Instytutu Górnictwa (nie publikowana).
972 Solik-Heliasz E., red., 2009. Atlas zasobów energii geotermalnej w regionie górnośląskim. Utwory neogenu, karbonu i dewonu. Katowice. Solik-Heliasz E., 2009. Project of Acquiring Energy from Waters of Liquidated Hard Coal Mine. Technika Poszukiwań Geologicznych. Geotermia, Zrównoważony Rozwój, 2. Solik-Heliasz E., Skrzypczak M., 2009. The technological Design of Geothermal Plant for Producing Energy from Mine Waters. Archives of Mining Sciences, vol. 54, issue 3, p. 563-572. Staśko D., Kaliski M., 2006. Model oceny bezpieczeństwa energetycznego Polski w aspekcie prognoz energetycznych na lata 2005-2020. Archives of Mining Sciences nr 51-3. Vademecum, 2008. Biuletyn informacyjny Spółki Restrukturyzacji Kopalń S.A. w Katowicach. Received: 30 July 2009