Problems of Corneal Endothelial Image Binarization

Podobne dokumenty
Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Tychy, plan miasta: Skala 1: (Polish Edition)

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Zarządzanie sieciami telekomunikacyjnymi

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

The Overview of Civilian Applications of Airborne SAR Systems

Stargard Szczecinski i okolice (Polish Edition)

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Revenue Maximization. Sept. 25, 2018

Patients price acceptance SELECTED FINDINGS

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Has the heat wave frequency or intensity changed in Poland since 1950?

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Mikołaja Kopernika w Toruniu

Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2)

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019


Ankiety Nowe funkcje! Pomoc Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students

Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition)

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015


Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

Knovel Math: Jakość produktu

Hard-Margin Support Vector Machines

Forested areas in Cracow ( ) evaluation of changes based on satellite images 1 / 31 O

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

OpenPoland.net API Documentation

THEORETICAL STUDIES ON CHEMICAL SHIFTS OF 3,6 DIIODO 9 ETHYL 9H CARBAZOLE

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

European Crime Prevention Award (ECPA) Annex I - new version 2014

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

photo graphic Jan Witkowski Project for exhibition compositions typography colors : : janwi@janwi.com

WAVELET TRANSFORM OF SELECTED SIMULATION SIGNALS USING DETAILS AS INFORMATION SOURCE


Krytyczne czynniki sukcesu w zarządzaniu projektami

Uniwersytet Medyczny w Łodzi. Wydział Lekarski. Jarosław Woźniak. Rozprawa doktorska

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Extraclass. Football Men. Season 2009/10 - Autumn round

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

DOI: / /32/37

SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS

Jak zasada Pareto może pomóc Ci w nauce języków obcych?

PSB dla masazystow. Praca Zbiorowa. Click here if your download doesn"t start automatically

SG-MICRO... SPRĘŻYNY GAZOWE P.103

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

Camspot 4.4 Camspot 4.5

ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL

Cracow University of Economics Poland

MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

POLITYKA PRYWATNOŚCI / PRIVACY POLICY

Marzec: food, advertising, shopping and services, verb patterns, adjectives and prepositions, complaints - writing

BOGFRAN home.

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

deep learning for NLP (5 lectures)

Aktualizacja Oprogramowania Firmowego (Fleszowanie) Microprocessor Firmware Upgrade (Firmware downloading)

Blow-Up: Photographs in the Time of Tumult; Black and White Photography Festival Zakopane Warszawa 2002 / Powiekszenie: Fotografie w czasach zgielku

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

Warsztaty Ocena wiarygodności badania z randomizacją

Wprowadzenie do programu RapidMiner, część 5 Michał Bereta

Wroclaw, plan nowy: Nowe ulice, 1:22500, sygnalizacja swietlna, wysokosc wiaduktow : Debica = City plan (Polish Edition)

Akademia Morska w Szczecinie. Wydział Mechaniczny

Few-fermion thermometry

Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

BOGFRAN home _BOGFRANHOME_UZUPELNIENIE.indd :21:39

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!

MAGNESY KATALOG d e s i g n p r o d u c e d e l i v e r

Please fill in the questionnaire below. Each person who was involved in (parts of) the project can respond.

Sargent Opens Sonairte Farmers' Market

Installation of EuroCert software for qualified electronic signature

PROCESORY ARM TRUDNO ZNALEŹĆ PROCESORY O TAK LICZNYCH, ORYGINALNYCH, NOWYCH, POMYSŁOWYCH ROZWIĄZANIACH!

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

Baptist Church Records

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition)

Zaawansowane metody programowania. Algorytmy

PRACA DYPLOMOWA Magisterska

Rev Źródło:

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Angielski Biznes Ciekawie

Transkrypt:

S C H E D A E I N F O R M A T I C A E VOLUME 20 2011 Problems of Corneal Endothelial Image Binarization Kamil Szostek 1, Jolanta Gronkowska-Serafin 2, Adam Piórkowski 1 1 Department of Geoinfomatics and Applied Computer Science, AGH University of Science and Technology, Cracow, Poland e-mail: {szostek, pioro}@agh.edu.pl 2 Chair and Departmenf of Ophthalmology, Pomeranian Medical University, Szczecin, Poland Abstract. In this paper we present two method of binarization of corneal endothelial images. The binarization is a first step of advanced image analysis. Images of corneal endothelial obtain by the specular microscopy have poor dynamic range and they are usually non-uniform illuminated. The binarization endothelial images is not trivial. Two binarization algorithms are proposed. The output images are presented. The quality of algorithms is discussed. Keywords: binarization, corneal endothelia, image processing 1. Corneal endothelial images Corneal endothelium is a monolayer of mainly hexagonal cells covering the posterior corneal surface. These cells are responsible for maintaining the corneal transparency dependent on stable hydratation level (78%). Cells are closely joined membrane to membrane by zonulae occludens so there is no intracellular space; it allows to dehydrate the corneal stroma and epithelium. In human in contrary to many other species mitotic activity of endothelial cells is clinically insignificant so cell number decreases continuously in the lifetime. Empty place left by necrotic cell is fulfilled by enlarging distorted neighboring cells. Every intervention in the anterior chamber space (surgery, trauma, etc.) as well as many congenital (PPD) and acquired diseases (i.e. glaucoma, diabetes) results in corneal cell number decrease. In case of severe endothelial damage (cell density below 500 cells/mm 2 ) the remaining cells are no more able to enlarge and compensate the loss; water going freely by simple diffusion

212 from the aequs fluid stops to be removed that leads to irreversible corneal edema with consecutive transparency loss and functional blindness. Specular microscopy allows to assess endothelial layer in vivo traditional parameters as corneal density (CD), coefficient of cell size variation (CV) and percentage of hexagonal cells (H) are not always sufficient in predicting the postsurgical corneal state, so many studies are conducted in search of additional cells features. 2. Medical image processing Medical image processing is a wide area of researchers interest. Correct image analysis is important in diagnosis and treatment effectiveness assessment. Endothelial images may contain important information about corneal condition, impossible to achieve in normal slit lamp examination [2]. The corneal endothelial images processing, binarization and segmentation were studied long time before [4]. The problem of processing and analyzing corneal endothelial images has already been discussed and non-subsampled wavelet pyramid decomposition of lowpass region technique was proposed [3]. Also directional filter bank was presented to isolate directional features in endothelial cells image [1] and automatic recognition of different cell layers were introduced [5]. The problem of corneal endothelial images binarization is the first step to prepare these images for processing to determine factors that can easily describe eye condition. Binarization should be as automatic and as precise as possible to give the best results and to provide source for factor calculations. 3. Binarization Image binarization is a process which results in binary image that consists of only two possible values, usually 0 (displayed as black) and 1 (white). Any color or gray images can be processed to obtain two-level image. For bi-level images it is easier to write algorithms that find specific image features, like patterns, or to count interesting elements; usually binarization is a first step in image analysis. What is more bi-level images occupy the least amount of computer memory [6, 7]. Image binarization is not a trivial operation, because of source image distortions and noises. Techniques of binarization vary from simple threshold (Fig. 1b) to statistical algorithms or series of different image processing operations that may give more accurate results (Fig. 2c). Quality of image binarization depends on the quality of the source image and its gray level dynamics that can be easily observed on image histogram. The most

213 difficult case is when the interesting elements of the image are surrounded by similar background and the image is non-uniform illuminated [6]. (a) (b) (c) Fig. 1. Example of bad and good binarization. The source image has low dynamic range (a) and auto threshold binarization gives poor results (b). Required effect is presented on image (c) 4. Characteristic of the corneal endothelial images Images of corneal endothelial obtain by the specular microscopy are 8 bit grayscale images (Fig. 2). The dynamic range is poor: only about 20 30% - between the most dark and the most bright data pixel are about 40-60 gray levels. What is more, images are usually non-uniform illuminated (one side is noticeably brighter than other), what has negative influence to automatic binarization process (Fig. 3). Some other artifacts may appear near image border that decrease usability of the parts of the image. The cellular structures are usually well noticeable: brighter cells and darker boundaries. The sizes of the cells may vary (Fig. 2a and Fig. 2b). Some images also contains dark spots that indicate cell loss (Fig. 2c) and are important for diagnosis of corneal guttata connected with higher risk of Fuchs dystrophy and postsurgical corneal decompensation.

214 (a) (b) (c) Fig. 2. Example of images of corneal endothelial before any processing Fig. 3. Heterogeneous illumination of corneal endothelial image with brightness graphs of maximum (red), mean (green) and minimum (blue) value for each column

215 5. Binarization of corneal endothelial images The binarization is the first step of the corneal endothelial image analysis. It is important for further analysis of cells size, shape and density. Two binarization algorithms are going to be presented. 5.1. Adaptive binarization algorithm The first binarization method adaptive algorithm processes image in fragments. The size of the fragment square box is about 150% of the cell size and has to be chosen arbitrary. In every fragment maximum, minimum and average of the brightness is calculated. Then binarization is performed for each square, according to selected threshold, which is equal to calculated average or is a value between minimum and maximum brightness of the fragment as a selected percentage part of that distance. The last step is the median filter [6] done with 3 3 square element. The median filter removes small artifacts and smoothes cells. The results of the binarization are presented on Fig. 4. (a) (b) (c) (d) Fig. 4. Adaptive binarization results. Source image (a) processed without median filter (b), with median filter and 55% (c) and 60% threshold The presented binarization algorithm is not satisfying. Threshold selected as a average brightness of the fragment gives very poor results. Calculating distance between minimum and maximum value has also failed. The boundaries are misplaced as well as cells are not clear extracted. Final bi-level image consist of significant artifacts that may have negative influence on the further calculation.

216 5.2. Filter based binarization algorithm The algorithms begins with histogram equalization [6]: the darkest source pixels becomes black and the brightest white (Fig. 5). Then high pass filter [6] is applied to remove low frequency, just like the heterogamous illumination. The threshold for this filter should be selected experimentally. Then binarization may be performed globally with threshold equal to 128. Median filter is applied to reduce noise and artifacts. The final step is to remove elements that consists of small number of pixels. This may be done by counting the pixels in consistent groups or by performing another median filter and calculating its intersection with the image before that median filter operation. The results of this algorithm are better than the adaptive filter, but still include some artifacts. Their influence may also cause problems in further calculations. (a) (b) Fig. 5. Histogram equalization results (b) of the example image (a) with corresponding histograms 6. Results and conclusion In this paper binarization of corneal endothelial images was discussed. It is the first step in creating software to perform analysis of corneal endothelial and to determine new parameters that will help in diagnosis and treatment effectiveness assessment.

217 Fig. 6. Filter based binarization algorithm results. Source image on the left Two algorithms and their results were presented: first adaptive algorithm, suggested by non-uniform illumination, gives poor results, which is contrary to the expectations. Second filter based algorithm provides better binarization. In spite of its complicity, filter approach may be good solution for further analysis. Further work is to find new useful for ophthalmology parameters of corneal endothelial images. 7. References [1] Khan M.A., Khan M.K., Khan M.A.U., Lee S.; Endothelial Cell Image Enhancement using Decimation-Free Directional Filter Banks, IEEE Asia Pacific Conference on Circuits and Systems, 2006, pp. 884 887.

218 [2] Gronkowska J., Piórkowski A., Palacz O.; Ocena różnic stopni szarości fotografii śródbłonka rogówki w relacji do innych parametrów tej warstwy oraz grubości rogówki u pacjentów przed i po operacji zaćmy, V Jubileuszowe Sympozjum Sekcji Informatyki Medycznej, Polskie Towarzystwo Okulistyczne, 2003, pp. 40 42. [3] Khan M.A.U., Khan M.K., Khan M.A., Ibrahim M.T.; Endothelial cell image enhancement using pyramid, Inform. Technol. J., 6, 2007, pp. 1057 1062. [4] Mahzoun M.R., Okazaki K., Mitsumoto H., Kawai H., Sato Y., Tamura S., Kani K.; Detection and Complement of Hexagonal Borders in Corneal Endothelial Cell Image, Medical Imaging Technology, 14(1), 1996. [5] Ruggeri A., Pajaro S.; Automatic recognition of cell layers in corneal confocal microscopy images, Computer Methods and Programs in Biomedicine, 2002, 68(1), pp. 25 35. [6] Tadeusiewicz R., Korohoda P.; Komputerowa analiza i przetwarzanie obrazów, Wydawnictwo Fundacji Postępu Telekomunikacji, Cracow, 1997. [7] Wojnar L., Kurzydłowski K.J., Szala J.; Praktyka analizy obrazu, Polskie Towarzystwo Stereologiczne, Cracow, 2002. Received September 23, 2010