Wojciech Dmuchowski*, Dariusz Gozdowski**, Aneta H. Baczewska***, Paulina Brągoszewska***



Podobne dokumenty
Exposure assessment of mercury emissions

POMIAR BIOKONCENTRACJI ZANIECZYSZCZEŃ W OCENIE SKAŻENIA ŚRODOWISKA, NARAŻENIA ORGANIZMÓW ORAZ PROGNOZOWANIU EKOLOGICZNYCH EFEKTÓW ZANIECZYSZCZEŃ

Allocation of elements in former farmland afforestation with birch of varying age

Country fact sheet. Noise in Europe overview of policy-related data. Poland

Krytyczne czynniki sukcesu w zarządzaniu projektami

Zarządzanie sieciami telekomunikacyjnymi

Has the heat wave frequency or intensity changed in Poland since 1950?

ESSENTIAL OILS IN THE NEEDLES OF SCOTS PINE (Pinus sylvestris L.)

Metale ciężkie w glebach uprawnych jako możliwy czynnik zagrożenia zdrowia mieszkańców województwa śląskiego

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

METODA OGÓLNEJ OCENY STANU ŚRODO- WISKA OBSZARÓW WIEJSKICH NA PODSTAWIE INFORMACJI Z BANKU DANYCH REGIONALNYCH GUS I OSZACOWAŃ PROGRAMU EMEP

Proceedings of ECOpole Vol. 3, No

Instructions for student teams

PhD Łukasz Gawor Silesian University of Technology, Gliwice Akademicka Street 2, Gliwice, PL, phone , fax

SPITSBERGEN HORNSUND

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Pomiary hydrometryczne w zlewni rzek

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

SPITSBERGEN HORNSUND

ROZPRAWY NR 128. Stanis³aw Mroziñski

Evaluation of the main goal and specific objectives of the Human Capital Operational Programme

The Overview of Civilian Applications of Airborne SAR Systems

Akademia Morska w Szczecinie. Wydział Mechaniczny

SPITSBERGEN HORNSUND



HEAVY METAL CONTENT IN CITY TREE LEAVES USED FOR COMPOST PRODUCTION

Forested areas in Cracow ( ) evaluation of changes based on satellite images 1 / 31 O

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

KATOWICE SPECIAL ECONOMIC ZONE GLIWICE SUBZONE and its influence on local economy KATOWICE SPECIAL ECONOMIC ZONE - GLIWICE SUBZONE

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

GLOBAL METHANE INITIATIVE PARTNERSHIP-WIDE MEETING Kraków, Poland

Tychy, plan miasta: Skala 1: (Polish Edition)

Lek. Ewelina Anna Dziedzic. Wpływ niedoboru witaminy D3 na stopień zaawansowania miażdżycy tętnic wieńcowych.

DIVERSITY OF NEEDLES OF THE SCOTS PINE (Pinus sylvestris L.)

Analiza jakości powietrza atmosferycznego w Warszawie ocena skutków zdrowotnych

BIOMONITORING BORÓW DOLNOŚLĄSKICH

HemoRec in Poland. Summary of bleeding episodes of haemophilia patients with inhibitor recorded in the years 2008 and /2010

SPITSBERGEN HORNSUND

Knovel Math: Jakość produktu

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like


REGIONAL DIFFERENTIATION OF THE POWER OF AGRICULTURAL TRACTORS PURCHASED IN POLAND IN THE YEARS

Bernard Palowski, Ryszard Ciepał,

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Fizyka Procesów Klimatycznych Wykład 11 Aktualne zmiany klimatu: atmosfera, hydrosfera, kriosfera

Cracow University of Economics Poland

Sargent Opens Sonairte Farmers' Market

Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

Streszczenie rozprawy doktorskiej

SPITSBERGEN HORNSUND

The influence of Chemical Works Police on chemical composition of Pinus sylvestris needles, Pleurozium schreberi and soil samples

Institutional Determinants of IncomeLevel Convergence in the European. Union: Are Institutions Responsible for Divergence Tendencies of Some

TECHNOLOGIE OCHRONY ŚRODOWISKA (studia I stopnia) Mogilniki oraz problemy związane z ich likwidacją prof. dr hab. inż.

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Elżbieta Malzahn* BIOMONITORING ŚRODOWISKA LEŚNEGO PUSZCZY BIAŁOWIESKIEJ BIO-MONITORING OF THE FOREST ENVIRONMENT OF THE BIAŁOWIEŻA PRIMEVAL FOREST

SNP SNP Business Partner Data Checker. Prezentacja produktu

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

MULTI-MODEL PROJECTION OF TEMPERATURE EXTREMES IN POLAND IN

Uniwersytet Medyczny w Łodzi. Wydział Lekarski. Jarosław Woźniak. Rozprawa doktorska

Compression strength of pine wood (Pinus Sylvestris L.) from selected forest regions in Poland, part II

The impact of the global gravity field models on the orbit determination of LAGEOS satellites

OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.

Auschwitz and Birkenau Concentration Camp Records, RG M

PROJECT. Syllabus for course Global Marketing. on the study program: Management

Spatial planning in floodplains in mountain catchments of different row, in the basin of the Upper Vistula and the Upper and Central Odra

AKUMULACJA METALI CIĘŻKICH W RUNI TRAWIASTEJ ROSNĄCEJ W SĄSIEDZTWIE GŁÓWNYCH ARTERII KOMUNIKACYJNYCH LUBLINA

Ekonomiczne i społeczno-demograficzne czynniki zgonów osób w wieku produkcyjnym w Polsce w latach

Analiza epidemiologiczna występowania i uwarunkowań pylicy górników kopalń węgla kamiennego w województwie śląskim w latach

CHARAKTERYSTYKA WARUNKÓW METEOROLOGICZNYCH W REJONIE DOŚWIADCZEŃ ŁĄKOWYCH W FALENTACH

Financial support for start-uppres. Where to get money? - Equity. - Credit. - Local Labor Office - Six times the national average wage (22000 zł)

Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Mikołaja Kopernika w Toruniu

ARCHIVES OF ENVIRONMENTAL PROTECTION

Zanieczyszczenie powietrza metalami ciężkimi w rejonie huty cynku i ołowiu w Bukownie koło Olkusza

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA. mgr inż. Piotr Smurawski

Investment expenditures of self-governement units in percentage of their total expenditure

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

INSTYTUT GENETYKI I HODOWLI ZWIERZĄT POLSKIEJ AKADEMII NAUK W JASTRZĘBCU. mgr inż. Ewa Metera-Zarzycka

STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

THE INFLUENCE OF SELECTED FACTORS ON THE YIELD OF Allium moly L. BULBS. Jerzy Hetman, Halina Laskowska, Wojciech Durlak

Katedra i Zakład Biochemii Kierownik Katedry: prof. dr hab. n. med. Ewa Birkner

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.


SPITSBERGEN HORNSUND

UMOWY WYPOŻYCZENIA KOMENTARZ

Galeria Handlowa Starogard Gdański

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

SNP Business Partner Data Checker. Prezentacja produktu

Revenue to gminas budgets from service charges in division 756 per capita

Sabina Dołęgowska, Zdzisław M. Migaszewski Instytut Chemii, Uniwersytet Humanistyczno- Przyrodniczy Jana Kochanowskiego w Kielcach

SPITSBERGEN HORNSUND

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

SPITSBERGEN HORNSUND

OpenPoland.net API Documentation

Transkrypt:

Ochrona Środowiska i Zasobów Naturalnych nr 48, 2011 r. Wojciech Dmuchowski*, Dariusz Gozdowski**, Aneta H. Baczewska***, Paulina Brągoszewska*** EVALUATION OF THE ARSENIC ENVIRONMENTAL POLLUTION ON THE BASIS OF DIFFERENT BIOINDICATIVE METHODS OCENA ZANIECZYSZCZENIA ŚRODOWISKA ARSENEM za POMOCĄ RÓŻNYCH METOD BIOINDYKACYJNYCH Słowa kluczowe: biomonitoring, zanieczyszczenie środowiska, arsen, mech, brzoza, sosna. Keywords: biomonitoring, environmental pollution, arsenic, moss, birch, Scots pine, moss bag. Celem pracy było porównanie czterech metod bioindykacyjnych w ocenie zanieczyszczenia środowiska arsenem. Teren badań obejmował rejon Olkusza, bardzo silnie zanieczyszczony metalami ciężkimi, o tradycjach przemysłu hutniczego sięgających XIII wieku. Obecnie na tym obszarze znajduje się m.in. zakład wydobycia i przetwórstwa rud cynkowo-ołowiowych oraz hałda odpadów hutniczych wysokości 25 30 m i powierzchni 109 ha. Badania polegały na określeniu akumulacji arsenu: w eksponowanym mchu Sphagnum fallax metoda transplantacyjna moss-bag, w rosnącym mchu Pleurozium schreberi, w liściach brzozy brodawkowatej i w igłach sosny zwyczajnej. Wyniki badań przedstawiono w formie map z izoliniami, różnicującymi strefy zanieczyszczenia proporcjonalnie do skali zawartości arsenu w poszczególnych bioindykatorach. Czyn- * Dr hab. Wojciech Dmuchowski, prof. nadzw. Pracownia Ekologii Roślin, Polska Akademia Nauk Ogród Botaniczny CZRB, ul. Prawdziwka 2, 02-973 Warszawa; tel: 22 754 14 26; e-mail: w.dmuchowski@obpan.pl oraz Szkoła Główna Gospodarstwa Wiejskiego, Wydział Rolnictwa i Biologii, ul. Nowoursynowska 159, 02-776 Warszawa; tel: 22 593 26 89; e-mail: wojciech_dmuchowski@sggw.pl ** Dr inż. Dariusz Gozdowski Wydział Rolnictwa i Biologii, Szkoła Główna Gospodarstwa Wiejskiego, ul. Nowoursynowska 159, 02-776 Warszawa; tel: 22 593 27 30; e-mail: darek12345@gfmail.com ***Mgr Aneta Helena Baczewska, mgr Paulina Brągoszewska Pracownia Ekologii Roślin, Polska Akademia Nauk Ogród Botaniczny CZRB, ul. Prawdziwka 2, 02-973 Warszawa; tel: 22 648 38 56; e-mail: a.h.baczewska@wp.pl, p_jablonska1@wp.pl 391

Wojciech Dmuchowski i in. nikiem różnicującym bezwzględny wynik stopnia zanieczyszczenia środowiska jest przede wszystkim czas ekspozycji, wynikający ze specyfiki zastosowanej metody bioindykacyjnej, źródło zanieczyszczenia (powietrze, gleba) oraz cechy (budowa morfologiczna) rośliny wskaźnikowej. Poziom akumulacji arsenu we wszystkich roślinach wskaźnikowych w rejonie Olkusza był wysoki i bardzo zróżnicowany. Analiza statystyczna wyników wykazała zależność między zastosowanymi metodami bioindykacyjnymi. Zależność ta, wyrażona współczynnikiem korelacji prostej Pearsona, była dodatnia i istotna dla wszystkich zastosowanych metod bioindykacyjnych. Wartość współczynnika determinacji we wszystkich przypadkach była większa niż 0,5, co świadczy o znacznym podobieństwie obrazów imisji zanieczyszczenia. Wykazano, że rejon Olkusza, a szczególnie okolice huty ołowiu i cynku, należy uznać za ekstremalnie skażone arsenem. Zostały tam przekroczone progi toksyczności dla roślin, które i tak są mniej wrażliwe niż ludzie. 1. INTRODUCTION Small quantities of arsenic can have a stimulating influence on human, animal and plant organisms, but has not been considered an indispensable element. Toxic quantities of arsenic in plants cause stifling of leaves and change of their colour, as well as damages to the root system and retardation of growth. In human organism arsenic compounds of may block the action of many enzymes and may cause, in particular, the disturbance of the Krebs cycle. Acute poisonings with arsenic bring about first of all damage to the digestive tract, while the chronic ones anemia, weakening of nails and hair, as well as different skin disorders, such as callusing and colour changes. Besides, even after a long period of latency the cancerous symptoms may appear, because arsenic is a carcinogenic and theratogenic factor [Kabata-Pendias and Pendias 1999]. Main source of arsenic emission are burning of coal and foundries of non-ferrous metals It is emitted, as well, from the natural sources, such a volcanoes or low temperature volatilisation (biological methylation) [Peterson and Girling 1981, Chilvers and Peterson 1987]. The goal of this work was to evaluate various bioindication methods for providing biologically based complementary information to the mandatory environmental monitoring with arsenic. This has been done based on environmental monitoring in extremely high levels of pollution near Olkusz, in which four various bioindication methods have been used. 2. STUDY AREA The study area is a region around the town of Olkusz that is one of the oldest European centers for the metallurgic industry, with industrial tradition reaching back, as mentioned, to the 13 th century. The largest industrial plant in the area is the Mining and Metallurgic Com- 392

Evaluation of the arsenic environmental pollution on the basis of different bioindicative... plex Bolesław in Bukowno. The study area encompasses, in particular, the location of the waste heap from the refining process of the zinc and lead ores. The dust from this heap (height of 25 30 m, area of 109 hectares), contributes to the contamination of the surrounding areas [Godzik 1993; Dmowski and Badurek 2002]. In addition, dust emissions from the stacks of the Bolesław Complex can be transported over much longer distances, and this applies also to other industrial plants, located nearby outside of the study area, such as the Katowice Steel Works. The study (Fig. 1) area is situated to the east of Olkusz, its western border reaches the suburbs of the Fig. town 1. (Fig. Locations 1), and of it the is measurement 14 km x 14 km, points divided in the into surroundings 49 smaller of squares Olkusz of 2 km x 2 km. Four additional monitoring sites were selected near Bolesław complex. Rys. 1 Lokalizacja punktów pomiarowych w okolicach Olkusza Fig. 1. Locations of the measurement points in the surroundings of Olkusz Rys. 1 Lokalizacja punktów pomiarowych w okolicach Olkusza 3. MATERIALS AND METHODS The study was conducted using four common methods for biomonitoring environmental pollution due to metals: 393

Wojciech Dmuchowski i in. 1) Determination of accumulation in the exposed Sphagnum fallax (H. Klinggr.) moss the moss-bag transplant method. The method is based on exposing bags with moss collected from a relatively unpolluted territory, in the study area. After exposure the level of accumulation of heavy metals in moss is determined. The method was first applied by Goodman and Roberts [1971] and adapted to the Polish conditions by Chmielewski et al. [1993]. 2) Determination of accumulation in growing moss Pleurozium schreberi (Brid.) Mitt. The procedure of sample collection and their preparation to the analyses was carried out conform to the European Program [Grodzińska et al. 1997]. Moss was collected from the forest openings at a certain distance from the trees, in order to avoid the filtering influence of the tree canopies, which could significantly impact upon the results [Rühling et al. 1987]. From the surface of approximately 200 m 2 only plant parts of gametophyte were collected without bedding, and only its green parts, representing usually the last three years were used for monitoring purposes. 3) Determination of accumulation in leaves of Betula pendula Roth. The leaves of silver birch were picked from the upper part of the canopy at the height of about 3 m on four sides of the tree circumference [Dmuchowski 2005]. 4) Determination of accumulation in the needles of Pinus silvestris L. The needles were picked from the 2 nd to 4 th whorl from the top, by cutting branches from the outer parts of the canopy, from the possibly most uncovered places. Analysis was carried out only for the needles of the previous year growth, according to the methodology presented by Dmuchowski and Bytnerowicz [1995]. This method was recommended by UNEP [Environmental Data Report 1989]. The material for the analyses (moss, needles and leaves) was collected in the second half of July. Samples were collected from eight trees, with a single mixed sample made of the equal amount of biomass from each tree. In the same locations bags with peat moss were placed for the period of 12 weeks later. In each of the 49 squares an area distanced at least 300 m from the main roads with heavy traffic. the appropriate pines, birches and moss (within the distance of at most 100 m). Four additional monitoring sites were selected near Bolesław complex. Reference samples consisted of pine needles, silver birch leaves and Pleurozium schreberi and Sphagnum fallax mosses collected in the Augustów Primeval Forest, considered to be in relative terms the least polluted area in Poland [Dmuchowski and Bytnerowicz 1995; Grodzińska et al. 1997]. The material collected was placed in linen bags, dried at 70 C and ground to a powder. Needles and leaves were washed for one minute in distilled water before being ground. The powdered samples were dry-mineralized in a muffle oven. The concentration of arsenic was determined with the atomic absorption spectrophotometry with generation of hydrides using the FIAS 200 countershaft [Perkin Elmer 1990]. Relationships between contents of the arsenic in various bioindicators were evaluated using Pearson correlation coefficient and simple linear regression [Sokal and Rohlf 1995]. 394

Evaluation of the arsenic environmental pollution on the basis of different bioindicative... Cluster analysis using nearest neighbour method was used for evaluation of similarity of four bioindication methods [Everitt et al. 2001]. For all analyses significance level was set at 0.05. The statistical analyses were performed in Statgraphics 4.1 statistical package and the figures were prepared using MS Excel. The results of this work are presented as maps of arsenic pollution deposition. All of the maps were drawn digitally with the use of the specialized MapInfo software [Daniel et al. 2002]. 4. RESULTS AND DISCUSSION The results of environmental arsenic pollution are presented in the form of maps (Fig. 2) with respective isoquants. These isoquants differentiate the zones of pollution in proportion to the scale of arsenic concentration, accumulated in particular bioindicators: Table 1 presents the basic descriptive statistics of the results obtained. Fig. 2 Contamination of environment with arsenic on the basis of accumulation in concentration of this element in the bioindicators. Rys. 2. Zanieczyszczenie środowiska arsenem na podstawie kumulacji stężenia tego pierwiastka w biowskaźnikach. 395

Wojciech Dmuchowski i in. Table 1. Medians and range of arsenic content in examined bioindicators Tabela 1. Mediany i średnie zawartości arsenu w badanych biowskaźnikach Value As Moss bag Median 0.46 Minimum 0.15 Maximum 17.1 Control 0.11 Pl. schreberi Median 1.47 Minimum 0.23 Maximum 11.0 Control 0.21 P. sylvestris Median 0.45 Minimum 0.13 Maximum 6.44 Control 0.11 B. pendula Median 0.37 Minimum 0.11 Maximum 9.05 Control 0.10 In the moss-bag metod arsenic concentration i moss were quite variable, and ranged between 0.15 and 17.11 mg/kg. Chmielewski and Dmuchowski [1999] applied a similar methodology in the area of the Bielany quarter in Warsaw, in 1999 recorded the highest measurement in the vicinity of the Lucchini Steel Mill, i.e. 0.26 mg/kg. The arsenic concentration in moss Pleurozium schreberi ranged from 0.23 to 10.6 mg/kg, and the reference level of 0.23 mg/kg. The literature data concerning the content of arsenic in mosses are relatively sparse. In Poland, in 1998, in the province of Podlasie, the the least polluted region, had arsenic concentrations in mosses ranging between 0.12 and 1.16 mg/kg, while the strongly contaminated regions, the Upper Silesian Cracovian Industrial region had these concentrations between 0.03 and 2.8 mg/ kg, and the Legnica-Głogów Copper Basin between 0.25 and 6.0 mg/kg [Grodzińska et al. 2003]. In France, the maximum arsenic concentration measured in mosses was 1.0 ppm [Galsomiès et al. 2003], while in the Czech Republic to 1.4 mg/kg [Sucharová and Suchara 1998]. 396

Evaluation of the arsenic environmental pollution on the basis of different bioindicative... Arsenic concentrations in the pine needles were between 0.12 and 6.44 mg/kg, and these values were higher in all the collected needle samples than the reference sample value (0.09 mg/kg). The maximum values recorded are similar to the one provided by Steinnes et al. [2000] for the contaminated areas close to the non-ferrous metal works on the Kola peninsula, equal to 5.1 mg/kg. Lower concentrations were measured in the Polish industrial regions: in the centre of Upper Silesia the measured concentrations of arsenic pine needles ranged from 1.42 to 1.50 mg/kg [Dmuchowski and Bytnerowicz 1995]. Molski and Dmuchowski [1990] measured in northern Finland, in Lappland, on the average 0.49 mg/kg of arsenic. This is a higher level of concentration than in the non-polluted areas of Poland, but Lappland is under the influence of emissions from the non-ferrous metal works located in Russia on the Kola Peninsula. The arsenic concentration in the birch foliage ranged between 0.12 and 9.05 mg/kg, and the background reference sample of 0.10 mg/kg. Only limited literature information on arsenic content in birch leaves is available. The mountain birch foliage from the vicinity of the nickel and copper works in Monchegorsk on the Kola Peninsula contains 1.5 mg/kg of nickel, according to Steinnes et al. [2000], while according to Reimann et al. [2001] 0.71 mg/kg. In the polluted area of the Katowice Steel Mill neighbourhood, the concentration of arsenic in the silver birch leaves was 0.92 mg/kg [Dmuchowski, 2000]. Despite the application of various bioindication methods with different monitoring plants, the spatial distributions of arsenic contamination as revealed in the maps were similar. Although the absolute levels of contamination differed, the overall patterns were similar. The Bolesław complex (which processed ores of these metals) and the waste dump from the foundry were identified as the largest sources of contamination in the study area. Region of Olkusz, should be considered as extremely strongly contaminated with arsenic. The main factor that determines the absolute values of measurements in relation to the degree of environmental pollution, expressed through the level of accumulation of arsenic in the bioindicator plants is the time of exposure (Tab. 2). Level of heavy metal accumulation results also from the specific features of the bioindication method applied, the source of contamination (air, soil) and the properties (morphological structure) of the biomonitoring plant. Table 2. Properties of the bio-indication methods applied Tabela 2. Właściwości biowskaźników w zastosowanej metodzie Method Period of exposure Source of contamination Moss-bag method 12 weeks air Accumulation in the moss Pleurozium schreberi 2 3 years air Accumulation in birch foliage 3 months air and soil Accumulation in pine needles 14 months air and soil 397

Wojciech Dmuchowski i in. Table 3. Correlation coefficients between content of arsenic in various bioindicators. Tabela Correlations 3. Wartość between współczynnika arsenic korelacji content między in all zawartością bioindicators arsenu were w różnych significant biowskaźnikach (Fig. 3, Tab. 3). The strongest correlation was observed between arsenic content in B. pendula and P. sylvestris (r=0.73). The relationship is presented graphically in dendrogram (Fig. 4), branches of moss bag B. pendula P. sylvestris B. pendula 0.51 these two bioindicators join at the lowest distance. Medians and regression functions indicate P. sylvestris 0.59 0.73 that content of arsenic was about 25% lower for P. silvestris in comparison with B. pendula, Pl. schreberi 0.58 0.39 0.72 All but correlations pattern are of significant arsenic accumulation at P<0.05 was very similar for both these species. Very strong correlation was observed between P. sylvestris and Pl. schreberi (r=0.72), but the arsenic content 3. for Relationships Pl. schreberi between was arsenic much content higher in examined than P. bioindicators sylvestris (linear especially regression in less functions polluted and areas Fig. coefficients of determination R 2 ) where was about 3 times higher. Relationships between moss bag method with other three Fig. 3. Zależność między zawartością arsenu w poszczególnych biowskaźnikach (funkcja regresji liniowej i współczynnik bioindication determinacji methods R were 2 ) moderate. Correlation coefficients were from 0.51 to 0.59. In the Pl. schreberi (y) y = 1.43x + 1.22 12.0 R 2 = 0.51 10.0 8.0 6.0 4.0 2.0 0.0 0.0 2.0 4.0 6.0 8.0 P. sylvestris (x) P. sylvestris (y) 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 y = 0.74x + 0.43 R 2 = 0.53 0.0 2.0 4.0 6.0 8.0 10.0 B. pendula (x) P. sylvestris (y) 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 y = 0.35x + 0.73 R 2 = 0.35 0.0 5.0 10.0 15.0 20.0 moss bag (x) Pl.schreberi (y) 12.0 10.0 8.0 6.0 4.0 2.0 y = 0.78x + 2.10 R 2 = 0.15 0.0 0.0 2.0 4.0 6.0 8.0 10.0 B. pendula (x) Pl. schreberi (y) 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0 y = 0.68x + 2.07 R 2 = 0.33 0.0 5.0 10.0 15.0 20.0 moss bag (x) B. pendula (y) 10.0 8.0 6.0 4.0 2.0 y = 0.30x + 0.61 R 2 = 0.26 0.0 0.0 5.0 10.0 15.0 20.0 moss bag (x) Fig. 3. Relationships between arsenic content in examined bioindicators (linear regression functions and coefficients of determination R 2 ) Fig. 3. Zależność między zawartością arsenu w poszczególnych biowskaźnikach (funkcja regresji liniowej i współczynnik determinacji R 2 ) 398 12

Evaluation of the arsenic environmental pollution on the basis of different bioindicative... Table 3. Correlation coefficients between content of arsenic in various bioindicators. Tabela 3. Wartość współczynnika korelacji między zawartością arsenu w różnych biowskaźnikach Moss bag B. pendula P. sylvestris B. pendula 0.51 P. sylvestris 0.59 0.73 Pl. schreberi 0.58 0.39 0.72 All correlations are significant at P<0.05 Dendrogram 40 Nearest Neighbor Method,Squared Euclidean 30 Distance 20 10 0 moss bag B. pendula P. sylvestris Pl. schreberi Fig. Fig. 4. 4. Dendrogram based on cluster analysis analysis for for arsenic arsenic content content in various in various bioindicators bioindicators Rys. Rys. 4. 4. Dendrogram na na podstawie analizy skupień skupień zawartości zawartości arsenu arsenu w różnych w różnych biowskaźnikach biowskaźnikach dendrogram presenting results of cluster analysis the branch for moss bag method joins with other branches at the highest distance. Arsenic content in moss bag was lower than in Pl. schreberi but higher than in B. pendula and P. silvestris, but the regression functions indicate that in more polluted areas moss bag method content of arsenic is much higher than in other methods, while in less polluted areas the differences are low (Fig. 3). 5. CONCLUSIONS 1. The region of Olkusz, and especially the surroundings of the lead and zinc foundry in Bukowno, should be considered as extremely strongly contaminated with arsenic. 2. Despite application of various methods and the resulting diversity of the specific exposure periods of different bioindicators, the spatial distribution of environmental ar- 399

Wojciech Dmuchowski i in. senic contamination, shown on the maps, was similar, as confirmed by the statistical analysis of results. 3. Mean levels of arsenic content in four bioindicators were rather different but correlations between the arsenic contents were quite strong. The strongest correlation was between content of arsenic in B. pendula and P. sylvestris. 4. Regression equations make possible the comparison of various data of arsenic contamination as evaluated by one or more of the examined bioindication methods. 5. The bioindication methods, because of the possibility of collecting data at a large number of points, enable presentation of results in the form of maps of heavy metals depositions, with the isoquants illustrating environmental pollution, in a manner that is intuitive and understandable for everyone. Acknowledgement.: The work was supported by grant MNiSW agreement 3689/B/ P01/2010/38. REFERENCES ALLEN S.E., GRISHAW H.M., PARKINSON J.A., QUARMBY C. 1974. Chemical Analysis of Ecological Materials. Blackwell Scientific Publications, Osney Mead, Oxford. CHILVERS D.C., PETERSON P.J. 1987. Global Cycling of Arsenic. In: Hutchinson T.C., MEEMA K.M. (eds) Lead, mercury, cadmium and arsenic in the environment. John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore: 279 301. CHMIELEWSKI W., DMUCHOWSKI W., GWOREK B. 1993. Wykorzystanie metody moss- -bag w lokalnym biomonitoringu zanieczyszczenia powietrza metalami ciężkimi. Prądnik, Prace i materiały Muzeum im. Prof. Władysława Szafera 7 8: 181 185. CHMIELEWSKI W., DMUCHOWSKI W. 1999. Ocena rozprzestrzeniania się zanieczyszczenia powietrza metalami ciężkimi na obszarze gminy Warszawa-Bielany. Sprawozdanie z badań. Ogród Botaniczny-CZRB PAN (manuscript). DANIEL L., LOREE P., WHITENER A. 2002. Inside Mapinfo Professional. On World Press, Albany. DMOWSKI K, BADUREK M. 2002. Thallium contamination of selected plants and fungi in the vicinity of the Bolesław zinc smelter in Bukowno (S. Poland). Preliminary Study. Acta Biologica Cracoviensia Series Botanica 44: 57 61. DMUCHOWSKI W., BYTNEROWICZ A. 1995. Biomonitoring of the environmental pollution in Poland using chemical analysis of Scots pine (Pinus silvestris L.) needles. Environ. Pollut. 87: 87 104. DMUCHOWSKI W. 2000. Zanieczyszczenie środowiska w województwie katowickim określone na podstawie analizy chemicznej liści brzozy brodawkowatej. In: Kurczyńska E. (ed.) Zanieczyszczenie środowiska a anatomiczne i komórkowe podstawy zrzucania organów u drzew. Sprawozdanie z badań grant KBN (manuscript). 400

Evaluation of the arsenic environmental pollution on the basis of different bioindicative... DMUCHOWSKI W. 2005. Use of plant bioindicators in assessment of environmental contamination with heavy metals. Reports of The Botanical Garden of The Polish Academy of Sciences, Series: Monographs and treatises 7: 1 116. ENVIRONMENTAL DATA REPORT 1989/90. United Nation Environment Programme. Blackwell, Oxford. EVERITT B.S., LANDAU S., LEESE M. 2001. Cluster analysis. Arnold, London. GALSOMIÈS L., AYRAULT S., CARROT F., DESCHAMPS C., LETROUIT-GALINOU M.A. 2003. Interspecies calibration in mosses at regional scale-heavy metal and trace elements results from Ile-de France. Atmos. Environ. 37: 241 251. GODZIK B. 1993. Heavy metals content in plants from zinc dumps and reference areas. Polish Bot. Stud. 5: 113 132. GOODMAN G.T., ROBERTS T.M. 1971. Plants and soil as indicators of metals in the air. Nature 231(4): 287 292. GRODZIŃSKA K., SZAREK-ŁUKASZEWSKA G., GODZIK B., BRANIEWSKI ST., BUDZIA- KOWSKA E., CHRZANOWSKA E., PAWŁOWSKA B., ZIELONKA T. 1997. Ocena skażenia środowiska Polski metalami ciężkimi przy użyciu mchów jako biowskaźników. Państwowa Inspekcja Ochrony Środowiska, Biblioteka Monitoringu Środowiska, Warszawa. GRODZIŃSKA K., FRONTASYEVA M., SZAREK-ŁUKASZEWSKA G., KLICH M., KUCHARSKA-FABIŚ A., GUNDORINA S.F., OSTROVNAYA T.M. 2003. Trace element contamination in industrial regions of Poland studied by moss monitoring. Environmental Monitoring and Assessment 87: 255 270. KABATA PENDIAS A., PENDIAS H. 1999. Biogeochemia pierwiastków śladowych. Wydawnictwo Naukowe PWN, Warszawa MOLSKI B, DMUCHOWSKI W. 1990. The Comparison of Environmental Pollution in Northern Finland near Kevo and in Poland with the use of Pinus sylvestris L. as bioindicator. Rep. Kevo Subarctic Res. Stat. 21: 27 30. PERKIN ELMER. 1990. Analytical methods for atomic absorption spectrophotometry. Bodenseewerk, Pub. B 353, 233 PETERSON P.J., GIRLING C.A. 1981. Rother trace metals. In: Lepp N. W. (ed.) Effect of heavy metal pollution on plants. Effect of trace metals on plant function. Department of Biology, Liverpool Polytechnic, Liverpool: 213 278. REIMANN C., KOLLER F., KASHULINA G., NISKAVAARA H., ENGLMAIER P. 2001. Influence of extreme pollution on the inorganic chemical composition of some plants. Environ. Pollut. 115: 239 252. RÜHLING Å., RASMUSSEN, PILEGAARD K., MÄKINEN A., STEINNES E. 1987. Survey of atmospheric heavy metal deposition in the Nordic countries in 1985 -monitored by moss analyses. NORD: 21. SOKAL R.R., ROHLF F.J. 1995. Biometry: the principles and practice of statistics in biological research. W.H. Freeman and company, New York: 887. 401

Wojciech Dmuchowski i in. STEINNES E., LUKINA N., NIKONOV V., AAMLID D., ROYSET O. 2000. A gradient study of 34 elements in the vicinity of a copper-nickel smelter in the Kola Peninsula. Environ. Moni. Assess. 60: 71 88. SUCHAROVÁ J., SUCHARA I. 1998. Biomonitoring of the atmospheric deposition of metals and sulphur compounds using moss analysis in the Czech Republic. Result of the international biomonitoring programme 1995. Res. Inst. of Ornamental Gardering, Průhonice: 1 183. 402