FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Agric., Aliment., Pisc., Zootech. 2014, 312(31),

Podobne dokumenty
Has the heat wave frequency or intensity changed in Poland since 1950?

SPITSBERGEN HORNSUND

MULTI-MODEL PROJECTION OF TEMPERATURE EXTREMES IN POLAND IN

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

Analiza jakości powietrza atmosferycznego w Warszawie ocena skutków zdrowotnych

SPITSBERGEN HORNSUND

Country fact sheet. Noise in Europe overview of policy-related data. Poland


SPITSBERGEN HORNSUND

THE DAY TO DAY VARIABILITY OF AIR TEMPERATURE IN CRACOW AND ITS SURROUNDINGS

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

ACTA UNIVERSITATIS LODZIENSIS FOLIA GEOGRAPHICA PHYSICA 3, Joanna. Wibig PRECIPITATION IN ŁÓDŹ IN THE PERIOD

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

Fizyka Procesów Klimatycznych Wykład 11 Aktualne zmiany klimatu: atmosfera, hydrosfera, kriosfera

SPITSBERGEN HORNSUND

Application of Cluster Analysis in Defining the Meteorological Conditions Shaping the Variability of PM10 Concentration

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

Wprowadzenie. Małgorzata KLENIEWSKA. nawet już przy stosunkowo niewielkim stężeniu tego gazu w powietrzu atmosferycznym.

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

Zmienność stężenia gazowych zanieczyszczeń powietrza na obszarze pozamiejskim Niziny Szczecińskiej w zależności

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

WARUNKI METEOROLOGICZNE KSZTAŁTUJĄCE ZMIENNOŚĆ STĘśENIA PYŁU ZAWIESZONEGO NA POMORZU. Małgorzata Czarnecka, Robert Kalbarczyk

Małgorzata CZARNECKA, Jadwiga NIDZGORSKA-LENCEWICZ, Kacper RAWICKI

ZMIENNOŚĆ STĘŻENIA DITLENKU SIARKI I DITLENKU AZOTU NA POMORZU W ZALEŻNOŚCI OD WARUNKÓW METEOROLOGICZNYCH

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

SPITSBERGEN HORNSUND

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Agric., Aliment., Pisc., Zootech. 2017, 334(42)2,

Katedra Meteorologii i Klimatologii, Akademia Rolnicza w Szczecinie Department of Meteorology and Climatology, Agricultural University in Szczecin

Evaluation of relationship between air pollutant concentration and meteorological elements in winter months

Patients price acceptance SELECTED FINDINGS

ACTA UNIVERSITATIS LODZIENSIS WIELOLETNIA ZMIENNOŚĆ LICZBY DNI Z OPADEM W KRAKOWIE

Faculty of Meteorology and Climatology, University of Warmia-Mazury ul. Plac Łódzki 1, Olsztyn

Gdański Uniwersytet Medyczny Wydział Nauk o Zdrowiu z Oddziałem Pielęgniarstwa i Instytutem Medycyny Morskiej i Tropikalnej. Beata Wieczorek-Wójcik

SPITSBERGEN HORNSUND

Instructions for student teams

SPITSBERGEN HORNSUND

ACTA UNIVERSITATIS LODZIENSIS

CHARAKTERYSTYKA WARUNKÓW METEOROLOGICZNYCH W REJONIE DOŚWIADCZEŃ ŁĄKOWYCH W FALENTACH

NORMALNE SUMY OPADÓW ATMOSFERYCZNYCH W WYBRANYCH STACJACH LUBELSZCZYZNY. Szczepan Mrugała

Institute of Meteorology and Water Management, Wroclaw Branch PP 10. Wrocław, June 2007

DŁUGOTRWAŁOŚĆ WYSTĘPOWANIA MAS POWIETRZNYCH W POLSCE POŁUDNIOWEJ ( ) Duration of air mass occurrence in Southern Poland ( )

Exposure assessment of mercury emissions

GLOBAL METHANE INITIATIVE PARTNERSHIP-WIDE MEETING Kraków, Poland

Warunki termiczne Rolniczej Stacji Doświadczalnej w Zawadach Thermal conditions at the Experimental Farm in Zawady

Cracow University of Economics Poland

Tychy, plan miasta: Skala 1: (Polish Edition)

SPITSBERGEN HORNSUND

KATOWICE SPECIAL ECONOMIC ZONE GLIWICE SUBZONE and its influence on local economy KATOWICE SPECIAL ECONOMIC ZONE - GLIWICE SUBZONE

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

SPITSBERGEN HORNSUND

Zarządzanie sieciami telekomunikacyjnymi

SPITSBERGEN HORNSUND

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Agric., Aliment., Pisc., Zootech. 2014, 312(31),

TENDENCJE ZMIAN TEMPERATURY POWIETRZA W POLSCE. Tendencies of air temperature changes in Poland

INFLUENCE OF CIRCULATION TYPES ON THE SO 2 CONCENTRATION IN THE SILESIAN UPLAND

Metale ciężkie w glebach uprawnych jako możliwy czynnik zagrożenia zdrowia mieszkańców województwa śląskiego

Mikroklimat Zamku Czorsztyn *

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Charakterystyka kliniczna chorych na raka jelita grubego

ACTA UNIVERSITATIS LODZIENSIS. Jerzy Skrzypski

Forested areas in Cracow ( ) evaluation of changes based on satellite images 1 / 31 O

Ekonomiczne i społeczno-demograficzne czynniki zgonów osób w wieku produkcyjnym w Polsce w latach

ZMIANY STĘŻENIA DWUTLENKU SIARKI W POWIETRZU ATMOSFERYCZNYM W ZALEŻNOŚCI OD TEMPERATURY

MIDDLE POMERANIAN SCIENTIFIC SOCIETY OF THE ENVIRONMENT PROTECTION ŚRODKOWO-POMORSKIE TOWARZYSTWO NAUKOWE OCHRONY ŚRODOWISKA

The landscape dimension of green infrastructure for urban areas in Central Europe

Analiza epidemiologiczna występowania i uwarunkowań pylicy górników kopalń węgla kamiennego w województwie śląskim w latach

INSTITUTE OF METEOROLOGY AND WATER MANAGEMENT NATIONAL RESEARCH INSTITUTE

Financial support for start-uppres. Where to get money? - Equity. - Credit. - Local Labor Office - Six times the national average wage (22000 zł)

SPITSBERGEN HORNSUND

EKSTREMALNE WARUNKI TERMICZNE W LATACH W POLSCE PÓŁNOCNO-WSCHODNIEJ. Krystyna Grabowska, Monika Panfil, Ewelina Olba-Zięty

Lek. Ewelina Anna Dziedzic. Wpływ niedoboru witaminy D3 na stopień zaawansowania miażdżycy tętnic wieńcowych.

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

SPITSBERGEN HORNSUND

No matter how much you have, it matters how much you need

ZMIENNOŚĆ EKSTREMALNEJ TEMPERATURY POWIETRZA W REJONIE BYDGOSZCZY W LATACH

ACTA UNIVERSITATIS LODZIENSIS

PRIMARY AND SECONDARY RESIDENTIAL REAL ESTATE MARKETS IN POLAND ANALOGIES IN OFFER AND TRANSACTION PRICE DEVELOPMENT

Akademia Morska w Szczecinie. Wydział Mechaniczny

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Krytyczne czynniki sukcesu w zarządzaniu projektami

Instytut Geografii / Institute of Geography Uniwersytet Pedagogiczny w Krakowie / Pedagogical University of Cracow. Karviná, May 2014

Zagrożenie powodziowe na obszarach zurbanizowanych w dolnym biegu Odry

MATERIAŁ I METODA. S t S

Pomiary hydrometryczne w zlewni rzek

POMIAR BIOKONCENTRACJI ZANIECZYSZCZEŃ W OCENIE SKAŻENIA ŚRODOWISKA, NARAŻENIA ORGANIZMÓW ORAZ PROGNOZOWANIU EKOLOGICZNYCH EFEKTÓW ZANIECZYSZCZEŃ

Institutional Determinants of IncomeLevel Convergence in the European. Union: Are Institutions Responsible for Divergence Tendencies of Some

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA. mgr inż. Piotr Smurawski

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Agric., Aliment., Pisc., Zootech. 2018, 340(45)1, 65 76

TERMINY I CZĘSTOŚĆ WYSTĘPOWANIA ODWILŻY ATMOSFERYCZNYCH W OKOLICACH OLSZTYNA W LATACH

Changes in thermal and precipitation conditions in Poland in

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Transkrypt:

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Agric., Aliment., Pisc., Zootech. 2014, 312(31), 143 152 Kacper RAWICKI 1 VARIABILITY OF PARTICULATE MATTER CONCENTRATIONS IN POLAND IN THE WINTER 2012 / 2013 ZMIENNOŚĆ STĘŻENIA PYŁU ZAWIESZONEGO NA TERENIE POLSKI ZIMĄ NA PRZEŁOMIE 2012 I 2013 ROKU Institute of Technology and Life Sciences, West Pomeranian Research Centre in Szczecin, Poland Streszczenie. W okresie zimowym pogorszenie jakości powietrza na ogół związane jest z przekroczeniem norm przyjętych dla pyłu zawieszonego; epizody smogowe prawie zawsze są następstwem zwiększonej emisji spowodowanej spadkiem temperatury powietrza i występują w naszym kraju prawie każdej zimy. Oceniono w pracy zmienność imisji pyłu w powiązaniu z temperaturą powietrza w okresie kalendarzowej zimy od grudnia 2012 r. do lutego 2013 r. w głównych miastach Polski. Analizą objęto godzinne i dobowe stężenia obu frakcji pyłu zawieszonego, PM10 i PM2,5 zarejestrowanych w 25 stacjach. Stężenie PM10 przekraczające dobową normę (50 µg m 3 ) stwierdzono w południowych rejonach kraju aż w 70% dni analizowanego sezonu zimowego, przy czym najwięcej w grudniu 2012 r. W tym miesiącu w większości stacji odnotowano także maksymalne dobowe wartości imisji. Wykazano, że zmienność warunków termicznych w analizowanym okresie miała statystycznie istotny wpływ na wielkość imisji pyłu PM2,5 i PM10 w powietrzu. Key words: air temperature, correlation analysis, daily standard, PM2.5, PM10. Słowa kluczowe: analiza korelacji, norma dobowa, PM2,5, PM10, temperatura powietrza. INTRODUCTION Despite gradual improvements in air quality, excessive values of particulate matter concentration, recorded particularly in urban stations, are still a problem in Poland (Majewski 2005). The problem of poor air quality is common both in small cities as well as large agglomerations in many European countries (Frans et al. 2008). Due to large amount of sources of emission natural as well as anthropogenic, particulate matter can vary in terms of its physical properties (i.e. the size and density of particles) as well as chemical composition (Querol et al. 2004). The most commonly monitored fractions of particulate matter are PM2.5 (diameter of particles below 2.5 µm) and PM10 (below 10 µm) (DirectiveI 2008). Smaller particles of particulate matter PM2.5, can be transported large distance and their concentrations in air can linger up to several weeks. PM2.5 is a dangerous pathogenic agent and in comparison with PM10 it penetrates deeper into respiratory system and settles in alveoli. Both particulate matter fractions (PM2.5 and PM10) contain mutagenic and cytotoxic substances, and pose significant threat not only to human health but also life (Kozłowska et al. 2011). Corresponding Author Adres do korespondencji: MSc Kacper Rawicki, Institute of Technology and Life Sciences, West Pomeranian Research Centre in Szczecin, Czesława 9, 71-504 Szczecin, Poland, e-mail: k.rawicki@itp.edu.pl

144 K. Rawicki Numerous papers show a marked increase in particulate matter pollution in winter seasons which coincides with increased heating processes resulting from the decrease in air temperature (Jóźwiak and Wróblewski 2002, Czarnecka and Kalbarczyk 2008). Apart from local and anthropogenic sources of emission, geographical conditions (i.e. land relief) and climatic conditions such as temperature, radiation, humidity, precipitation and air masses recirculation, have influence on the concentration on pollutants (Querol et al. 2004). Stationary combustion, the residential sector in particular, is among the main sources of PM10 initial emission in Poland (Czarnecka and Kalbarczyk 2008). Additionally, significant share of PM10 pollution results from an increased volume of vehicular traffic. Dusty and rarely cleaned cities as well as vehicular traffic cause increased secondary pollution of particulate matter (Majewski 2005; Lawrence et al. 2013). The aim of the research was to determine variability of PM2.5 and PM 10 concentration in major Polish cities in relation to air temperature during the calendar winter period from December 2012 to February 2013. MATERIALS AND METHODS The research is based on data concerning daily PM2.5 and PM10 concentration as well as air temperature obtained from the automatic monitoring stations of the Voivodeship Inspectorate of Environmental Protection. The analysis of variability of particulate matter concentration was based on data obtained from 25 measuring stations all of which are located within city limits. Due to lack of records concerning air temperature in Białystok and Nowy Sącz, data from 23 stations listed in Table 1 were used in the research. All measuring stations automatically record PM10 concentrations, however only 12 of them additionally measure PM2.5 concentration. The obtained values concerning concentration of particulate matter were compared with admissible values as specified in the Regulation of the Minister of Environment dated 24 August 2012 on levels of certain substances in air which specifies the standard level of admissible PM2.5 concentration as 25 µg m 3 per year to be obtained till 2015. However, the aforementioned Regulation does not specify the admissible daily concentration of PM2.5. The Regulation specifies the mean daily PM10 concentration as 50 µg m 3 and allows for excess of this standard lasting up to 35 days in a year (Regulation of the Minister of EnvironmentI 2012). The effect of temperature on PM2.5 and PM10 concentrations was determined with the use of correlation analysis in STATISTICA software at the level of significance α=0.01. The correlated variables were mean daily concentrations of particulate matter ad mean daily air temperature. RESULTS AND DISCUSSION In the analysed period (December 2012 February 2013) mean monthly PM2.5 concentration varied depending on location of the measuring station and ranged from 31 µg m 3 to 79 µg m 3. Monthly PM10 concentration of ranged from 27 µg m 3 to 105 µg m 3. The greatest variability of PM2.5 and PM10 concentration, expressed with standard deviation,

Variability of particulate matter 145 was recorded in the southern part of Poland Rybnik was characterized by the record high variability of PM10 concentration (over 113 µg m 3 ). High standard deviation (over 52 µg m 3 ) was also found for Kraków and Gliwice. Both fractions of particulate matter exhibited similar spatial distribution features in the south of Poland mean concentration recorded in the analysed period were at least two times (PM2.5) or even three times (PM10) higher than concentrations recorded in the other parts of the country. In the south of Poland, the cities of the Upper Silesian Industry Region and additionally Jelenia Góra, Kraków and Żywiec were characterised by particularly high concentrations of both fractions of particulate matter, whereas the smallest concentration of both fractions was recorded in Szczecin. The negative effect of high concentrations of particulate matter on human wellbeing and health is well-established by numerous research studies. The study on concentration of pollutants in air by Nidzgorska-Lencewicz and Mąkosza (2014) indicates the statistically significant relationship between high PM2.5 and PM10 concentrations and worsening of bioclimatic conditions. According to Tainio et al. (2010), high concentration of particulate matter recorded in Poland contributes to several thousand premature deaths a year. As can be seen from data presented in Fig. 1, maximum daily concentrations of particulate matter can be as high as over 300 µg m 3 (PM2.5) and over 700 µg m 3 (PM10) in the southern parts of Poland. [µg m 3 ] 400 350 300 250 200 150 100 50 December grudzień January styczeń February luty 737 0 Bydgoszcz Gliwice Jasło Katowice Kędzierzyn-Koźle Kielce Kraków Lublin Łódź Poznań Szczecin Warszawa Bydgoszcz Częstochowa Gliwice Gorzów Wlkp. Jasło Jelenia Góra Katowice Kędzierzyn-Koźle Kielce Kłodzko Kraków Lublin Łódź Olsztyn Płock Poznań Radom Rybnik Szczecin Szczecinek Warszawa Zabrze Żywiec PM2.5 PM10 Fig. 1. The maximum daily concentration of particulate matter In the period from December 2012 to February 2013 Ryc. 1. Maksymalne dobowe stężenie pyłu zawieszonego w okresie od grudnia 2012 r. do lutego 2013 r. The highest maximum daily concentration of PM2.5 and PM10 were recorded in December, particularly by the measuring stations located in Silesian Voivodeship. Daily PM2.5 concentration in Gliwice amounted to 358 µg m 3, and 294 µg m 3 in Katowice. Slightly lower concentration of pollutants (314 µg m 3 ) was recorded in Lesser Poland Voivodeship in Kraków. All-time high daily concentration of PM10 was recorded in Rybnik 737 µg m 3.

146 K. Rawicki High concentrations were also recorded in Gliwice 350 µg m 3 and Zabrze 378 µg m 3. Maximum daily particulate matter concentrations recorded in cities located in the central and northern part of Poland were generally around three times smaller than that recorded in cities in the south of Poland similarly to mean concentrations recorded during the analysed calendar winter. The excess of daily standard of PM10 concentration (50 µg m 3 ) was observed in approximately 10% of days in the northern part of Poland and as much as 70% of days in the southern regions of the country (Fig. 2). [%] December grudzień January styczeń February luty 100 90 80 70 60 50 40 30 20 10 0 Bydgoszcz Częstochowa Gliwice Gorzów Wlkp. Jasło Jelenia Góra Katowice Kędzierzyn- -Koźle Kielce Kłodzko Kraków Lublin Łódź Olsztyn Płock Poznań Radom Rybnik Szczecin Szczecinek Warszawa Zabrze Żywiec Fig. 2. Percentage of days with overnorm daily concentration of PM10 in period from December 2012 to February 2013 Ryc. 2. Procent dni z ponadnormatywnym dobowym stężeniem pyłu PM10 w okresie od grudnia 2012 r. do lutego 2013 r. The highest number of days with an excess of standard PM10 concentration was recorded in December 2012. Excessive values were recorded on almost all days of December (28 days) in Kraków, and in Rybnik, Jelenia Góra and Zabrze on 22 24 days. Considering the maximum admissible number of days on which the standard concentration values can be exceeded (up to 35 days in a year) it transpires that in some cities the standard was already exceeded in the two months of the analysed calendar winter January and February. In Gliwice, Katowice, Kędzierzyn-Koźle the daily standard was exceeded in 38 or 39 cases in the period of two months. According to the Institute of Meteorology and Water Management IMGW (Biuletyn... 2013), in terms of temperature the winter of 2012 / 2013 was within normal limits in the most part of Poland, and only in Masurian Lake District the winter can be described as frosty. However, in most regions of the country the temperature below standard was recorded in December, whereas in the eastern regions of Poland in February the mean monthly temperature was by 2 C higher than in the period 1971 2000. According to data recorded by urban measuring stations included in the analysis, mean seasonal temperature (December February) ranged from 3.9ºC in Zabrze to 0.5ºC in Poznań. Even though the analysed winter season was characterised by average thermal conditions, PM10 concentration was high in comparison with concentration recorded during winter periods characterised by extreme thermal conditions.

Variability of particulate matter 147 According to research by Czarnecka and Nidzgorska-Lencewicz (2011) in the winter of 2005 / 2006, which in the most part of Poland was characterised by temperature 5ºC lower than the average in the multi-year period, mean monthly PM10 concentration recorded in urban stations generally ranged from 50 µg m 3 do 150 µg m 3 slightly exceeding the concentration recorded in the analysed winter period and exhibiting similar spatial variation. In the winter of 2012 / 2013, PM2.5 and PM10 concentration recorded in all measuring stations indicate statistically significant relationship with variability of thermal conditions, and all correlation coefficients were significant at α = 0, 01 (Table 1). Table 1. The statistical characteristics of particulate matter variability depending on the air temperature Tabela 1. Charakterystyka statystyczna zmienności stężenia pyłu zawieszonego w zależności od temperatury powietrza The average seasonal air temperature Średnia sezonowa temperatura powietrza [ o C] the average seasonal concentration średnie stężenie sezonowe [µg m 3 ] PM2.5 standard deviation odchylenie standardowe [µg m 3 ] the correlation coefficient współczynnik korelacji the average seasonal concentration średnie stężenie sezonowe [µg m 3 ] PM10 standard deviation odchylenie standardowe [µg m 3 ] the correlation coefficient współczynnik korelacji Bydgoszcz 1.1 37 24.6 0.49 50 25.2 0.51 Częstochowa 2.3 33 27.4 0.51 Gliwice 1.3 74 52.8 0.53 82 53.2 0.49 Gorzów 3.6 57 34.2 0.59 Wielkopolski Jasło 1.3 52 32.1 0.61 54 48.5 0.61 Jelenia Góra 1.9 80 68.1 0.60 Katowice 1.6 69 47.9 0.59 75 48.1 0.56 Kędzierzyn- -Koźle 3.4 59 40.0 0.41 68 53.7 0.58 Kielce 2.4 49 29.5 0.53 47 32.4 0.50 Kłodzko 1.3 47 28.7 0.64 Kraków 1.7 79 52.3 0.45 81 50.6 0.46 Lublin 3.4 39 22.9 0.47 36 23.0 0.42 Łódź 2.9 46 24.8 0.62 41 23.1 0.56 Olsztyn 3.4 33 17.8 0.25 Płock 2.7 44 21.2 0.52 Poznań 0.5 44 27.6 0.52 52 31.5 0.52 Radom 1.9 54 23.7 0.60 Rybnik 1.8 105 113.1 0.50 Szczecin 0.4 31 22.5 0.54 27 19.1 0.49 Szczecinek 2.0 39 19.0 0.57 Warszawa 1.7 43 19.2 0.58 48 18.5 0.47 Zabrze 3.9 85 53.6 0.41 Żywiec 1.6 99 83.5 0.53 PM2.5 concentration not registered Brak rejestracji stężeń PM2,5. The increase in concentrations of particulate matter coincided with decrease in mean daily temperature illustrated by dispersion charts for selected stations (Fig. 3).

Gliwice Gliwice Air temperature Temperatura powietrza [ o C]: PM2,5: y = 63,6775 7,5995*x; r = -0,5245; p = 0,00000 Air temperature Temperatura powietrza [ o C]: PM10: y = 73,0033 7,1039*x; r = -0,4870; p = 0,00000 Air temperature Temperatura powietrza [ o C] Air temperature Temperatura powietrza [ o C] Kielce Kielce Air temperature Temperatura powietrza [ o C] Air temperature Temperatura powietrza [ o C] Szczecin Szczecin PM2,5 [µg m -3 ] PM2,5 [µg m -3 ] PM2,5 [µg m -3 ] Air temperature Temperatura powietrza [ o C] Air temperature Temperatura powietrza [ o C] Warszawa Warszawa PM2,5 [µg m -3 ] PM10 [µg m -3 ] PM10 [µg m -3 ] PM10 [µg m -3 ] PM10 [µg m -3 ] Air temperature Temperatura powietrza [ o C]: PM2,5: y = 39,0104 4,2215*x; r = -0,5339; p = 0,00000 Air temperature Temperatura powietrza [ o C]: PM10: y = 37,0308 4,3043*x; r = -0,4956; p = 0,00000 Air temperature Temperatura powietrza [ o C]: PM2,5: y = 33,8021 3,0887*x; r = -0,5433; p = 0,00000 Air temperature Temperatura powietrza [ o C]: PM10: y = 28,4655 2,4915*x; r = -0,4887; p = 0,00000 Air temperature Temperatura powietrza [ o C]: PM2,5: y = 38,2668 2,4856*x; r = -0,5761; p = 0,00000 Air temperature Temperatura powietrza [ o C]: PM10: y = 44,8434 1,9333*x; r = -0,4692; p = 0,00000 Air temperature Temperatura powietrza [ o C] Air temperature Temperatura powietrza [ o C] Fig. 3. The dispersion plots of the concentration of PM2.5 and PM10 air temperature Ryc. 3. Wykresy rozrzutu zależności stężenia PM2,5 i PM10 od temperatury powietrza

Variability of particulate matter 149 The relationship between PM10 concentration and air temperature was expressed by correlation coefficients which in most stations ranged from 0.41 to 0.64. The relationship between PM2.5 concentration and temperature is less pronounced as the correlation coefficients ranged from 0.41 to 0.62. However, in some stations the influence of temperature was more pronounced in case of PM2.5 concentration than PM10 concentration for example in Łódź or Szczecin. The strongest correlation between particulate matter concentration and air temperature was found in two mountainous basins in the Sudetes, in Jelenia Góra and Kłodzko as well as in Jasło and Radom. The relationship between the increase in concentration of both fractions of particulate matter and decrease in temperature is strongly connected with domestic emission. Decrease in temperature in the conditions of anticyclonic weather brings about the increase of heating processes and consequently an increase of particulate matter emission resulting from the so-called low emission from local coal-burning heating plants and household furnaces fed with coal of poor quality. Importantly, local topographic conditions prevent pollution from spreading for example Jelenia Góra, Kłodzko, Kraków. Numerous papers on the effect of air temperature on concentration and other meteorological elements on particulate matter show that the relationship is strong. According to the analysis of yearly PM10 measurements in urban background station by Grivas et al. (2004), daily PM10 concentration is higher in the winter season in comparison with other seasons in a year which is attributed to the use of traditional heating methods. Similarly, according to research conducted in the Netherlands by van der Wal and Janssen (2000), in the conditions of temperature decrease during winter season the concentration of PM10 can increase and be two times higher than that recorded in a year. Numerous authors point to the fact that PM10 concentration is to a greater extent determined by meteorological conditions than by changes in intensity of emission from natural and anthropogenic sources. Some research take into condsieration the influence of other meteorological elements on the variability of particulate matter concentration, namely Czarnecka and Kalbarczyk (2008) argue that in the Pomeranian region frequency of precipitation has a stronger influence on concentration of pollutants than air temperature. RECAPITULATION The analysis confirmed statistically significant effect of air temperature on variability and frequency of excessive particulate matter concentrations in the winter of 2012 / 2013 which was characterised by average conditions in terms of temperature. Even in the standard winter conditions, excessive PM10 concentration (50 µg m 3 ) was recorded all over the country in the northern part on approximately 10 days of the calendar winter, whereas in the southern part the share reached 70% of the calendar winter period. The highest frequency of both the standard being exceeded and maximum daily particulate matter concentration was recorded in December 2012. The highest maximum daily PM10 concentration was recorded in Rybnik 737 µg m 3, and for PM2.5 in Gliwice 358 µg m 3.

150 K. Rawicki REFERENCES Biuletyn Państwowej Służby Hydrologiczno-Meteorologicznej [Bulletin of the National Hydrological and Meteorological Service]. 2013. 13(137). [in Polish] Czarnecka M., Kalbarczyk R. 2008. Warunki meteorologiczne kształtujące zmienność stężenia pyłu zawieszonego na Pomorzu [Weather conditions determining variability of suspended particulate matter concentration in Pomerania]. Acta Agrophys. 11(2), 357 368. [in Polish] Czarnecka M., Nidzgorska-Lencewicz J. 2011. Impact of weather conditions on Winter and summer air quality. Internat. Agrophys. 25, 7 12. Dyrektywa Parlamentu Europejskiego i Rady 2008/50/WE z dnia 21 maja 2008 r. w sprawie jakości powietrza i czystszego powietrza dla Europy. DzU UE 11.06.2008, L 152/1. [in Polish] Frans K., Olofson G., Andersson P.U., Hallquist M., Ljungstrom E., Tang L., Chen Deliang, Pettersson J.B.C. 2008. Urban aerosol evolution and particle formation during wintertime temperature inversions. Atmosph. Environ. 43, 340 346. Grivas G., Chaloulakou A., Samara C., Spyrellis N. 2004. Spatial and Temporal Variation of PM10 mass concentrations within the greater area of Athens, Greece. Water Air. Soil Pollut. 158, 357 371. Jóźwiak M., Wróblewski H. 2002. Dynamika pyłu zawieszonego na tle wybranych parametrów meteorologicznych na Stacji Monitoringu AŚ w okresie 1996 2000. Reg. Monitor. Środ. Przyr. KTN Kielce 3, 87 102. [in Polish] Kozłowska A., Olewińska E., Kowalska-Pawlak A., Pawlas N. 2011. Obecność zanieczyszczeń mutagennych i cytotoksycznych we frakcji PM10 i PM2,5 aerozolu atmosferycznego na terenie miasta Sosnowca [Mutagenic and cytotoxic factors in PM10 and 2.5 fractions in atmosphere in Sosnowiec]. Med. Środ. 14(4), 21 33. [in Polish] Lawrence S., Sokhi R., Ravindra K., Mao H., Douglas Prain H., Bull I.D. 2013. Source apportionment of traffic emissions of particulate matter using tunnel measurements. Atmosph. Environ. 77, 548 557. Majewski G. 2005. Zanieczyszczenie powietrza pyłem zawieszonym PM10 na Ursynowie i jego związek z warunkami meteorologicznymi [The particulate matter PM10 air pollution in Ursynów and its correlation with meteorological conditions]. Prz. Nauk., Ser. Inż. Kształt. Środ. 1(31), 210 223. [in Polish] Nidzgorska-Lencewicz J., Mąkosza A. 2014. Assessment of bioclimatic conditions within the area of Szczecin agglomeration. Meteorolog. Zeitschr. 22(5), 615 626. Rozporządzenie Ministra Środowiska z dnia 24 sierpnia 2012 r. w sprawie poziomów niektórych substancji w powietrzu. DzU 2012, poz. 1031. [in Polish] Tainio M., Kukkonen J., Nahorski Z. 2010. Impact of airborne particulate matter on human health: an assessment framework to estimate exposure and adverse health effects in Poland. Arch. Environ. Protect. 36(1), 29 39. Van der Wal J.T., Janssen L.H.J.M. 2000. Analysis of spatial and temporal variations of PM10 concentrations in the Netherlands using Kalman filtering. [b.w.]. Querol X., Alastuey A., Ruiz C.R., Artinano B., Hansson H.C., Harrison R.M., Buringh E., Brink H.M., Lutz M., Bruckmann P., Straehl P., Schneider J. 2004. Speciation and origin of PM10 and PM2,5 in selected European cities. Atmosph. Environ. 38, 6547 6555. Abstract. Deterioration of air quality in winter is generally associated with exceeding the accepted norms for particulate matter, and smog episodes are almost always the consequence of increased emission caused by decrease in air temperature and occur almost every winter in Poland. The fundamental aim of this work was to evaluate the variability of dust immission in connection with air temperature during the calendar winter from December 2012 to February 2013 in major Polish cities. The analysis included hourly and daily concentrations of both fractions of particulate matter, PM10 and PM2.5 recorded at 25 stations. Concentrations

Variability of particulate matter 151 of PM10 which exceed the daily norm (50 µg m 3 ) were recorded in the southern parts of the country in 70% of the days of the analysed winter season most in December 2012. In the same month the maximum daily values of concentration of pollutants were recorded in most of the stations. It has been shown that the variability of thermal conditions in the analysed period had a statistically significant effect on concentration of PM2.5 and PM10 in ambient air.