Density functional theory and energy density functionals in nuclear physics



Podobne dokumenty
Strangeness in nuclei and neutron stars: many-body forces and the hyperon puzzle

Few-fermion thermometry

Model standardowy i stabilność próżni

Do nuclei assume toroidal shapes?

SEMINARIUM FIZYKI JĄDRA ATOMOWEGO Warszawa, r.

Symmetry and Geometry of Generalized Higgs Sectors

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Eksperymenty reaktorowe drugiej generacji wyznaczenie ϑ 13

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Tychy, plan miasta: Skala 1: (Polish Edition)

Electromagnetism Q =) E I =) B E B. ! Q! I B t =) E E t =) B. 05/06/2018 Physics 0

Lecture 18 Review for Exam 1

Hard-Margin Support Vector Machines

Revenue Maximization. Sept. 25, 2018

The impact of the global gravity field models on the orbit determination of LAGEOS satellites

Sargent Opens Sonairte Farmers' Market

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Inverse problems - Introduction - Probabilistic approach

European Crime Prevention Award (ECPA) Annex I - new version 2014

Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH

OpenPoland.net API Documentation

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Helena Boguta, klasa 8W, rok szkolny 2018/2019

deep learning for NLP (5 lectures)

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

HOW MASSIVE ARE PROTOPLANETARY/ PLANET HOSTING/PLANET FORMING DISCS?

Knovel Math: Jakość produktu

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

The Overview of Civilian Applications of Airborne SAR Systems

Convolution semigroups with linear Jacobi parameters

q fermions or bosons drawn from static random distribution

Ankiety Nowe funkcje! Pomoc Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students

Prices and Volumes on the Stock Market

Text. (Some) wrap up. 1) KS SCE what it does right for models in physics (lattice hamiltonians?) serious limitations (hopeless) for chemistry

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Country fact sheet. Noise in Europe overview of policy-related data. Poland

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Effective Governance of Education at the Local Level

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

Życie za granicą Studia

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Vacuum decay rate in the standard model and beyond

Has the heat wave frequency or intensity changed in Poland since 1950?

THEORETICAL STUDIES ON CHEMICAL SHIFTS OF 3,6 DIIODO 9 ETHYL 9H CARBAZOLE

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Standardized Test Practice

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Immigration Studying. Studying - University. Stating that you want to enroll. Stating that you want to apply for a course.

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Pierwsza obserwacja kompletu regul wyboru przejść gamma W pasmach chiralnych 126 Cs

DODATKOWE ĆWICZENIA EGZAMINACYJNE

Relaxation of the Cosmological Constant

ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL

No matter how much you have, it matters how much you need

Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2)

Cracow University of Economics Poland

Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)

Zarządzanie sieciami telekomunikacyjnymi

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Website review pureorganic.pl

Unit of Social Gerontology, Institute of Labour and Social Studies ageing and its consequences for society

Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytet Mikołaja Kopernika w Toruniu

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

DOI: / /32/37

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Gradient Coding using the Stochastic Block Model

Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

Website review auto-web.pl

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

Testy jednostkowe - zastosowanie oprogramowania JUNIT 4.0 Zofia Kruczkiewicz

Strategic planning. Jolanta Żyśko University of Physical Education in Warsaw

Stargard Szczecinski i okolice (Polish Edition)

OPBOX ver USB 2.0 Mini Ultrasonic Box with Integrated Pulser and Receiver

Rev Źródło:

17-18 września 2016 Spółka Limited w UK. Jako Wehikuł Inwestycyjny. Marek Niedźwiedź. InvestCamp 2016 PL

Ankiety Nowe funkcje! Pomoc Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to teachers

Wprowadzenie do programu RapidMiner, część 5 Michał Bereta

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

CEE 111/211 Agenda Feb 17

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

THE RATE OF GW CAPTURE OF STELLAR-MASS BHS IN NUCLEAR STAR CLUSTERS. Alexander Rasskazov & Bence Kocsis Eotvos University

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

Walyeldeen Godah Małgorzata Szelachowska Jan Kryński. Instytut Geodezji i Kartografii (IGiK), Warszawa Centrum Geodezji i Geodynamiki

Tytuł pracy w języku angielskim: Physical properties of liquid crystal mixtures of chiral and achiral compounds for use in LCDs

Instructions for student teams

Fixtures LED HEDRION

Blow-Up: Photographs in the Time of Tumult; Black and White Photography Festival Zakopane Warszawa 2002 / Powiekszenie: Fotografie w czasach zgielku

Please fill in the questionnaire below. Each person who was involved in (parts of) the project can respond.

Transkrypt:

Density functional theory and energy density functionals in nuclear physics University of Warsaw & University of Jyväskylä The 9th CNS-EFES International Summer School 18-24 August 2010 Center for Nuclear Study University of Tokyo in RIKEN

Reading material: :2004 RIA Summer School http://www.fuw.edu.pl/~dobaczew/ria.summer.lectures/slajd01.html :2005 Ecole Doctorale de Physique, Strasbourg http://www.fuw.edu.pl/~dobaczew/strasbourg/slajd01.html Witek Nazarewicz:2007 Lectures at the University of Knoxville http://www.phys.utk.edu/witek/np622/nuclphys622.html : 2008 the 18th Jyväskylä Summer School http://www.fuw.edu.pl/~dobaczew/jss18/jss18.html : 2008 Euroschool on Exotic Beams http://www.fuw.edu.pl/~dobaczew/euroschool/euroschool.html : 2008 Lectures at University of Jyväskylä http://www.fuw.edu.pl/~dobaczew/fysn305/fysn305.html : 2009 Lectures at University of Stellenbosch http://www.fuw.edu.pl/~dobaczew/stellenbosch/dobaczewski_lecture.pdf Home page: http://www.fuw.edu.pl/~dobaczew/

Energy scales in nuclear physics Nuclear Structure G. Bertsch et al., SciDAC Review 6, 42 (2007)

Universal Nuclear Energy Density Functional UNEDF Collaboration, http://unedf.org/

Mean-Field Theory Density Functional Theory Nuclear DFT two fermi liquids self-bound superfluid mean-field one-body densities zero-range local densities finite-range gradient terms particle-hole and pairing channels Has been extremely successful. A broken-symmetry generalized product state does surprisingly good job for nuclei.

763 654 245 Price of land in Poland per voivodship 842 446 631 580 356 647 548 490 549 623 295 287 362 Price voivodship functional Energy density functional

Price of land in Poland per district Price district functional Energy density functional

Price of land in Eurpe per country Price country functional Energy density functional

What is DFT? Density Functional Theory: A variational method that uses observables as variational parameters.

Which DFT?

What is the DFT good for? Energy E is a function(al) of Q 1) Exact: Minimization of E(Q) gives the exact E and exact Q 2) Impractical: Derivation of E(Q) requires the full variation (bigger effort than to find the exact ground state) 3) Inspirational: Can we build useful models E (Q) of the exact E(Q)? 4) Experiment-driven: E (Q) works better or worse depending on the physical input used to build it.

Nuclear Energy Density Functionals

How the nuclear EDF is built? LDA Gogny, M3Y, Local energy density is a function of local density Non-local energy density is a function of non-local density

How the nuclear EDF is built? Skyrme, BCP, point-coupling, RMF (Hartree) Quasi-local energy density is a function of local densities and gradients Non-local energy density is a function of local densities

R.B. Wiringa & UNEDF Collaboration Neutrons in external Woods-Saxon well

Hohenberg-Kohn theorem

Hohenberg-Kohn theorem (trivial version)

Nuclear Energy Density Functional (physical insight)

Effective Theories

Hydrogen atom perturbed near the center Relative errors in the S- wave binding energies are plotted versus: (i) the binding energy for the Coulomb theory (ii) the Coulomb theory augmented with a delta function in first-order perturbation theory (iii) the non-perturbative effective theory through a 2, and (iv) the effective theory through a 4.

Dimensional analysis - regularization

Dimensional analysis the hydrogen-like atom

Emission of long electromagnetic waves

Emission of long electromagnetic waves

Blue-sky problem - Compton scattering

N 3 LO in the chiral perturbation effective field theory W.C. Haxton, Phys. Rev. C77, 034005 (2008)

EFT phase-shift analysis np phase parameters below 300 MeV lab. energy for partial waves with J=0,1,2. The solid line is the result at N 3 LO. The dotted and dashed lines are the phase shifts at NLO and NNLO, respectively, as obtained by Epelbaum et al. The solid dots show the Nijmegen multi-energy np phase shift analysis and the open circles are the VPI single-energy np analysis SM99. D.R. Entem and R. MachleidtPhys.Rev. C68 (2003) 041001

Many-fermion Hilbert space

Indistinguishability principle

Fock space

Creation and annihilation operators

Operators in the Fock space

n-n versus O 2 -O 2 interaction O 2 O 2 d n d n O 2 -O 2 potential (mev) 50 40 30 20 10 0-10 n-n potential (MeV) 500 400 300 200 100 0-100 n-n system (1S 0 ) O -O system 2 2 0 1 2 3 n-n distance (fm) 0 0.4 0.8 1.2 O 2-O 2 distance (nm)

http://www.phy.anl.gov/theory/research/forces.html

Lessons learned 1) Energy density functional exists due to the two-step variational method and gives exact ground state energy and its exact particle density. 2) Whenever the energy scales (or range scales) between the interactions and observations are different, the observations can be described by a series of pseudopotentials with coupling constants adjusted to data (an effective theory).

Density-matrix expansion

Density matrices and Wick theorem

Coulomb force the direct self-consistent potential

Coulomb force the exchange self-consistent potential

B. Gebremariam et al., Phys. Rev. C82, 014305 (2010) Particle and spin densities in 208 Pb (R,r) s(r,r)

J. D., B.G Carlsson, M. Kortelainen, J. Phys. G 37, 075106 (2010) Density-matrix expansion (Negele-Vautherin) (or do we need the non-local density) Nonlocal energy density

Nuclear densities as composite fields Particle density (fm -3 ) 100 Sn 0.10 (n) (p) 0.05 0.00 0 2 4 6 8 R (fm) (n) 100 Zn (p) 2 4 6 8 10 Modern Mean-Field Theory Energy Density Functional,, J, j, T, s, F, Hohenberg-Kohn Kohn-Sham Negele-Vautherin Landau-Migdal Nilsson-Strutinsky mean field one-body densities zero range local densities finite range non-local densities

Density-matrix expansion (2) Local energy density

Density-matrix expansion (3)

Density-matrix expansion (4) Local energy density

Density-matrix expansion (6) 1.0 0.5 0.0 0 O(4) 0 0 Gauss 2 O(2) 2 2 Gauss Infinite-matter 0 (a) & 2 (a) J. D., B.G Carlsson, M. Kortelainen, J. Phys. G 37, 075106 (2010) 0 5 10 15 20 a = k F r

Exchange interaction energy in infinite matter

Lessons learned 1) Energy density functional exists due to the two-step variational method and gives exact ground state energy and its exact particle density. 2) Whenever the energy scales (or range scales) between the interactions and observations are different, the observations can be described by a series of pseudopotentials with coupling constants adjusted to data (an effective theory). 3) In nuclei, the non-local energy density functionals can be replaced by the local ones. This is because the range of the interaction is shorter than the range of variations in the local and non-local density matrix.

Density-matrix expansion (5)

J. Dobaczewski et al., J. Phys. G: 37, 075106 (2010) Negele-Vautherin density-matrix expansion

J. Dobaczewski et al., J. Phys. G: 37, 075106 (2010) Negele-Vautherin density-matrix expansion

J. Dobaczewski et al., J. Phys. G: 37, 075106 (2010) Negele-Vautherin density-matrix expansion

Density-matrix expansion and the Skyrme force

Negele-Vautherin density-matrix expansion Based on the Negele-Vautherin density-matrix expansion, we have derived the NLO Skyrme-functional parameters corresponding to the finite-range Gogny interaction. The method has been extended to derive the coupling constants of local N 3 LO functionals J. Dobaczewski et al., J. Phys. G: 37, 075106 (2010)

J. Dobaczewski et al., J. Phys. G: 37, 075106 (2010) Negele-Vautherin density-matrix expansion

Proton RMS radius R p (fm) 5 4 3 2 1 Quasi-local vs. non-local functionals The Negele-Vautherin density-matrix expansion (DME) up to NLO (2 nd order) applied to the Gogny non-local functional gives a Skyrme-like quasi-local functional. The results for self-consistent observables, obtained for both functionals are very similar. 56 Ni 48 Ca 40 Ca R p / A 1/3 (fm) 132 Sn 100 Sn 78 Ni 1.00 0.95 0.90 208 Pb 0 100 200 0 0 50 100 150 200 Number of nucleons A Binding Energy (MeV) quasi-local (Gogny+DME NLO) 1600 non-local (Gogny) 1200 800 400 56 Ni 48 Ca 40 Ca 100 Sn 78 Ni 132 Sn B / A (MeV) 8.5 8.0 208 Pb 0 100 200 0 0 50 100 150 200 Number of nucleons A J. Dobaczewski et al., J. Phys. G: 37, 075106 (2010)

Negele-Vautherin density-matrix expansion The quasi-local EDF derived from the finite-range force does not correspond to a zero-range force Open symbols show the results obtained directly by using the Negele- Vautherin DME, whereas the full symbols show the results inferred from the time-even sector by using the Gogny-equivalent Skyrme force. Solid and dashed lines (left and right panels) show the values of the isoscalar and isovector coupling constants, respectively. J. Dobaczewski et al., J. Phys. G: 37, 075106 (2010)

Nuclear densities as composite fields

Local energy density: (no isospin, no pairing)

Nuclear Energy Density Functional

Complete local energy density E. Perlińska, et al., Phys. Rev. C69 (2004) 014316 Mean field Pairing

Mean-field equations

Lessons learned 1) Energy density functional exists due to the two-step variational method and gives exact ground state energy and its exact particle density. 2) Whenever the energy scales (or range scales) between the interactions and observations are different, the observations can be described by a series of pseudopotentials with coupling constants adjusted to data (an effective theory). 3) In nuclei, the non-local energy density functionals can be replaced by the local ones. This is because the range of the interaction is shorter than the range of variations in the local and non-local density matrix. 4) Systematic energy density functionals with derivative corrections can be constructed and the resulting self-consistent equations solved.

Applications

Phenomenological effective interactions

Proton Number 100 80 60 40 20 0 < -0.2-0.2-0.1 SLy4 volume pairing N=Z -0.1 +0.1 +0.1 +0.2 +0.2 +0.3 +0.3 +0.4 0 20 40 60 80 100 120 140 160 180 Neutron Number N=2Z deformation Theory > +0.4 M.V. Stoitsov, et al., Phys. Rev. C68, 054312 (2003)

J.-P. Delaroche et al., Phys. Rev. C81, 014303 (2010) Gogny D1S

Nuclear binding energies (masses) 2149 masses RMS = 798 kev The first Gogny HFB mass model. An explicit and selfconsistent account of all the quadrupole correlation energies are included within the 5D collective Hamiltonian approach. S. Goriely et al., Phys. Rev. Lett. 102, 242501 (2009) 2149 masses RMS = 581 kev The new Skyrme HFB nuclear-mass model, in which the contact-pairing force is constructed from microscopic pairing gaps of symmetric nuclear matter and neutron matter. S. Goriely et al., Phys. Rev. Lett. 102, 152503 (2009)

First 2 + excitations of even-even nuclei 537 2 + energies 359 2 + energies Gogny HFB calculations plus the 5D collective Hamiltonian approach. J.-P. Delaroche et al., Phys. Rev. C81, 014303 (2010) Skyrme HF+BCS calculations plus the particle-number and angular-momentum projection and shape mixing. B. Sabbey et al., Phys. Rev. C75, 044305 (2007)

Spontaneous fission UNEDF collaboration: SciDAC Review 6, 42 (2007) Symmetry-unrestricted Skyrme HF+BCS calculations. A. Staszczak et al., Phys. Rev. C80, 014309 (2009)

M. Bender et al., Phys. Rev. C78, 024309 (2008) Collective states in even-even nuclei J.M. Yao et al., Phys. Rev. C81, 044311 (2010)

S. Péru et al., Phys. Rev. C77, 044313 (2008) J. Terasaki et al., arxiv:1006.0010 Giant resonances in deformed nuclei K. Yoshida et al., Phys. Rev. C78, 064316 (2008) 24 Mg 24 Mg 174 Yb

Fast RPA and QRPA + Arnoldi method J. Toivanen et al., Phys. Rev. C 81, 034312 (2010)

J. Toivanen et al., Phys. Rev. C 81, 034312 (2010) Fast RPA and QRPA + Arnoldi method 0 + 132 Sn 2 +

Removal of spurious modes e 2 fm 6 / MeV 1500 1000 500 0 Isoscalar 1 - strength functions standard RPA Arnoldi (spurious) Arnoldi 132 Sn 0 10 20 30 40 50 E [MeV] J. Toivanen et al., Phys. Rev. C 81, 034312 (2010)

QRPA timing Scaling properties Spherical QRPA+Arnoldi scales linearly with the size of the single-particle space Deformed QRPA+Arnoldi expected to scale quadratically, that is, as Standard QRPA scales quartically, that is, as Future plans: Full implementation and testing of the spherical QRPA + Arnoldi method in the code HOSPHE with new-generation separable pairing interactions. Systematic calculations of multipole giant-resonance modes to be used in the EDF adjustments. Deformed QRPA + Arnoldi method implemented in the code HFODD. Systematic calculations of -decay strengths functions and -delayed neutron emission probabilities to be used in the EDF adjustments.

Iterative methods to solve (Q)RPA Photoabsorption cross sections Theory Exp T. Inakura et al., Phys. Rev. C80, 044301 (2009) Finite-amplitude method to solve the QRPA equations.

Iterative methods to solve (Q)RPA Monopole resonance 132 Sn J. Toivanen et al., Phys. Rev. C81, 034312 (2010) Arnoldi method to solve the RPA equations.

Time-dependent solutions 8 Be collision (tip configuration) A.S. Umar et al., Phys. Rev. Lett. 104, 212503 (2010) Dipole oscillations in 14 Be protons neutrons UNEDF collaboration: Quantum Dynamics with TDSLDA, A. Bulgac, et al., http://www.phys.washington.edu/gr oups/qmbnt/index.html T. Nakatsukasa et al., Nucl. Phys. A788, 349 (2007)

Nuclear Energy Density Functional

RMS deviation of s.p. energies (MeV) Singular value 1.8 1.6 1.4 1.2 1.0 1 0.1 0.01 0.001 SLy5 SkP SkO' SIII (a) (b) 0 2 4 6 8 10 12 Number of singular value Fits of s.p. energies EXP: M.N. Schwierz, I. Wiedenhover, and A. Volya, arxiv:0709.3525 Singular value decomposition = M. Kortelainen et al., Phys. Rev. C77, 064307 (2008)

Fits of single-particle energies i - i exp i - i exp 20 15 10 5 0 20 15 10 5 0 SLy5 SLy5 (fit) (a) (e) SkP SkP (fit) (b) (f) SkO' SkO' (fit) -4-2 0 2 4-4 -2 0 2 4-4 -2 0 2 4-4 -2 0 2 4 (MeV) (MeV) (MeV) (MeV) (c) (g) SIII SIII (fit) M. Kortelainen et al., Phys. Rev. C77, 064307 (2008) (d) (h) Before After

Fit residuals for centroids of SO partners (SkP) Before After n n Before After L L M. Kortelainen et al., to be published

Fit residuals for splittings of SO partners (SkP) Before After n n Before After L L M. Kortelainen et al., to be published

How many parameters are really needed? Bertsch, Sabbey, and Uusnakki Phys. Rev. C71, 054311 (2005) Global (masses)

SciDAC 2 UNEDF Project (USA) http://www.unedf.org/ Building a Universal Nuclear Energy Density Functional Understand nuclear properties for element formation, for properties of stars, and for present and future energy and defense applications Scope is all nuclei, with particular interest in reliable calculations of unstable nuclei and in reactions Order of magnitude improvement over present capabilities Precision calculations Connected to the best microscopic physics Maximum predictive power with well-quantified uncertainties FIDIPRO Project (Finland) http://www.jyu.fi/accelerator/fidipro/

UNEDF Skyrme Functionals M. Kortelainen, et al., arxiv:1005.5145

UNEDF Skyrme Functionals M. Kortelainen, et al., arxiv:1005.5145

New functionals

Nuclear Energy Density Functional

B.G. Carlsson et al., Phys. Rev. C 78, 044326 (2008) Derivatives of higher order: Negele & Vautherin density matrix expansion

Energy density functional up to N 3 LO B.G. Carlsson et al., Phys. Rev. C 78, 044326 (2008)

Numbers of terms in the density functional up to N 3 LO Eq. (28) density dependent CC Eq. (30) density independent CC B.G. Carlsson et al., Phys. Rev. C 78, 044326 (2008)

B.G. Carlsson et al., Phys. Rev. C 78, 044326 (2008) Phys. Rev. C 81, 029904(E) (2010) Energy density functional for spherical nuclei (I)

Energy density functional for spherical nuclei (II) B.G. Carlsson et al., Phys. Rev. C 78, 044326 (2008) Phys. Rev. C 81, 029904(E) (2010)

Convergence of density-matrix expansions for nuclear interactions (the direct term) B.G. Calsson, J. Dobaczewski, arxiv:1003.2543

Convergence of density-matrix expansions for nuclear interactions (the exchange term) B.G. Calsson, J. Dobaczewski, arxiv:1003.2543

RMS deviation of s.p. energies (MeV) Singular value 1.8 1.6 1.4 1.2 1.0 0.8 0.6 1 0.1 0.01 0.001 SLy4 Fits of s.p. energies regression analysis EXP-1 EXO-2 EXP-1 (NM) EXP-2 (NM) 0 2 4 6 8 10 12 Number of singular value 2nd order NLO B.G. Carlsson et al., to be published EXP-1: M.N. Schwierz, I. Wiedenhover, and A. Volya, arxiv:0709.3525 EXP-2: M.G. Porquet et al., to be published NM: Nuclear-matter constraints on: saturation density energy per particle incompressibility effective mass

RMS deviation of s.p. energies (MeV) Singular value 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 1 0.1 0.01 0.001 SLy4 Fits of s.p. energies regression analysis EXP-1 EXP-2 EXP-1 (NM) EXP-2 (NM) (Galilean invariance) 0.0001 0 4 8 12 16 20 24 28 Number of singular value 4th order N 2 LO B.G. Carlsson et al., to be published EXP-1: M.N. Schwierz, I. Wiedenhover, and A. Volya, arxiv:0709.3525 EXP-2: M.G. Porquet et al., to be published NM: Nuclear-matter constraints on: saturation density energy per particle incompressibility effective mass

RMS deviation of s.p. energies (MeV) Singular value 1.6 1.2 0.8 0.4 0.0 1 0.1 0.01 0.001 Fits of s.p. energies regression analysis SLy4 EXP-1 EXP-2 EXP-1 (NM) EXP-2 (NM) (Galilean invariance) 6th order N 3 LO 0.0001 0 10 20 30 40 50 60 Number of singular value B.G. Carlsson et al., to be published EXP-1: M.N. Schwierz, I. Wiedenhover, and A. Volya, arxiv:0709.3525 EXP-2: M.G. Porquet et al., to be published NM: Nuclear-matter constraints on: saturation density energy per particle incompressibility effective mass Problem of instabilities unsolved yet M. Kortelainenand T. Lesinski J. Phys. G: Nucl. Part. Phys. 37 064039

Program HOSPHE Solution of selfconsistent equations for the N 3 LO nuclear energy density functional in spherical symmetry B.G. Carlsson et al., arxiv:0912.3230

HFODD HOSPHE Program HOSPHE Solution of selfconsistent equations for the N 3 LO nuclear energy density functional in spherical symmetry B.G. Carlsson et al., arxiv:0912.3230

Spontaneous symmetry breaking

Ammonia molecule NH 3 Nitrogen atom Hydrogen atom left state right state

Ammonia molecule NH 3 Symmetry-conserving configuration Total energy (a.u.) Symmetry-breaking configurations Distance of N from the H 3 plane (a.u.)

Skyrme-Hartree-Fock J. Dobaczewski, J. Engel, Phys. Rev. Lett. 94, 232502 (2005) Experiment R.G. Helmer et al., Nucl. Phys. A474 (1987) 77 J z =1/2 1/2-55 225 Ra 1/2+ 0

NH 3 225 Ra ratio T 1/2 (Q.M.) T 1/2 (E.M.) D 0.1 mev 6.6 ps 16 ks 0.76 e nm 55 kev 0.012 as ~5 ns ~0.1 e fm 1.8 10-9 5.5 10 8 3.2 10 12 7.6 10-6

Lessons learned 1) Energy density functional exists due to the two-step variational method and gives exact ground state energy and its exact particle density. 2) Whenever the energy scales (or range scales) between the interactions and observations are different, the observations can be described by a series of pseudopotentials with coupling constants adjusted to data (an effective theory). 3) In nuclei, the non-local energy density functionals can be replaced by the local ones. This is because the range of the interaction is shorter than the range of variations in the local and non-local density matrix. 4) Systematic energy density functionals with derivative corrections can be constructed and the resulting self-consistent equations solved. 5) In finite systems, the phenomenon of spontaneous symmetry breaking is best captured by the mean-field or energy-densityfunctional methods.

Nuclear deformation Symmetry-conserving configuration Total energy (a.u.) Symmetry-breaking configurations Elongation (a.u.)

Origins of nuclear deformation Single-particle energy (a.u.) Open-shell system: 8 particles on 8 doubly degenrate levels Elongation (a.u.)

Proton Number 100 80 60 40 20 0 < -0.2-0.2-0.1 SLy4 volume pairing N=Z -0.1 +0.1 +0.1 +0.2 +0.2 +0.3 +0.3 +0.4 0 20 40 60 80 100 120 140 160 180 Neutron Number N=2Z deformation Theory > +0.4 M.V. Stoitsov, et al., Phys. Rev. C68, 054312 (2003)

Tensor effects

B. Fornal, XXIX Mazurian Lakes Conference on Physics (2005) M.Honma et al., Eur. Phys. J. 25,s01 (2005) 499 B. Fornal et al., Phys. Rev. C 70, 064304 (2004) D.-C. Dinca et al., Phys. Rev. C 71, 041302 (2005)

E(2 + ) (MeV) 1.5 1.0 0.5 0.15 0.10 0.05 0.0 0.00 24 26 28 30 32 34 36 Neutron Number N A 22 Ti BE2(0 + 2 + ) (e 2 b 2 )

Evolution of the single particle orbitals with Z going from 28 to 20 Tensor Interaction V T = ( 2) Y (2 Z(r) B. Fornal, XXIX Mazurian Lakes Conference on Physics (2005) V couples j > and j < orbitals and favors charge exchange processes f 7/2 f 5/2 T. Otsuka et al. Phys. Rev. Lett 87, 082502 (2001)

Tensor-even, tensor-odd, and spin-orbit interactions where

Tensor energy densities For conserved spherical and time-reversal symmetries, averaged tensor and SO interactions give the following energy densities: where the particle and SO densities read

Single-particle spin-orbit potentials Variation of the energy densities with respect to the single-particle wave functions gives form factors of the single-particle spin-orbit potentials:

Neutron S-O Density J (R) [fm -4 ] n 0.015 0.010 0.005 0.000-0.005 N=28 N=38 0 2 4 6 8 R (fm) t e =200 Z=28 J. Dobaczewski, nucl-th/0604043

Neutron S-O Density J (R) [fm -4 ] n 0.015 0.010 0.005 0.000-0.005 0 2 4 6 8 R (fm) N=50 N=40 t e =200 Z=28 J. Dobaczewski, nucl-th/0604043

Neutron S-O Density J (R) [fm -4 ] n 0.015 0.010 0.005 0.000-0.005 N=28 N=50 N=38 N=40 0 2 4 6 8 R (fm) t e =200 Z=28 J. Dobaczewski, nucl-th/0604043

N (MeV) 0-10 -20-30 t e =0 N=32 N=28 N=20 HFB+SLy4 2s_1/2 1d_3/2 1d_5/2 2p_1/2 2p_3/2 1f_5/2 1f_7/2 J. Dobaczewski, nucl-th/0604043 30 20 Proton Number Z 10

10 6 2 1d 2p 1f 0 2s t e =0 N=32 1d -10 1d 2p -20-30 30 HFB+SLy4 20 Proton Number Z 10 2p 1f 1f cent (MeV) SO (MeV) J. Dobaczewski, nucl-th/0604043

10 6 2 1d 2p 1f 0 2s t e =-100 N=32 1d -10 1d 2p -20-30 30 HFB+SLy4 20 Proton Number Z 10 2p 1f 1f cent (MeV) SO (MeV) J. Dobaczewski, nucl-th/0604043

10 6 2 1d 2p 1f 0 2s t e =200 N=32 1d -10 1d 2p -20-30 30 HFB+SLy4 20 Proton Number Z 10 2p 1f 1f cent (MeV) SO (MeV) J. Dobaczewski, nucl-th/0604043

exp Polarization effects for neutron spin-orbit splitting M. Zalewski et al., Phys. Rev. C77, 024316 (2008)

Fits of C 0 J, C 0 J, and C 1 J SkP L M. Zalewski et al., Phys. Rev. C77, 024316 (2008)

M. Zalewski et al., Phys. Rev. C77, 024316 (2008) Fits of spin-orbit and tensor coupling constants

M. Zalewski et al., Phys. Rev. C77, 024316 (2008) SkP original SkP T Tensor + SO*0.8 132 Sn208Pb 56 Ni90Zr 16 O40Ca48Ca 56 Ni90Zr 132 Sn208Pb 16 O40Ca48Ca 8 6 4 2 7 6 5 4 3 2 1 Spin-orbit splittings [MeV] SkP SkP T n n d 5/2 -d 3/2 p 3/2 -p 1/2 p d 5/2 -d 3/2 p 3/2 -p 1/2 p f 7/2 -f 5/2 f 7/2 -f 5/2 1g 1h 1i 2g 1g 1h

M. Zalewski et al., Phys. Rev. C77, 024316 (2008) SkO original SkO T Tensor + SO*0.8 132 Sn208Pb 8 6 4 2 7 6 5 4 3 2 1 Spin-orbit splittings [MeV] n n SkO SkO T d 5/2 -d 3/2 p 3/2 -p 1/2 p d 5/2 -d 3/2 p 3/2 -p 1/2 p f 7/2 -f 5/2 1g 1h 1i 2g 1g 1h 56 Ni90Zr f 7/2 -f 5/2 56 Ni90Zr 132 Sn208Pb 16 O40Ca48Ca 16 O40Ca48Ca

Challenges

Collectivity beyond mean field, ground-state correlations, shape coexistence, symmetry restoration, projection on good quantum numbers, configuration interaction, generator coordinate method, multi-reference DFT, etc. True for mean field

Extensions I. Range separation and exact long-range effects II. Derivatives of higher order: III. Products of more than two densities:

Lessons learned 1) Energy density functional exists due to the two-step variational method and gives exact ground state energy and its exact particle density. 2) Whenever the energy scales (or range scales) between the interactions and observations are different, the observations can be described by a series of pseudopotentials with coupling constants adjusted to data (an effective theory). 3) In nuclei, the non-local energy density functionals can be replaced by the local ones. This is because the range of the interaction is shorter than the range of variations in the local and non-local density matrix. 4) Systematic energy density functionals with derivative corrections can be constructed and the resulting self-consistent equations solved. 5) In finite systems, the phenomenon of spontaneous symmetry breaking is best captured by the mean-field or energy-density-functional methods. 6) Energy density functionals up to the second order in derivatives (Skyrme functionals) provide for a fair but not very precise description of global properties of nuclear ground states.

Thank you