AN ANALYSIS OF FUEL CONSUMPTION BY A LORRY WITH THE COMPRESSION IGNITION DYNAMIC CHARGED ENGINE

Podobne dokumenty
Tychy, plan miasta: Skala 1: (Polish Edition)

ANALYSIS OF TRACTION CHARACTERISTICS OF THE MOTOR CAR FIAT PANDA EQUIPPED WITH A V MULTIJET ENGINE

Stargard Szczecinski i okolice (Polish Edition)


Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

TRACTION QUALITIES OF A MOTOR CAR FIAT PANDA EQUIPPED WITH A V MULTIJET ENGINE


Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Akademia Morska w Szczecinie. Wydział Mechaniczny

Revenue Maximization. Sept. 25, 2018

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

Effect of high-speed traction gearbox ratio on vehicle fuel consumption

Biogas buses of Scania

The Overview of Civilian Applications of Airborne SAR Systems

Patients price acceptance SELECTED FINDINGS

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 5(109)/2016

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)


Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE

Hard-Margin Support Vector Machines

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA. mgr inż. Piotr Smurawski

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

ROZPRAWA DOKTORSKA. Model obliczeniowy ogrzewań mikroprzewodowych

XXIII Konferencja Naukowa POJAZDY SZYNOWE 2018

WENTYLATORY PROMIENIOWE SINGLE-INLET DRUM BĘBNOWE JEDNOSTRUMIENIOWE CENTRIFUGAL FAN

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

PROCEEDINGS OF THE INSTITUTE OF VEHICLES 2(106)/2016 (12 pt)

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

PERSPEKTYWY ZRÓWNOWAŻONEGO ROZWOJU TRANSPORTU DROGOWEGO W POLSCE DO 2030 ROKU

Cracow University of Economics Poland

ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL


ROZPRAWY NR 128. Stanis³aw Mroziñski


Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Medical electronics part 10 Physiological transducers

Tablice zmiennej treści Variable message boards UOPG6. Power of supply: Enclosure: Colour (Chrominance): Beam width: Luminance: Luminance ratio:

SELECTION OF LUBRICATING OIL AIMED AT REDUCTION OF IC ENGINE FRICTION LOSSES

NAWIERZCHNIACH DROGOWYCH

Arca. Design: Ronald Straubel

NIESTACJONARNY PRZEPŁYW CIEPŁA W TŁOKU DOŁADOWANEGO SILNIKA Z ZAPŁONEM SAMOCZYNNYM

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

CEE 111/211 Agenda Feb 17

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

CATALOGUE CARD LEO S L XL / BMS KARTA KATALOGOWA LEO S L XL / BMS

Helena Boguta, klasa 8W, rok szkolny 2018/2019

DOI: / /32/37


TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

Has the heat wave frequency or intensity changed in Poland since 1950?

FUNCTIONAL AGRIMOTOR TESTING SUPPLIED BY THE VEGETABLE ORIGIN FUELS BADANIE FUNKCJONALNE SILNIKA ROLNICZEGO ZASILANEGO PALIWAMI POCHODZENIA ROŚLINNEGO

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

OpenPoland.net API Documentation

Theoretical analysis of cooperation of a turbocharger with a sequentially turbocharged engine

Knovel Math: Jakość produktu

Euro Oil & Fuel Biokomponenty w paliwach do silników Diesla wpływ na emisję i starzenie oleju silnikowego

EPS. Erasmus Policy Statement

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

Streszczenie rozprawy doktorskiej

RWD-25 model kartonowy w skali 1:33

OPTYMALIZACJA PUBLICZNEGO TRANSPORTU ZBIOROWEGO W GMINIE ŚRODA WIELKOPOLSKA

European Crime Prevention Award (ECPA) Annex I - new version 2014

Rys. 2. Kolejne etapy pracy łopatek kierownicy turbiny (opis w tekście) Fig. 2. Successive stages of guide apparatus blades running

The analysis of the energy demand for heating and cooling of the house built on the basis of the traditional Canadian wood-frame construction

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 1(92)/2013

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

ZGŁOSZENIE WSPÓLNEGO POLSKO -. PROJEKTU NA LATA: APPLICATION FOR A JOINT POLISH -... PROJECT FOR THE YEARS:.

ACTIVE. Design: Grzegorz Olech

Krytyczne czynniki sukcesu w zarządzaniu projektami

OCENA ZUŻYCIA PALIWA PRZEZ SILNIK O ZAPŁONIE SAMOCZYNNYM PRZY ZASILANIU WYBRANYMI PALIWAMI

Test sprawdzający znajomość języka angielskiego

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

LED WASHER 30x3W WHITE IP65 F

Simulation method of operating parameters assessment used for engine comparative analysis

Badanie oporu toczenia opon do samochodów osobowych na różnych nawierzchniach

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ


deep learning for NLP (5 lectures)

January 1st, Canvas Prints including Stretching. What We Use

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

WPŁYW STANU TECHNICZNEGO I REGULACJI SILNIKÓW WYSOKOPRĘŻNYCH NA ŚRODOWISKO NATURALNE

Prices and Volumes on the Stock Market

Strategic planning. Jolanta Żyśko University of Physical Education in Warsaw

ELECTRIC AND MAGNETIC FIELDS NEAR NEW POWER TRANSMISSION LINES POLA ELEKTRYCZNE I MAGNETYCZNE WOKÓŁ NOWYCH LINII ELEKTROENERGETYCZNYCH

G14L LPG toroidal tank

4. EKSPLOATACJA UKŁADU NAPĘD ZWROTNICOWY ROZJAZD. DEFINICJA SIŁ W UKŁADZIE Siła nastawcza Siła trzymania

BLACKLIGHT SPOT 400W F

Transkrypt:

TEKA Kom. Mot. Energ. Roln. OL PAN, 2008, 8a, 118 125 AN ANALYSIS OF FUEL CONSUMPTION BY A LORRY WITH THE COMPRESSION IGNITION DYNAMIC CHARGED ENGINE Maciej Lisowski Department of Automotive Vehicles Operations, Szczecin University of Technology, Piastów Av. 19, 70-310 Szczecin, Poland, e-mail: mlisowski@ps.pl Summary. The article presents tests results over the influence of dynamic charge on the volume of fuel consumption by a lorry /car/. Besides, some of the tests results are discussed regarding dynamic charge of the engine SW-680. The traction profiles have been made of mileage fuel consumption. The usefulness of such type of tests for making analyses of influence of construction changes on car properties has been proved. Key words: fuel consumption, dynamic charge, rotary moment, movement resistance. INTRODUCTION In the last period of time a fast increase of oil prices has been observed resulting in the growing price of fuel. The increasing tendency of fuel prices cannot be avoided because of continuously diminishing reserves of the oil and using it as an instrument of political pressure. Because of these reasons, the constructors efforts are acting in two directions: the first is to use alternative fuels such as fuels of vegetable origin, hydrogen, electrical energy etc., the second direction is to lower the fuel consumption. The use of alternative fuels is pretty inconvenient, because of significant differences in physical and chemical properties /characteristics/ in relation to oil-derivative fuels, however in the country as well as abroad some successes are noticed in that field. Lowering the fuel consumption can be reached by the organisation improvement of combustion process and increasing the general efficiency of the engine. One of the methods of effectiveness improvement of engine work is charging. Presently, the most popular charging is with the use of turbo-compressor complex, making use of fumes /exhaust gas/ energy for powering turbine, which subsequently powers compressor. The use of turbo-charging allows reaching this same power from the engine with lower cubic capacity. An engine with lower cubic capacity will use less fuel [1,7,8,15,20]. Another way of charging is dynamic charge, which is using vibration of the pillar /stud/ charge in approaching line. The system of dynamic charge doesn t ensure such spectacular results as turbo-charge, however it is used as a way of influence on the profile of engine moment. Well, the

AN ANALYSIS OF FUEL CONSUMPTION BY A LORRY 119 proper selection of the engine s approaching system ensures occuring /the presence of/ the charge effect in specific range of crankshaft s rotary speed of the engine, which allows to fit the engine to the character of car work. Proper adjustment of the engine to the character of car work will result, among other things, in lower fuel consumption in the area of general profile in which the engine works the most often [3,7,8]. Considerations regarding the fuel consumption are not giving in any case the ultimate results. This is caused by car work in different, most often impossible for repetition, conditions. Because of that the necessity of elaboration of different, applicable tests arose, simulating different conditions. The applicable tests are carried out in chassis of engine test house in conditions more or less different from the real ones. However, the results obtained in road measurements link to specific conditions of work and they cannot be compared with the results received in other conditions. A lot of factors influence the fuel consumption by the car. They have been presented in Fig. 1 as a system of driver car environment [18]. As you can see those factors are closely tied with each other, it means, that any change of any factor will influence the amount of fuel consumption. Route ENVIRONMENT DRIVER movement resistance Driving process V(t ) Cargo Car condition Car nominal parameters CAR Distance Fuel properties FUEL CONSUMPTION Movement resistance Movement energy need Drivetrain efficiency Fig 1. Connection diagram of the factors which have an influence on fuel consumption by the car [18] It is obvious, that fuel consumption by the car will be influenced, to a large degree, by the level of fuel consumption by the engine. It is determined with the help of hourly and unitary fuel consumption. At the moment we are dealing with certain discrepancy of expectations of cars and engines constructors. For the constructor of combustion engine the most important is the level of unitary fuel consumption, which is the measure of engine efficiency, however for the constructor of a car and for its user the most crucial will be how much of fuel the engine uses per a definite distance [2,9,12,18,19]. During those types of considerations we should keep in mind, that the

120 Maciej Lisowski lowest mileage fuel consumption does not appear during the engine work with the lowest unitary fuel consumption [2]. SIMULATION TESTS ON FUEL CONSUMPTION For initial assessment of fuel consumption by a car, perfectly fit are different kinds of simulation tests based on a theoretical analysis of fuel consumption by the car in such conditions in which the car will most often work [3,7,8]. According to the opinion of the author, a good tool for simulation of fuel consumption in any motion /movement/ conditions is the traction profile of fuel consumption. The traction profile presents the relationship of driving power on wheels Pk as a function of linear speed V of the vehicle. From the traction profile the balance conditions of driving powers on individual transmission ratios and movement resistance can be read [2,9,18,19]. Classical traction profile is determined for driving powers on wheels with regard to rotary moment of the engine working with maximum dose of fuel. With the use of classical traction profile it will not be possible to make a readout of fuel consumption by the car. To be able to do that, an isoline of mileage fuel consumption should be plotted on traction profile. For making the profile of mileage fuel consumption by the car the loading profiles of the engine will be used, from which proper values of rotary moment should be read out as well as adequate to that moment values of hourly fuel consumption. The values of the moment will be converted to driving power on wheels according to the relationship [2,9,18,19]: M s m ic Pk [N], rd where: Ms rotary moment of the engine [Nm], δ coefficient of power loss under the mask ηm mechanical efficiency of driving system, ic total shift, rd dynamical wheel radius. The values of hourly fuel consumption will be converted to the mileage fuel consumption with definite linear speed of the vehicle according to the following relationship [2,9,18,19]: 100 Gh Q [dm 3 /100 km], p V where: Gh hourly fuel consumption [kg/h], γp density of the fuel [kg/dm3] V linear speed of the car [km/h]. The author used such units on purpose, because they are commonly used, and consequently, the interpretation of research results will be easier and and better comparable. In order to link the fuel consumption to driving conditions, the lines of the sum of rolling resistance will be plotted on the profile, air and raising calculated based on the following relationship [2,18,19]: M op 0 2 W t W p rd f 1 0,0005 v where: Wt rolling resistance [N], Wp rolling resistance [N], i c t Gc 0,613 c i c x F v 2 r d,

AN ANALYSIS OF FUEL CONSUMPTION BY A LORRY 121 r d dynamical radius of the wheel [m], i c = ibigizw total transmission ratio as a product of transmission ratios of gearbox, main transmission and reduction gear, f t 0 resistance coefficient of base rolling, v speed of the vehicle [m/s], c x undimensional /dimensionless/ coefficient of air resistance (shape s coefficient) G c total weight of the vehicle [N], F front area [m2]. TESTS RESULTS The object of the engine test house was an engine with spontaneous ignition of SW-680 type. That kind of engine was used in Jelcz lorries, buses and agricultural and building machines. The tested engine was equipped with dynamic charge system with single approaching line [6,10,11,12,13,15,16,17,20]. The tested charging system made it possible to change the length of the approaching lines. During tests a lot of external profiles have been made for the following lengths of approaching line Ld: 643, 693, 743, 793, 843, 893, 943, 993, 1043, 1093, 1143, 1193, 1243 and1293 mm. Based on an analysis of the received results the following lengths have been chosen for future tests and analysis: 743, 843 and 1143 mm. For those lengths the partial and loading profiles have been made. 45000 40000 35000 30000 Pk1 20 15 250 300 350 400 450 140 160 180 200 220 80 90 100 110 120 40 50 60 70 80 30 Pk [N] 25000 20000 Pk2 10 35 40 45 50 25 30 35 40 45 [dm3/100km] 15000 Pk3 5 10000 5000 Pk4 Pk5 Wt+Wp Pk6 0 0 20 40 60 80 100 120 V [km/h] Fig 2. Traction profile of mileage fuel consumption for the engine with the length of approaching line of 743 mm

122 Maciej Lisowski Based on loading profiles the traction profiles of mileage fuel consumption have been made. The simulation tests assumed that the total weight of the car was Gc = 200000 [N], the rest of the parameters describing vehicles (dynamical wheel radius, total transmission ratio, mechanical efficiency of driving system, width and height of the vehicle) were taken from technical profile of Jelcz 317 lorry[10,11,12,13]. The outcomes of the simulation are presented in Fig. 2, 3, 4. As it can be seen in Fig. 2 the maximum driving power on wheels comes to 44000 Nm. That kind of power makes it possible to overcome the hills with the slopes slightly above 20% with the use of the fuel approximately 450 dm3/100 km. The lowest fuel consumption at which it is still possible, to cause the movement /motion/ of the lorry with the speed of 70 km/h comes to 35 dm3/100 km, using sixth gear. The maximum speed of a lorry, reached on fifth gear comes to 90 km/h with the fuel consumption of 50 dm3/100 km. On sixth gear, a slightly lower speed can be reached of 87 km/h with the fuel consumption on the level of 45 dm3/100 km. P[N] 45000 40000 35000 30000 25000 20000 20 15 10 250 280 300 350 380 420 P1 120 138 154 170 186 202 P2 65 73 81 90 99 109 P3 40 46 52 58 64 70 P4 28 32 36 40 44 48 P5 23 26 29 32 35 38 P6 [dm3/100km] 15000 10000 5 5000 Wt+Wp 0 0 20 40 60 80 100 120 V[km/h] Fig. 3. Traction profile for mileage fuel consumption for the engine with the length of approaching line of 843 mm For the length of approaching line of 843 mm drawing 3 maximum driving power on wheels comes to 45000 N. Maximum hill which can be overcome also exceed slightly 20% with the fuel consumption of 430 dm3/100 km, a little bit less then than in previous case. Maximum speed of the lorry /car/ comes to a bit more than 90 km/h on fifth gear with the fuel consumption on the level of 50 dm3/100 km. On the sixth gear the car is reaching the speed of 88 km/h with the fuel consumption of 41 dm3/100 km. The lowest fuel consumption coming to 30 dm3/100 km makes it possible to drive a car with the speed of 70 km/h on sixth gear.

AN ANALYSIS OF FUEL CONSUMPTION BY A LORRY 123 P[N] 45000 40000 35000 30000 25000 20000 20 15 10 250 280 300 350 380 420 P1 120 138 154 170 186 202 P2 65 73 81 90 99 109 P3 40 46 52 58 64 70 P4 28 32 36 40 44 48 P5 23 26 29 32 35 38 P6 15000 10000 5 5000 Wt+Wp 0 0 20 40 60 80 100 120 V[km/h] Fig. 4. Traction profile for mileage fuel consumption for the engine with the length of approaching line of 1143 mm For the length of approaching line of 1143 mm the maximum driving power on wheels comes to approximately 44000 N and makes it possible to drive on hills with the slope slightly exceeding 20%, using first gear. The car will be consuming then over 420 dm3/100 km of fuel. Maximum speed of the vehicle is reached on the fifth gear and comes to 87 km/h with the fuel consumption of 48 dm3/100 km. On the sixth gear the speed will slightly drop (85 km/h) with fuel consumption of 40 dm3/100 km. Movement of the vehicle with the speed of 70 km/h is possible on sixth gear with the fuel consumption of 29 dm3/100 km. CONCLUSIONS Based on the presented results of the analysis, the following conclusions can be formulated: the lowest fuel consumption characterised the car equipped with the engine with the length of approaching line equal to 1143mm, the lowest ability to overcome hills had a car with the engine with the length of approaching line equal to 843 mm, a dynamic charge has a slight influence on the level of fuel consumption by a car. It should be mentioned here, that an influence of dynamic charge imperceptibly influences the fuel consumption, however in a sufficient way influences the course of rotary moment lines,

124 Maciej Lisowski which enables its adjustment to the character of executed work. Besides, in the engine tests house has not been performed any adjustment of the injected fuel. The conducted analysis showed usefulness of such type of simulation tests in order to determine the work parameters of a car in different conditions. An additional advantage of those tests is the possibility of a relatively easy analysis of an influence of the introduced construction changes on the properties of the vehicle. REFERENCES Bernhardt M., Dobrzyński S., Loth E.: Silniki samochodowe. WKiŁ, Warszawa 1988. Dębicki M.: Teoria samochodu. Teoria napędu. Wydanie trzecie, WNT, Warszawa1976. Cichy M.: Nowe teoretyczne ujęcie charakterystyki gęstości czasowej. Silniki Spalinowe nr 2-3/1986. Fritsch J. Kiy B.P.: Der neue Opel Vectra. ATZ, 9/1995. Gardyński L., Kiernicki Z.: Wpływ zastosowania silnika wysokoprężnego na właściwości trakcyjne samochodu terenowego UAZ-469B. Teka Komisji Motoryzacji i Energetyki Rolnictwa, PAN oddział w Lublinie, Lublin 2001. Kordziński Cz.: Układy dolotowe silników spalinowych, WKiŁ, Warszawa 1968. Kowalczyk M., Kozak W., Wisłocki K., Jaskuła A.: Zastosowanie modelu eksploatacji w numerycznej optymalizacji parametrów silnika i pojazdu. Materiały seminaryjne, Eksploatacja silników samochodowych. Szczecin, czerwiec 1991. Kowalczyk M., Kozak W., Wisłocki K., Jaskuła A.: Warunki pracy silnika spalinowego jako podstawa doboru turbosprężarki. Silniki Spalinowe nr 1/1886. Lanzendoerfer J., Szczepaniak C.: Teoria ruchu samochodu. WKŁ, Warszawa 1980. Lisowski M.: Wpływ długości przewodu dolotowego na przebieg momentu obrotowego silnika SW- 680 i właściwości trakcyjne samochodu Jelcz 317. Archiwum Motoryzacji 4, 2003. Lisowski M.: Dynamic supercharging of the compression ignition engines SW-680 and 359 engines// Teka Komisji Motoryzacji i Energetyki Rolnictwa/PAN Oddział w Lublinie. T. 2 (2002). Lisowski M.: Analysis of dynamic supercharge influence on economical engine work indexes. Teka Komisji Motoryzacji I Energetyki Rolnictwa PAN oddział w Lublinie, Tom VIII, Lublin 2008. Lisowski M.: Ocena parametrów pracy silnika trakcyjnego SW 680 doładowanego systemem kombinowanym// W: KONES: 21st International Scientific Conference on Combustion Engines Warszawa: 1995 // Journal of KONES Internal Combustion Engines. Vol. 2, S. 313-318Warszawa Poznań, 5-8 September 1995 Mysłowski J.: Praca doktorska. Wpływ bezwładności wirnika turbodoładowarki na zdolność przyspieszania silnika wysokoprężnego z wtryskiem bezpośrednim. Szczecin-Łódź 1971. Mysłowski J.: Doładowanie silników. WKiŁ, Warszawa 2002. Sobieszczański M., Nowakowski J., Praszkiewicz T.: Wpływ zjawisk dynamicznych w układzie dolotowym na przebieg napełnienia cylindra. Materiały konferencyjne KONES`96, Zakopane 1996. Sułek M.: Doładowanie dynamiczne silników samochodowych. Auto Technika Motoryzacyjna, 10/1993. Siłka W.: Energochłonność ruchu samochodu. Wydawnictwa Naukowo-Techniczne, Warszawa 1997. SiłkaW.: Teoria ruchu samochodu. Wydawnictwa Naukowo-Techniczne, Warszawa 2002

AN ANALYSIS OF FUEL CONSUMPTION BY A LORRY 125 Wisłocki K.: Systemy doładowania szybkoobrotowych silników spalinowych. WKiŁ, Warszawa 1991. ANALIZA ZUŻYCIA PALIWA PRZEZ SAMOCHÓD CIĘŻAROWY Z SILNIKIEM O ZS DOŁADOWANYM DYNAMICZNIE Streszczenie. W artykule przedstawiono wyniki badań nad wpływem doładowania dynamicznego na wielkość zużycia paliwa przez samochód. Podano niektóre wyniki badań dotyczących doładowania dynamicznego silnika SW-680. Wykonano charakterystyki trakcyjne przebiegowego zużycia paliwa. Wykazano przydatność tego typu badań do dokonywania analiz wpływu zmian konstrukcyjnych na właściwości samochodu. Słowa kluczowe: zużycie paliwa, doładowanie dynamiczne, moment obrotowy, opory ruchu.