Elektrotechnika II stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)

Podobne dokumenty
kierunkowy (podstawowy / kierunkowy / inny HES) nieobowiązkowy (obowiązkowy / nieobowiązkowy) język polski VII semestr letni (semestr zimowy / letni)

kierunkowy (podstawowy / kierunkowy / inny HES) nieobowiązkowy (obowiązkowy / nieobowiązkowy) język polski VI semestr letni (semestr zimowy / letni)

E-E2A-2017-s2. Elektrotechnika II stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)

kierunkowy (podstawowy / kierunkowy / inny HES) nieobowiązkowy (obowiązkowy / nieobowiązkowy) język polski III semestr letni (semestr zimowy / letni)

dr inż. Jan Staszak kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) język polski I

kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) język polski VII semestr zimowy (semestr zimowy / letni)

kierunkowy (podstawowy / kierunkowy / inny HES) nieobowiązkowy (obowiązkowy / nieobowiązkowy) język polski VII semestr zimowy (semestr zimowy / letni)

kierunkowy (podstawowy / kierunkowy / inny HES) nieobowiązkowy (obowiązkowy / nieobowiązkowy) język polski VII semestr zimowy (semestr zimowy / letni)

dr inż. Jan Staszak kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) język polski I

dr inż. Jan Staszak kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) język polski II

E2_PA Podstawy automatyki Bases of automatic. Elektrotechnika II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

kierunkowy (podstawowy / kierunkowy / inny HES) nieobowiązkowy (obowiązkowy / nieobowiązkowy) język polski II semestr zimowy (semestr zimowy / letni)

System Labview The Labview System. Elektrotechnika II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Dr hab. inż. Jan Staszak. kierunkowy (podstawowy / kierunkowy / inny HES) nieobowiązkowy (obowiązkowy / nieobowiązkowy) język polski III

dr inż. Jan Staszak kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) język polski II

kierunkowy (podstawowy / kierunkowy / inny HES) nieobowiązkowy (obowiązkowy / nieobowiązkowy) język polski VI semestr letni (semestr zimowy / letni)

E-E-1004-s4. Elektrotechnika I stopień ogólnoakademicki. stacjonarne

Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) niestacjonarne (stacjonarne / niestacjonarne)

kierunkowy (podstawowy / kierunkowy / inny HES) nieobowiązkowy (obowiązkowy / nieobowiązkowy) język polski II semestr zimowy (semestr zimowy / letni)

kierunkowy (podstawowy / kierunkowy / inny HES) nieobowiązkowy (obowiązkowy / nieobowiązkowy) język polski III Semestr letni (semestr zimowy / letni)

E-E2A-2019-s2 Budowa i oprogramowanie komputerowych Nazwa modułu

Elektrotechnika II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Napędy elektryczne robotyki Electric Drives in Robotics

Elektrotechnika II stopień ogólnoakademicki. niestacjonarne. przedmiot kierunkowy. obowiązkowy polski semestr III semestr zimowy.

E-E2E-02-s2 Projektowanie przekształtników współpracujących z odnawialnymi źródłami Nazwa modułu

E-2EZA-01-S1. Elektrotechnika II stopień ogólnoakademicki. niestacjonarne. przedmiot kierunkowy. obowiązkowy polski semestr I semestr zimowy.

E-2IZ s3. Podstawy przedsiębiorczości. Informatyka II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Miernictwo dynamiczne Dynamic Measurement. Elektrotechnika I stopnia (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

E-E2A-2021-s2. Podstawy przedsiębiorczości. Elektrotechnika II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

EiT_S_I_TF_AEwT Teoria filtrów Theory of Filters

kierunkowy (podstawowy / kierunkowy / inny HES) nieobowiązkowy (obowiązkowy / nieobowiązkowy) język polski VII semestr zimowy (semestr zimowy / letni)

E-2EZ s3 Projektowanie instalacji budynków Nazwa modułu. inteligentnych

E-E-P-1006-s5. Energoelektronika. Elektrotechnika I stopień ogólnoakademicki. stacjonarne. przedmiot kierunkowy

Inżynieria Bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)

E-E2E-08-s2. kierunkowy (podstawowy / kierunkowy / inny HES) nieobowiązkowy (obowiązkowy / nieobowiązkowy) język polski II

KARTA MODUŁU / KARTA PRZEDMIOTU

Technologia i organizacja robót. Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Programowanie obiektowe Object programming. Elektrotechnika II stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny)

E-ID2S-07-s2. Systemy mobilne. Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Elektrotechnika I stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny) Kierunkowy (podstawowy / kierunkowy / inny HES)

Praca dyplomowa. Geodezja i Kartorafia I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Praktyka zawodowa. Automatyka i Robotyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) podstawowy (podstawowy / kierunkowy / inny HES)

kierunkowy (podstawowy / kierunkowy / inny HES) nieobowiązkowy (obowiązkowy / nieobowiązkowy) język polski II semestr zimowy (semestr zimowy / letni)

Podstawy automatyki Bases of automatics. Elektrotechnika I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)

ID1F1 FIZYKA. INFORMATYKA I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Elektrotechnika II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

KARTA MODUŁU / KARTA PRZEDMIOTU

E-E2P-2043-s3. Elektrotechnika II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Maszyny elektryczne specjalne Special electrical machines

Zarządzanie Projektami Project Management

Praktyka zawodowa. Geodezja i Kartografia I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

KARTA MODUŁU / KARTA PRZEDMIOTU

Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Niestacjonarne (stacjonarne / niestacjonarne)

Elektrotechnika II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Teoria sterowania Control theory. Elektrotechnika I stopień ogólnoakademicki. niestacjonarne. przedmiot kierunkowy

elektrotechnika I stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny) Kierunkowy (podstawowy / kierunkowy / inny HES)

KARTA MODUŁU / KARTA PRZEDMIOTU

Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) niestacjonarne (stacjonarne / niestacjonarne)

Elektrotechnika I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Kod modułu Zarządzanie i sterowanie energetycznymi Nazwa modułu

KARTA MODUŁU / KARTA PRZEDMIOTU

Elektrotechnika I stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Elektrotechnika I stopień ogólnoakademicki. niestacjonarne. przedmiot kierunkowy. obieralny polski semestr VII semestr zimowy. nie

Transport II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)

Kod modułu Zarządzanie i sterowanie energetycznymi Nazwa modułu

Miernictwo dynamiczne Dynamic Measurement. Elektrotechnika I stopnia (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Elektrotechnika I stopień ogólnoakademicki. niestacjonarne. przedmiot kierunkowy. obieralny polski semestr VIII semestr letni. nie. Laborat. 16 g.

Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy. Obowiązkowy Polski VI semestr zimowy

Sprzęt komputerowy Hardware. ETI I stopień (I stopień / II stopień) akademicki (ogólno akademicki / praktyczny)

E-1EZ1-03-s2. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

E-ID2G-09-s2, E-ID2S-17-s2. Zarządzanie Projektami

Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Z-ETI-1025 Systemy operacyjne Operating systems

Napęd elektryczny Electric Drives 2012/2013. Elektrotechnika I stopień Ogólnoakademicki niestacjonarne

Metody numeryczne Numerical methods. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

E-IZ1-02-s1 FIZYKA. INFORMATYKA I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

specjalnościowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) polski drugi zimowy (semestr zimowy / letni)

Podstawy niezawodności Bases of reliability. Elektrotechnika II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

E-E-0862-s1. Geometria i grafika inżynierska. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Inżynieria Środowiska II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Transport II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Inżynieria Środowiska II stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)

E-4EZA1-10-s7. Sterowniki PLC

ELEKTROTECHNIKA I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Analiza ryzyka Risk Analysis. Inżynieria bezpieczeństwa I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)

kierunkowy (podstawowy / kierunkowy / inny HES) nieobowiązkowy (obowiązkowy / nieobowiązkowy) polski drugi semestr letni (semestr zimowy / letni)

Elektrotechnika I stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)

Niezawodność w energetyce Reliability in the power industry

Podstawy normalizacji INŻYNIERIA ŚRODOWISKA. I stopień. Ogólno akademicki. Humanistyczny Obowiązkowy Polski Semestr 2.

Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) podstawowy (podstawowy / kierunkowy / inny HES)

Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Stacjonarne (stacjonarne / niestacjonarne)

E-2IZ1-03-s3. Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)

Wzornictwo przemysłowe I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Stacjonarne (stacjonarne / niestacjonarne)

Transkrypt:

KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 20012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Algorytmy i układy sterowania maszyn elektrycznych Algorithms and control systems of electric machines Kierunek studiów Poziom kształcenia Profil studiów Forma i tryb prowadzenia studiów Specjalność Jednostka prowadząca moduł Koordynator modułu Elektrotechnika II stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne) PiUEE KMEiSM dr inż. Krzysztof Ludwinek, dr hab. inż. Sławomir Karyś Zatwierdził: B. OGÓLNA CHARAKTERYSTYKA PRZEDMIOTU Przynależność do grupy/bloku przedmiotów Status modułu Język prowadzenia zajęć Usytuowanie modułu w planie studiów - semestr Usytuowanie realizacji przedmiotu w roku akademickim Wymagania wstępne Egzamin Liczba punktów ECTS 3 kierunkowy (podstawowy / kierunkowy / inny HES) nieobowiązkowy (obowiązkowy / nieobowiązkowy) polski III letni (semestr zimowy / letni) Maszyny elektryczne 1, 2, Napęd i automatyka napędu elektrycznego, Energoelektronika (kody modułów / nazwy modułów) nie (tak / nie) Forma prowadzenia zajęć wykład ćwiczenia laboratorium projekt inne w semestrze 15 30

C. EFEKTY KSZTAŁCENIA I METODY SPRAWDZANIA EFEKTÓW KSZTAŁCENIA Cel modułu Rozszerzenie wiedzy z zakresu metod sterowania wybranych maszyn elektrycznych. Zdobycie umiejętności syntezy algorytmów sterowania maszyn do postaci programów na sterowniki typu PLC i układy mikroprogramowalne. (3-4 linijki) Symbol efektu W_01 W_02 W_03 U_01 U_02 Efekty kształcenia ma rozszerzoną i pogłębioną wiedzę z zakresu matematyki i fizyki przydatną do rozwiązywania zagadnień z podstaw elektroniki i energoelektroniki oraz maszyn elektrycznych ma szczegółową wiedzę z zakresu programowania sterowników PLC oraz układów mikroprogramowalnych ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną o rodzaju i parametrach i układach sterowania dla danej maszyny elektrycznej ma podbudowaną teoretycznie szczegółową wiedzę o algorytmach i modelach matematycznych maszyn elektrycznych, o konfiguracji i programowaniu układów sterowania za pomocą profesjonalnych programów potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje interpretować uzyskane wyniki, potrafi samodzielnie dobrać odpowiedni algorytm, rodzaj i parametry układu sterowania dla danej maszyny elektrycznej potrafi wykorzystać metody analityczne, symulacyjne oraz eksperymentalne do konfiguracji i programowania, do uruchamiania układów opartych na sterownikach PLC oraz układach mikroprogramowalnych Forma prowadzenia zajęć (w/ć/l/p/inne) w/lab w/lab odniesienie do efektów kierunkowych K_W01, K_W02 K_W01, K_W10 odniesienie do efektów obszarowych T2A_W01 T2A_W01, T2A_W02 w/lab K_W03 T2A_W03 w/lab K_W03, K_W10 T2A_W04 lab K_U07 T2A_U08 lab K_U07 T2A_U09 K_01 Potrafi współdziałać i pracować w grupie lab K_K02 T2A_K03

Treści kształcenia: 1. Treści kształcenia w zakresie wykładu Nr wykładu 1,2 3,4 5, 6, 7 Treści kształcenia Algorytmy sterowania maszyn bezszczotkowych o wzbudzeniu od magnesów stałych BLDC oraz maszyn PMSM Algorytmy sterowania maszyn reluktancyjnych, skalarne algorytmy sterowania silników indukcyjnych Wybrane języki programowania sterowników PLC oraz układów mikroprogramowalnych i sterowników PLC 8 kolokwium pisemne w zakresie wykładów Odniesienie do efektów kształcenia dla modułu W_03 U_01 U_03, 2. Treści kształcenia w zakresie ćwiczeń

3. Treści kształcenia w zakresie zadań laboratoryjnych Nr zajęć lab. 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 Treści kształcenia Na podstawie zadanych algorytmów należy opracować programy do sterowania maszyn z magnesami trwałymi oraz indukcyjnych, opracowanie koncepcji programu sterującego wybrany obiekt, zapoznanie się ze środowiskiem programistycznym, programowanie z zastosowaniem narzędzi sprzętowych, pisanie oraz usuwanie błędów w programie, uruchomienie układu Na podstawie zadanych algorytmów należy opracować programy do sterowania trójfazowych maszyn indukcyjnych, opracowanie koncepcji programu sterującego wybrany obiekt, zapoznanie się ze środowiskiem programistycznym, programowanie z zastosowaniem narzędzi sprzętowych, pisanie oraz usuwanie błędów w programie, uruchomienie układu 13, 14 Badania eksperymentalne i analiza zarejestrowanych przebiegów czasowych 15 Kolokwium pisemne w zakresie zadań laboratoryjnych Odniesienie do efektów kształcenia dla modułu K_01 K_01 K_01 U_02 4. Charakterystyka zadań projektowych 5. Charakterystyka zadań w ramach innych typów zajęć dydaktycznych Metody sprawdzania efektów kształcenia Symbol efektu W_01 W_02 W_03 U_01 U_02 U_03 Metody sprawdzania efektów kształcenia (sposób sprawdzenia, w tym dla umiejętności odwołanie do konkretnych zadań projektowych, laboratoryjnych, itp.) Kolokwium pisemne w zakresie zadań laboratoryjnych Kolokwium pisemne w zakresie zadań laboratoryjnych Kolokwium pisemne w zakresie zadań laboratoryjnych

D. NAKŁAD PRACY STUDENTA Bilans punktów ECTS Rodzaj aktywności obciążenie studenta 1 Udział w wykładach 15 2 Udział w ćwiczeniach 3 Udział w laboratoriach 30 4 Udział w konsultacjach (2-3 razy w semestrze) 5 5 Udział w zajęciach projektowych 6 Konsultacje projektowe 7 Udział w egzaminie 8 9 Liczba godzin realizowanych przy bezpośrednim udziale nauczyciela 50 akademickiego 10 Liczba punktów ECTS, którą student uzyskuje na zajęciach wymagających bezpośredniego udziału nauczyciela akademickiego 2 11 Samodzielne studiowanie tematyki wykładów 6 12 Samodzielne przygotowanie się do ćwiczeń 13 Samodzielne przygotowanie się do kolokwiów 4 14 Samodzielne przygotowanie się do laboratoriów 5 15 Wykonanie sprawozdań 5 15 Przygotowanie do kolokwium końcowego z laboratorium 5 17 Wykonanie projektu lub dokumentacji 18 Przygotowanie do egzaminu 19 20 Liczba godzin samodzielnej pracy studenta 25 21 Liczba punktów ECTS, którą student uzyskuje w ramach samodzielnej pracy 22 Sumaryczne obciążenie pracą studenta 75 23 Punkty ECTS za moduł 3 24 Nakład pracy związany z zajęciami o charakterze praktycznym Suma godzin związanych z zajęciami praktycznymi 25 Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym 1 2,2

E. LITERATURA Wykaz literatury Witryna WWW modułu/przedmiotu 1. Przepiórkowski J.: Silniki elektryczne w praktyce elektronika. BTC. W-wa 2007. 2. Wiązania M.: Programowanie mikrokontrolerów AVR w języku Bascom. BTC. W-wa 2004. 3. Baranowski R.: Mikrokontrolery AVR ATmega w praktyce. BTC. W-wa 2005. 4. PICAXE Manuals: Getting Started, BASIC Commands, Microcontroller interfacing circuits. Instrukcje. http://www.picaxe.com 5. J. Kwaśniewski: Sterowniki PLC w praktyce inżynierskiej. Wyd. BTC. Legionowo 2008. 6. Legierski T., Wyrwał J., Kasprzyk J., Hajda J.: Programowanie sterowników PLC. Wydawnictwo Pracowni Komputerowej Jacka Skalmierskiego, 19982. 7. K. H. BBorelbach i inni: Technika sterowników z programowalną pamięcią. WSiP. W-wa 1998. 8. S. Flaga: Programowanie sterowników PLC w języku drabinkowym. ResNet S. C. Skawina 2006. 9. CX-One FA Integrated Tool Package. Setup Manual. Omron 2006. www.omron.pl

F. NAKŁAD PRACY STUDENTA Bilans punktów ECTS Rodzaj aktywności obciążenie studenta 1 Udział w wykładach 30 2 Udział w ćwiczeniach 3 Udział w laboratoriach 60 4 Udział w konsultacjach (2-3 razy w semestrze) 2 5 Udział w zajęciach projektowych 6 Konsultacje projektowe 7 Udział w egzaminie 8 9 Liczba godzin realizowanych przy bezpośrednim udziale nauczyciela 92 akademickiego 10 Liczba punktów ECTS, którą student uzyskuje na zajęciach wymagających bezpośredniego udziału nauczyciela akademickiego 3,07 11 Samodzielne studiowanie tematyki wykładów 8 12 Samodzielne przygotowanie się do ćwiczeń 13 Samodzielne przygotowanie się do kolokwiów 14 Samodzielne przygotowanie się do laboratoriów 2 15 Wykonanie sprawozdań 15 Przygotowanie do kolokwium końcowego z laboratorium 5 17 Wykonanie projektu lub dokumentacji 18 Przygotowanie do egzaminu 19 20 Liczba godzin samodzielnej pracy studenta 16 21 Liczba punktów ECTS, którą student uzyskuje w ramach samodzielnej pracy 22 Sumaryczne obciążenie pracą studenta 108 23 Punkty ECTS za moduł 3 24 Nakład pracy związany z zajęciami o charakterze praktycznym Suma godzin związanych z zajęciami praktycznymi 60 25 Liczba punktów ECTS, którą student uzyskuje w ramach zajęć o charakterze praktycznym 0,53 2 G. LITERATURA Wykaz literatury Witryna WWW modułu/przedmiotu 1. M. H. Rashid.: Power Electronics Handbook 2. S. A. Nasar.: Electric Machines and Power Systems