MODEL ELEKTROWNI OKRĘTOWEJ STATKU HORYZONT II W PROGRAMIE PSCAD

Podobne dokumenty
PRACA RÓWNOLEGŁA PRĄDNIC SYNCHRONICZNYCH WZBUDZANYCH MAGNESAMI TRWAŁYMI

Management Systems in Production Engineering No 3(19), 2015

ANALIZA AWARII W UKŁADZIE ELEKTROENERGETYCZNYM SYSTEMU DYNAMICZNEGO POZYCJONOWANIA STATKU

Zaznacz właściwą odpowiedź (właściwych odpowiedzi może być więcej niż jedna)

WSPÓŁPRACA ODBIORNIKA NIELINIOWEGO Z FILTREM AKTYWNYM I ROZDZIELNICĄ GŁÓWNĄ LABORATORIUM ELEKTROENERGETYKI OKRĘTOWEJ

JAKOŚĆ ENERGII ELEKTRYCZNEJ JAKO PODSTAWA KOMPATYBILNOŚCI ELEKTROMAGNETYCZNEJ W ELEKTROENERGETYCE

ELASTYCZNY SYSTEM PRZETWARZANIA I PRZEKSZTAŁCANIA ENERGII MAŁEJ MOCY DLA MASOWEGO WYKORZYSTANIA W GOSPODARCE ENERGETYCZNEJ KRAJU

Ćwiczenie 1. Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym.

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2015/2016. Zadania z elektrotechniki na zawody I stopnia

ZJAWISKA W OBWODACH TŁUMIĄCYCH PODCZAS ZAKŁÓCEŃ PRACY TURBOGENERATORA

Temat: ŹRÓDŁA ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO

ANALIZA ROZDZIAŁU OBCIĄŻEŃ MIĘDZY RÓWNOLEGLE PRACUJĄCE PRĄDNICE NA PRZYKŁADZIE WYBRANYCH STATKÓW

Parametry silników zespołów prądotwórczych przy dynamicznych zmianach obciążenia

ANALIZA MOŻLIWOŚCI WYKORZYSTANIA PRĄDNIC SYNCHRONICZNYCH W ZESPOŁACH PRĄDOTWÓRCZYCH (SPALINOWO-ELEKTRYCZNYCH)

BADANIA PORÓWNAWCZE SILNIKA INDUKCYJNEGO KLATKOWEGO PODCZAS RÓŻNYCH SPOSOBÓW ROZRUCHU 1. WSTĘP

SKŁADOWE MOCY I ICH ROZDZIAŁ MIĘDZY RÓWNOLEGLE PRACUJĄCE PRĄDNICE NA PROMIE PASAŻERSKO-SAMOCHODOWYM Z NAPĘDEM ELEKTRYCZNYM

Wykład 2 Silniki indukcyjne asynchroniczne

ANALIZA PRACY SILNIKA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI W WARUNKACH ZAPADU NAPIĘCIA

7 Dodatek II Ogólna teoria prądu przemiennego

Ćwiczenie EA5 Silnik 2-fazowy indukcyjny wykonawczy

OBCIĄŻALNOŚĆ MOCĄ SILNIKA INDUKCYJNEGO W WARUNKACH WYSTĘPOWANIA ODCHYLENIA NAPIĘCIA I CZĘSTOTLIWOŚCI

Ćwiczenie EA1 Silniki wykonawcze prądu stałego

POPRAWA EFEKTYWNOŚCI ENERGETYCZNEJ UKŁADU NAPĘDOWEGO POMPY WODY ZASILAJĄCEJ DUŻEJ MOCY

ANALOGOWE I MIESZANE STEROWNIKI PRZETWORNIC. Ćwiczenie 3. Przetwornica podwyższająca napięcie Symulacje analogowego układu sterowania

Parametry elektryczne i czasowe układów napędowych wentylatorów głównego przewietrzania kopalń z silnikami asynchronicznymi

JAKOŚĆ ENERGII ELEKTRYCZNEJ - PROCES ŁĄCZENIA BATERII KONDENSATORÓW

BADANIA MOCY W MODELU ELEKTROWNI WIATROWEJ Z GENERATOREM ASYNCHRONICZNYM DWUSTRONNIE ZASILANYM

PORÓWNANIE STANÓW PRZEJŚCIOWYCH MIKROŹRÓDEŁ Z GENERATOREM ASYNCHRONICZNYM I SYNCHRONICZNYM

Katalog sygnałów pomiarowych. Obowiązuje od 10 marca 2015 roku

Przemienniki częstotliwości i ich wpływ na jakość energii elektrycznej w przedsiębiorstwie wod.-kan.

Modelowanie układów elektroenergetycznych ze źródłami rozproszonymi. 1. Siłownie wiatrowe 2. Generacja PV

PROPAGACJA PRZEPIĘĆ W STACJI ELEKTROENERGETYCZNEJ SN/NN NA TERENIE TVP KATOWICE

MAŁA PRZYDOMOWA ELEKTROWNIA WIATROWA SWIND 3200

UKŁAD HAMOWANIA ELEKTRYCZNEGO DO BADANIA NAPĘDÓW

Opracować model ATP-EMTP silnika indukcyjnego i przeprowadzić analizę jego rozruchu.

Badanie prądnicy synchronicznej

4. Funktory CMOS cz.2

Badanie silnika indukcyjnego jednofazowego i transformatora

MODEL SYMULACYJNY JEDNOFAZOWEGO PROSTOWNIKA DIODOWEGO Z MODULATOREM PRĄDU

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

SZCZEGÓŁOWE WYMAGANIA TECHNICZNE DLA JEDNOSTEK WYTWÓRCZYCH PRZYŁĄCZANYCH DO SIECI ROZDZIELCZEJ

OBLICZENIOWE BADANIE ZJAWISK WYWOŁANYCH USZKODZENIEM KLATKI WIRNIKA

BADANIA MODELOWE OGNIW PALIWOWYCH TYPU PEM

OKREŚLENIE WPŁYWU WYŁĄCZANIA CYLINDRÓW SILNIKA ZI NA ZMIANY SYGNAŁU WIBROAKUSTYCZNEGO SILNIKA

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

WPŁYW ODBIORÓW SILNIKOWYCH NA POZIOM MOCY ZWARCIOWEJ W ELEKTROENERGETYCZNYCH STACJACH PRZEMYSŁOWYCH

f r = s*f s Rys. 1 Schemat układu maszyny dwustronnie zasilanej R S T P r Generator MDZ Transformator dopasowujący Przekształtnik wirnikowy

1. Logika połączeń energetycznych.

REJESTRACJA WARTOŚCI CHWILOWYCH NAPIĘĆ I PRĄDÓW W UKŁADACH ZASILANIA WYBRANYCH MIESZAREK ODLEWNICZYCH

Maszyny i urządzenia elektryczne. Tematyka zajęć

BADANIA SYMULACYJNE STABILIZATORA PRĄDU

BADANIA ELEKTROWNI WIATROWEJ Z GENERATOREM ASYNCHRONICZNYM DWUSTRONNIE ZASILANYM

Elektryczne napędy główne na statkach

OKREŚLENIE OBSZARÓW ENERGOOSZCZĘDNYCH W PRACY TRÓJFAZOWEGO SILNIKA INDUKCYJNEGO

ANALIZA, MODELOWANIE I SYMULACJE ROZRUCHU I PRACY SILNIKA LSPMSM W NAPĘDZIE PRZENOŚNIKA TAŚMOWEGO

SILNIK SYNCHRONICZNY ŚREDNIEJ MOCY Z MAGNESAMI TRWAŁYMI ZASILANY Z FALOWNIKA

Porównanie wyników symulacji wpływu kształtu i amplitudy zakłóceń na jakość sterowania piecem oporowym w układzie z regulatorem PID lub rozmytym

ĆWICZENIE 1 JEDNOFAZOWE OBWODY RLC. Informatyka w elektrotechnice ZADANIA DO WYKONANIA

PL B1. AZO DIGITAL SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Gdańsk, PL BUP 20/10. PIOTR ADAMOWICZ, Sopot, PL

POLOWO - OBWODOWY MODEL BEZSZCZOTKOWEJ WZBUDNICY GENERATORA SYNCHRONICZNEGO

SILNIK RELUKTANCYJNY PRZEŁĄCZALNY PRZEZNACZONY DO NAPĘDU MAŁEGO MOBILNEGO POJAZDU ELEKTRYCZNEGO

(13) B1 (12) OPIS PATENTOWY (19) PL (11) PL B1 RZECZPOSPOLITA POLSKA. (21) Numer zgłoszenia: (51) IntCl7 H02M 7/42

POPRAWA EFEKTYWNOŚCI ENERGETYCZNEJ UKŁADU NAPĘDOWEGO Z SILNIKIEM INDUKCYJNYM ŚREDNIEGO NAPIĘCIA POPRZEZ JEGO ZASILANIE Z PRZEMIENNIKA CZĘSTOTLIWOŚCI

Mała przydomowa ELEKTROWNIA WIATROWA SWIND 6000

POLOWO OBWODOWY MODEL DWUBIEGOWEGO SILNIKA SYNCHRONICZNEGO WERYFIKACJA POMIAROWA

BADANIA SYMULACYJNE PROSTOWNIKA PÓŁSTEROWANEGO

Zmiana punktu pracy wentylatorów dużej mocy z regulowaną prędkością obrotową w obiektach wytwarzających energię cieplną lub elektryczną

PN-EN :2012

EA3. Silnik uniwersalny

Z powyższej zależności wynikają prędkości synchroniczne n 0 podane niżej dla kilku wybranych wartości liczby par biegunów:

Podstawowe definicje

SILNIK INDUKCYJNY KLATKOWY

Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

PL B1. Sposób i układ sterowania przemiennika częstotliwości z falownikiem prądu zasilającego silnik indukcyjny

WIELOFUNKCYJNE ZESPOŁY NAPĘDOWE

Table of Contents. Table of Contents UniTrain-I Kursy UniTrain UniTrain power engineering courses List of articles:

Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych

OBSZARY BADAŃ NAUKOWYCH

Badania symulacyjne rozruchu i pracy silnika LSPMSM w napędzie przenośnika taśmowego

PORÓWNANIE SILNIKA INDUKCYJNEGO ORAZ SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI I ROZRUCHEM BEZPOŚREDNIM - BADANIA EKSPERYMENTALNE

PRĄDNICE I SILNIKI. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY

Maszyny elektryczne. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.

BADANIA SILNIKA SZEREGOWEGO BEZKOMUTATOROWEGO

Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera.

PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 18/11. JANUSZ URBAŃSKI, Lublin, PL WUP 10/14. rzecz. pat.

Maszyny elektryczne. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

Odbiorniki nieliniowe problemy, zagrożenia

Zeszyty Problemowe Maszyny Elektryczne Nr 80/

ANALIZA WPŁYWU NIESYMETRII NAPIĘCIA SIECI NA OBCIĄŻALNOŚĆ TRÓJFAZOWYCH SILNIKÓW INDUKCYJNYCH

Ćwiczenie 1b. Silnik prądu stałego jako element wykonawczy Modelowanie i symulacja napędu CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

CZĘŚĆ DRUGA Obliczanie rozpływu prądów, spadków napięć, strat napięcia, współczynnika mocy

Układy regulacji i pomiaru napięcia zmiennego.

BADANIA GENERATORA INDUKCYJNEGO WZBUDZANEGO KONDENSATORAMI OBCIĄŻENIE NIESYMETRYCZNE

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

1. Wiadomości ogólne 1

UWARUNKOWANIA TECHNOLOGICZNE PRÓB SYSTEMÓW ELEKTROENERGETYCZNYCH STATKU

SPRAWOZDANIE LABORATORIUM ENERGOELEKTRONIKI. Prowadzący ćwiczenie 5. Data oddania 6. Łączniki prądu przemiennego.

Ćwiczenie nr 65. Badanie wzmacniacza mocy

Transkrypt:

ndrzej Piłat kademia Morska w Gdyni MODEL ELEKTROWNI OKRĘTOWEJ STTKU HORYZONT II W PROGRMIE PSCD W artykule przedstawiono model okrętowej sieci elektroenergetycznej wykonanej w programie PSCD X4. Obiektem, który zasymulowano, jest statek szkolno-badawczy Horyzont II. Zamodelowano prądnice synchroniczne wraz z regulatorami napięcia oraz napędzającymi je silnikami diesla. Przedstawiono przebiegi chwilowe napięć i prądów podczas załączenia i wyłączenia odbiornika o liniowej i nieliniowej charakterystyce prądowo-napięciowej. WSTĘP Zmiany w elektrotechnice na przestrzeni ostatnich kilkunastu lat, objawiające się wprowadzeniem szeregu nowych rozwiązań technicznych dotyczących procesów wytwarzania i użytkowania energii elektrycznej, spowodowały konieczność nowego spojrzenia na zagadnienie jakości energii elektrycznej w systemach elektroenergetycznych. Na uwagę zasługuje stale rosnąca liczba i moc odbiorników energii elektrycznej zainstalowanych w systemie, często o nieliniowych charakterystykach, co wywołuje coraz większe odchylenia parametrów charakteryzujących energetyczne sieci zasilające od parametrów znamionowych. Zmienia się nie tylko kształt czasowych przebiegów napięcia i prądu w rozważanych systemach, ale również pojawiają się znaczące różnice między rzeczywistymi i znamionowymi wartościami napięcia i częstotliwości. Ma to różnorodne negatywne skutki związane z poprawnym funkcjonowaniem odbiorników energii elektrycznej, powodujące m.in. dodatkowe straty energii. Problemy te dotyczą każdego systemu elektroenergetycznego, a w szczególności elektroenergetycznej sieci okrętowej. Statek jest miejscem o dużej koncentracji odbiorników, spełniających wielorakie funkcje, pracujących często w warunkach ekstremalnych narażeń klimatycznych i mechanicznych. Znaczna część tych obiektów, w tym niemal wszystkie związane ze sterowaniem i kontrolą systemów okrętowych, to urządzenia elektryczne i elektroniczne o nieliniowych charakterystykach. W elektroenergetyce lądowej oraz okrętowej często zachodzi konieczność przebudowy lub zmiana konfiguracji systemu elektroenergetycznego. Wymiana, załączenie lub wyłączenie w dowolnej chwili urządzenia elektrycznego niosą za sobą niepewność poprawnej pracy części systemu elektroenergetycznego. Z tego

. Piłat, Model elektrowni okrętowej statku Horyzont II w programie PSCD 5 powodu przeprowadza się szereg symulacji pozwalających na wcześniejsze wykrycie i zapobieganie niepożądanym zjawiskom i skutkom wywołanym przez wyżej wspomniane czynności, mającym wpływ na życie i zdrowie załogi oraz bezpieczeństwo przewożonego ładunku. Istnieje wiele programów pozwalających na przeprowadzenie symulacji zjawisk występujących w systemach elektroenergetycznych. Na szczególną uwagę zasługuje program PSCD (ang. Power Systems Computer ided Design), pochodzący z rodziny EMTDC (ang. Elektromagnetic Transient including DC) [7]. PSCD służy do modelowania i symulacji różnego rodzaju systemów elektroenergetycznych takich jak: elektrownie wiatrowe, lądowe i okrętowe systemy elektroenergetyczne. Najczęściej jest on wykorzystywany do symulacji wybranych wielkości w systemach elektroenergetycznych w stanach przejściowych. PSCD umożliwia także modelowanie układów pomiarowych, kontrolnych i sterujących [7]. W pracy [3] przedstawiono wykorzystanie programu PSCD do symulacji elektroenergetycznego systemu okrętowego w różnych stanach eksploatacyjnych.. OKRĘTOWY SYSTEM ELEKTROENERGETYCZNY STTKU M/V HORYZONT II Horyzont II jest statkiem szkolno-badawczym składającym się z trzech jednakowych zespołów prądotwórczych. W skład zespołu prądotwórczego wchodzą: prądnica synchroniczna o mocy znamionowej 30 kw (376 kv), napędzana za pomocą czterosuwowego silnika diesla o mocy znamionowej 357 kw. W zależności od zapotrzebowania na moc pobieraną przez odbiorniki możliwa jest praca pojedynczego, dwóch lub trzech współpracujących ze sobą agregatów prądotwórczych, załączonych na szyny głównej rozdzielnicy. Wszystkie odbiorniki zainstalowane na statku zasilane są z rozdzielnicy głównej (rys. ). Wśród odbiorników większych mocy zainstalowanych na statku można wyróżnić: ster strumieniowy o mocy znamionowej 25 kw, silnik indukcyjny dźwigu pokładowego 55 kw oraz silnik indukcyjny do napędu sprężarki klimatyzacji 28 kw. Pozostałe odbiorniki mają mniejszą moc i nie wywierają większego wpływu na zmiany parametrów jakości energii elektrycznej sieci (napięcie, częstotliwość). Elektroenergetyczna sieć okrętowa jest siecią miękką. Charakteryzuje się dużymi zmianami napięcia i częstotliwości, wynikającymi z porównywalnych mocy elektrowni okrętowej i załączanych dużych odbiorników energii. Bardzo ważnym zagadnieniem dla okrętowego systemu elektroenergetycznego jest ciągłość zasilania odbiorników podczas manewrów. Statek musi posiadać pełną manewrowość, a więc i pewność zasilania odbiorników, od których zależy bezpieczeństwo załogi i przewożonego ładunku. Napięcie znamionowe systemu elektroenergetycznego statku jest równe 400 V, zaś częstotliwość znamionowa wynosi 50 Hz.

52 ZESZYTY NUKOWE KDEMII MORSKIEJ W GDYNI, nr 85, grudzień 204 25 kw M Odb Odb n M ~ ~.. n Szyny główne BR BR 2 BR 3 30 kw 367 kv G 30 kw 367 kv ~ ~ G 2 30 kw 367 kv G3 ~ GR GR 3 GR 3 SD SD 2 SD 3 357 kw 357 kw 357 kw Rys.. System elektroenergetyczny statku m/v Horyzont II (G prądnica synchroniczna, SD silnik diesla, GR przekładnia, M ster strumieniowy, BR wyłącznik) Fig.. Electric power system of the m/v Horyzont II (G synchronous generators, SD diesel engine, GR gear, M motor of bow thruster, BR breaker) 2. MODEL SYSTEMU ELEKTROENERGETYCZNEGO STTKU HORYZONT II W PROGRMIE PSCD Wstępny model okrętowej sieci elektroenergetycznej statku m/v Horyzont II wykonano w programie PSCD wersji X4. W symulacji skoncentrowano się na zamodelowaniu trzech jednakowych zespołów prądotwórczych pracujących na wspólne szyny. W skład pojedynczego agregatu wchodzi prądnica synchroniczna o mocy znamionowej 30 kw, 376 kv oraz czterosuwowy silnik diesla o mocy znamionowej 357 kw. Na rysunku 2 przedstawiono model trzech jednakowych prądnic załączonych na szyny rozdzielnicy głównej. Obciążenie stanowią dwa odbiorniki: jeden liniowy rezystancyjno-indukcyjny o parametrach R = 5 Ω i L = = 0,27 H, zaś drugi odbiornik nieliniowy dużej mocy (dławik).

. Piłat, Model elektrowni okrętowej statku Horyzont II w programie PSCD 53 SZYNY GŁÓWNE ROZDZIELNICY L L2 L3 Iaa BRK Gen_brk B Generator 2 3 B Eab C C Gen2_brk 5 [ ohm] 0.27 [H] Generator2 2 B2 C2 B 5 [ ohm] 5 [ ohm] 0.27 [H] 0.27 [H] C Gen3_brk Gen_ Gen_brk Gen_2 Gen2_brk Gen_3 Gen3_brk Odb_nieliniowy BRK Generator3 3 B3 C3 B Wylacznik Gen_ Gen_ OFF ON Wylacznik Gen_2 Gen_2 OFF ON Wylacznik Gen_3 Gen_3 OFF ON Odb_nieliniowy Odb_nieliniowy OFF ON C Rys. 2. Charakterystyka prądowo-napięciowa odbiornika nieliniowego obciążającego prądnice symulowanego systemu elektroenergetycznego Fig. 2. Current-voltage characteristics of non-linear loads simulated loading generators of the power system W programie możliwy jest wybór odpowiedniej liczby załączonych agregatów prądotwórczych w zależności od liczby załączonych odbiorników w dowolnej chwili, poprzez ustawienie przełącznika Gen_, Gen_2 lub Gen_3 w odpowiedniej pozycji. Możliwe jest również załączenie i wyłączenie w dowolnej chwili odbiornika nieliniowego, zaś odbiornik o liniowej charakterystyce jest dołączony na stałe. Na rysunku 3 przedstawiono model czterosuwowego silnika diesla wraz z regulatorem prędkości obrotowej [2]. Sygnałami wejściowymi do regulatora prędkości obrotowej są rzeczywista prędkość obrotowa pochodząca z wału prądnicy oraz zadana prędkość obrotowa. Sygnały te poprzez odpowiednie transmitancje przekształcane są na dawkę paliwa, która podawana jest na wejście FL (Fuel Intake) w modelu silnika diesla (IC Engine). Do utrzymania stałej prędkości obrotowej wykorzystano regulator proporcjonalno-całkujący PI. Sygnałem wyjściowym z silnika jest moment mechaniczny Tm, przekazywany na wejście synchronicznej prądnicy prądu przemiennego. 34.593 D N/D N a SPEED D - + F I P * 0 G + st -st e W FL * w FL IC Engine Tm Tm wref Predkosc zadana FL Rys. 3. Model czterosuwowego silnika diesla wraz z regulatorem prędkości obrotowej [2] Fig. 3. Model of a four-stroke diesel engine with the speed governor

54 ZESZYTY NUKOWE KDEMII MORSKIEJ W GDYNI, nr 85, grudzień 204 Model prądnicy synchronicznej wraz z regulatorem napięcia przedstawiono na rysunku 4 [7]. Do prądnicy dołączono regulator napięcia (Exciter_(C5)), służący do utrzymania stałej wartości skutecznej napięcia na szynach głównych rozdzielnicy. Poprzez blok Table, który połączony jest z regulatorem napięcia, realizowany jest rozpływ mocy biernej pomiędzy załączone jednocześnie na szyny główne prądnice synchroniczne. Ef0 Te Tei Tm Uf Ef S IF If w Tm Vref Exciter _(C5) VT Ef0 Ef If IT Uavr V 3 B C QOUT Ea Eb Ec ia Table Uavr 2 3 Rys. 4. Model trójfazowej prądnicy synchronicznej prądu przemiennego wraz z regulatorem napięcia [7] Fig. 4. Model the three-phase synchronous C generator with voltage regulator 3. WSTĘPN WERYFIKCJ SYMULCYJN SYSTEMU ELEKTROENERGETYCZNEGO STTKU HORYZONT II Wstępną weryfikację symulowanego systemu elektroenergetycznego statku m/v Horyzont II przeprowadzono w stanie zarówno statycznym, jak i dynamicznym. Na rysunku 5 przedstawiono przebiegi chwilowe napięć symulowanych na szynach głównych rozdzielnicy. Przy załączeniu odbiornika liniowego rezystancyjno-indukcyjnego napięcie ma przebieg sinusoidalny. Po załączeniu dodatkowo odbiornika nieliniowego przebieg napięcia zasilającego zostaje zniekształcony.

. Piłat, Model elektrowni okrętowej statku Horyzont II w programie PSCD 55 a) 600 e_ab Napięcie chwilowe e_ab (t) 400 e_ab [V] 200 0-200 -400-600 3.980 4.000 4.020 4.040 4.060 4.080 b) 600 e_ab Napięcie chwilowe e_ab (t) 400 e_ab [V] 200 0-200 -400-600.060.080.00.20.40 Rys. 5. Przebiegi chwilowe napięcia symulowane na szynach głównych rozdzielnicy: a) załączony odbiornik liniowy, b) załączony odbiornik nieliniowy Fig. 5. Waveforms of voltage rails simulated on the main switchboard: a) a linear receiver attached, b) a non-linear receiver attached W przypadku prądów symulowanych pobieranych z prądnicy można zauważyć podobną tendencję jak przy napięciach chwilowych. Przy załączeniu odbiornika liniowego prąd płynący przez odbiornik ma przebieg sinusoidalny. Po załączeniu odbiornika nieliniowego, przebieg prądu zostaje zniekształcony (rys. 6).

56 ZESZYTY NUKOWE KDEMII MORSKIEJ W GDYNI, nr 85, grudzień 204 a) 0.0 8. 0 6. 0 4. 0 i_aa Prąd chwilowy fazy i_a(t) i_aa [] 2. 0 0. 0-2.0-4.0-6.0-8.0-0.0 3.980 3.990 4.000 4.00 4.020 4.030 4.040 4.050 4.060 4.070 b) 40 30 20 i_aa Prąd chwilowy fazy _a(t) i i_aa [ ] 0 0-0 -20-30 -40.060.070.080.090.00.0.20.30.40 Rys. 6. Przebiegi chwilowe prądu symulowane na szynach głównych rozdzielnicy a) załączony odbiornik liniowy, b) załączony odbiornik nieliniowy Fig. 6. Waveforms of current simulated on the rails of the main switchboard: a) a linear receiver attached, b) a non-linear receiver attached Wartość skuteczna napięcia symulowana na szynach głównych rozdzielnicy (rys. 7) utrzymywana jest za pomocą regulatora napięcia na poziomie 397,7 V. Po załączeniu odbiornika nieliniowego dużej mocy napięcie osiąga wartość minimalną 393,6 V i po czasie regulacji 2,97 s przyjmuje wartość ustaloną. Na rysunku 8 przedstawiono przebieg wartości skutecznej prądu pobieranego przez odbiorniki. Po zwiększeniu stałej czasowej regulatora napięcia następuje wydłużenie czasu regulacji wartości skutecznej napięcia.

. Piłat, Model elektrowni okrętowej statku Horyzont II w programie PSCD 57 406.0 404.0 Eab_rms Napięcie międzyfazowe Eab_rms Załączenie odbiornika nieliniowego Eab_rms [V] 402.0 400.0 398.0 396.0 394.0 392.0 0.0 2.0 4.0 6.0 8.0 0.0 2.0 4.0 6.0 Rys. 7. Wartość skuteczna napięcia symulowana na szynach głównych rozdzielnicy Fig. 7. The RMS voltage simulated on the rails of the main switchboard 35.0 Ia_rms Wartość skuteczna prądu 30.0 Iaa_rms [] 25.0 20.0 5.0 0.0 Załączenie odbiornika nieliniowego 5.0 0.0 0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5 20.0 Rys. 8. Wartość skuteczna prądu symulowana na szynach głównych rozdzielnicy Fig. 8. RMS current simulated on the rails of the main switchboard Na rysunkach 9 i 0 przedstawiono przebiegi chwilowe napięcia i prądu zasymulowane na szynach głównych rozdzielnicy. Przebieg napięcia praktycznie zachowuje stałą amplitudę przez całą symulację, tylko w momencie załączenia odbiornika nieliniowego następuje niewielkie zniekształcenie. Natomiast przebieg chwilowy prądu zachowuje stałą amplitudę podczas obciążenia prądnicy odbiornikiem liniowym o niewielkim obciążeniu. Po załączeniu odbiornika nieliniowego dużej mocy uwidacznia się stan nieustalony przebiegu prądu.

58 ZESZYTY NUKOWE KDEMII MORSKIEJ W GDYNI, nr 85, grudzień 204 600 e_ab Napięcie chwilowe e _ab (t) 400 200 e_ab [V] 0-200 - 400-600 2. 0 4. 0 6. 0 8. 0 0. 0 2. 0 4. 0 Rys. 9. Przebieg napięcia chwilowego symulowanego na szynach głównych rozdzielnicy Fig. 9. The simulated voltage on the rails of the main switchboard iaa [] Prąd chwilowy fazy i_a(t) i_aa 40 30 20 0 0-0 -20-30 -40-50 2.0 4.0 6.0 8.0 0.0 2.0 4.0 Rys. 0. Przebieg napięcia chwilowego symulowanego na szynach głównych rozdzielnicy Fig. 0. Voltage simulated on the rails of the main switchboard PODSUMOWNIE W artykule przedstawiono model części okrętowego systemu elektroenergetycznego statku Horyzont II zrealizowanego w programie PSCD. Prezentowane przebiegi chwilowe oraz wartości skuteczne parametrów energii elektrycznej wykazują przydatność wykorzystania programu PSCD do modelowania elektroenergetycznej sieci okrętowej. Wydaje się, że wstępna weryfikacja modelu w stanie ustalonym jest zgodna z oczekiwaniami. Przebiegi chwilowe prądów i napięć, jak również ich wartości skuteczne są wielkościami, które można w rzeczywistości zaobserwować na statkach morskich. W przyszłości planowane jest przeprowadze-

. Piłat, Model elektrowni okrętowej statku Horyzont II w programie PSCD 59 nie rzeczywistych pomiarów parametrów energii elektrycznej na statku m/v Horyzont II i porównanie ich z prezentowanym modelem. Wiąże się to z potrzebą stworzenia modelu najważniejszych odbiorników zainstalowanych na statku. Przedstawione na rysunku 5 przebiegi chwilowe napięć dowodzą, że załączenie nieliniowego obciążenia na źródło napięcia, jakim jest prądnica synchroniczna o danych parametrach, powoduje odkształcenie przebiegu napięcia zasilającego odbiornik. Czas regulacji oraz zmiany wartości skutecznych napięć mieszczą się w normach Polskiego Rejestru Statków. rtykuł przygotowano w ramach projektu DEC-202/07/E/ST8/0688. LITERTUR. rendt R., Simulation investigations of ship power systems, Environment and Electrical Engineering, EEEIC 20. 2. Friedel V., Modeling and Simulations of a Fybrid Wind-Diesel Microgrid, Royal Institut of Technology, Stockholm, Sweden, June 2009. 3. Prousalidis J., Muthumumi D., Power quality on electric ship, Flux Magazine, June 2006. 4. Simoes M.G, Palle B., Chakraborty S., Electrical Model Development and Validation for Distributed Resources, Colorado 2007. 5. Swarn S. Kalasi, Nayak O., Ship Electrical System Simulation, Electrical Schip Technologies symposium, IEEE, 2005. 6. Tarasiuk T., Mindykowski J., Weryfikacja doświadczalna analizatora jakości energii elektrycznej na statku m/s Horyzont II, PK 2003. 7. The Electromagnetic Transients and Controls Simulation Engine, Monitoba HVDC 200. MODEL OF POWER STTION OF M/V HORYZONT II CRETED IN THE PSCD Summary In the paper presents a model of ship electricity grid made in the PSCD X4. The object which was simulated is a school and research vessel Horyzont II. Synchronous generators with voltage regulators and driving diesel engines are modeled. The waveforms of current and voltage during the switching on and off the receiver (with linear and non-linear current-voltage characteristics) are shown.