Aspekty techniczno-ekonomiczne rozwoju i przyłączania mikroinstalacji oraz małych instalacji fotowoltaicznych

Podobne dokumenty
ANALIZA ENERGETYCZNA I EKONOMICZNA MOŻLIWOŚCI WYKORZYSTANIA FOTOWOLTAIKI W SYSTEMACH ENERGETYCZNYCH

Zasady wsparcia dla fotowoltaiki w projekcie ustawy o OZE. Wschodnie Forum Gospodarcze Lub-Inwest, r. Lublin

Fotowoltaika przyszłość i inwestycje w branży w świetle nowej ustawy o OZE. Warszawa

Badanie baterii słonecznych w zależności od natężenia światła

Marek Kulesa dyrektor biura TOE

Projekt ustawy o OZE podstawowe zmiany, regulacje dotyczące przyłączeń

Małoskalowe technologie odnawialnych źródeł energii systemy wsparcia i promocji w ustawie OZE

Uwarunkowania prawne dla rozwoju energetyki odnawialnej System wsparcia energetyki odnawialnej w Polsce - planowane zmiany

Henryk Klein OPA-LABOR Sp. Z o.o. Tel h.klein@opalabor.pl

Instalacje fotowoltaiczne

fotowoltaiki w Polsce

Przychody z produkcji energii w instalacji PV w świetle nowego prawa

WPŁYW OTOCZENIA REGULACYJNEGO NA DYNAMIKĘ INWESTYCJI W ENERGETYKĘ ROZPROSZONĄ

PROSUMENT sieć i rozliczenia Net metering

BADANIA MODELOWE OGNIW SŁONECZNYCH

INTEGRATOR MIKROINSTALACJI ODNAWIALNYCH ŹRÓDEŁ ENERGII ZYGMUNT MACIEJEWSKI. Wiejskie sieci energetyczne i mikrosieci. Warszawa, Olsztyn 2014

Instalacje prosumenckie w praktyce

Sprawozdanie z laboratorium proekologicznych źródeł energii

BEZPIECZEŃSTWO INSTALACJI FOTOWOLTAICZNYCH

Handout ustawy o odnawialnych źródłach energii (wersja przyjęta przez Sejm)

MIKROINSTALACJA FOTOWOLTAICZNA 10KW

Projekt MGrid - od prosumentów do spółdzielni energetycznych

ENERGETYKA PROSUMENCKA MOŻLIWOŚCI I WYZWANIA.

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej

Sławomir CIEŚLIK Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy Stowarzyszenie Elektryków Polskich, Oddział w Bydgoszczy

Dr inż. Adam Mroziński. Zasoby energii słonecznej w województwie Kujawsko-Pomorskim oraz ekonomiczne i ekologiczne aspekty jej wykorzystania

WPŁYW PRODUKCJI ENERGII ELEKTRYCZNEJ W ŹRÓDŁACH OPALANYCH WĘGLEM BRUNATNYM NA STABILIZACJĘ CENY ENERGII DLA ODBIORCÓW KOŃCOWYCH

Technologia produkcji paneli fotowoltaicznych

Kompleksowy system wsparcia energetyki odnawialnej w Polsce oraz planowane zmiany. Warszawa, 2 października 2014 r.

RAPORT Rozwój polskiego rynku fotowoltaicznego w latach

Wpływ mikroinstalacji na pracę sieci elektroenergetycznej

Potencjał i ścieżki rozwoju polskiej energetyki wiatrowej

ENERGETYKA PROSUMENCKA AKTUALNY STAN I KIERUNKI ROZWOJU W ŚWIETLE USTAWY O OZE

Ustawa o OZE oraz założenia dotyczące rozliczeń za energię elektryczną sprzedawaną do sieci

Ustawa z dnia 20 lutego 2015 r. o odnawialnych źródłach energii. Janusz Pilitowski, Departament Energii Odnawialnej

PROSUMENT WYTWARZANIE ENERGII ELEKTRYCZNEJ NA WŁASNE POTRZEBY A PRAWO ENERGETYCZNE

System wsparcia energetyki odnawialnej w Polsce-planowane zmiany. Jerzy Pietrewicz, Sekretarz Stanu

Wsparcie Odnawialnych Źródeł Energii

Wypieranie CO 2 z obszaru energetyki WEK za pomocą technologii OZE/URE. Paweł Kucharczyk Pawel.Kucharczyk@polsl.pl. Gliwice, 28 czerwca 2011 r.

Innowacyjne technologie a energetyka rozproszona.

Progi mocy maksymalnych oraz wymogi ogólnego stosowania NC RfG. Jerzy Rychlak Konstancin-Jeziorna

Ustawa o odnawialnych źródłach energii (OZE) nadzieje i oczekiwania

Symulacja generowania energii z PV

VII FORUM PRZEMYSŁU ENERGETYKI SŁONECZNEJ I BIOMASY

Odnawialne źródła energii w budownictwie pasywnym: Praktyczne zastosowanie

Rządowy program wsparcia energetyki wiatrowej w Polsce. Energetyka wiatrowa (onshore) w Polsce i w Niemczech r.

III Lubelskie Forum Energetyczne. Techniczne aspekty współpracy mikroinstalacji z siecią elektroenergetyczną

Procedura przyłączania mikroinstalacji

Kierunki działań zwiększające elastyczność KSE

Część 1. Wprowadzenie. Przegląd funkcji, układów i zagadnień

Ćwiczenie 3 WPŁYW NASŁONECZNIENIA I TECHNOLOGII PRODUKCJI KRZEMOWYCH OGNIW FOTOWOLTAICZNYCH NA ICH WŁASNOŚCI EKSPLOATACYJNE

Wsparcie energetyki prosumenckiej w Polsce w programach Ministerstwa Gospodarki. Racibórz, 13 czerwca 2014 r.

Odnawialne źródła energii wyzwania stojące przed przedsiębiorstwami wodociągowo kanalizacyjnymi po 1 stycznia 2016 roku

INSTRUKCJA LABORATORYJNA NR 10-PV MODUŁ FOTOWOLTAICZNY

RYNEK FOTOWOLTAICZNY. W Polsce. Instytut Energetyki Odnawialnej. Warszawa Kwiecień, 2013r

*Woda biały węgiel. Kazimierz Herlender, Politechnika Wrocławska

ZAŁĄCZNIK NR 10 Symulacja uzysku rocznego dla budynku stacji transformatorowej

Energetyka dla społeczeństwa. Społeczeństwo dla energetyki

Przyszłość energetyki słonecznej na tle wyzwań energetycznych Polski. Prof. dr hab. inż. Maciej Nowicki

Instalacje fotowoltaiczne / Bogdan Szymański. Wyd. 6. Kraków, Spis treści

Współpraca energetyki konwencjonalnej z energetyką obywatelską. Perspektywa Operatora Systemu Dystrybucyjnego

Wpływ instrumentów wsparcia na opłacalność małej elektrowni wiatrowej

Wykorzystanie energii z odnawialnych źródeł na Dolnym Śląsku, odzysk energii z odpadów w projekcie ustawy o odnawialnych źródłach energii

Komfort Int. Rynek energii odnawialnej w Polsce i jego prespektywy w latach

Gmina niezależna energetycznie Józef Gawron - Przewodniczący Rady Nadzorczej KCSP SA

ZAŁĄCZNIK NR 09 Symulacja uzysku rocznego dla budynku garażowo-magazynowego

FOTOWOLTAIKA TWOJA WŁASNA ENERGIA ELEKTRYCZNA. innogy Polska S.A.

KONWERGENCJA ELEKTROENERGETYKI I GAZOWNICTWA vs INTELIGENTNE SIECI ENERGETYCZNE WALDEMAR KAMRAT POLITECHNIKA GDAŃSKA

Sieci energetyczne pięciu największych operatorów

FOTOWOLTAIKA ODNAWIALNA ENERGIA PRZYSZŁOS CI

Współpraca mikroźródeł z siecią elektroenergetyczną OSD

Systemy fotowoltaiczne alternatywne źródło energii

AKTUALNA SYTUACJA I PERSPEKTYWY SYSTEMU WSPARCIA WYTWARZANIA ENERGII Z OZE

Bilansowanie mocy w systemie dystrybucyjnym czynnikiem wspierającym rozwój usług systemowych

MMB Drives 40 Elektrownie wiatrowe

SYSTEMY ENERGETYKI ODNAWIALNEJ B.22

GENERACJA ROZPROSZONA wyzwania regulacyjne.

Systemy wsparcia wytwarzania energii elektrycznej w instalacjach odnawialnego źródła energii. Warszawa, 9 maja 2019 r.

PAKIET INFORMACYJNY. System wsparcia w projekcie ustawy o OZE 6.2 z dnia r.

Mgr inż. Jarosław Korczyński

Lublin, ul. Wojciechowska 7.

Energia emitowana przez Słońce

OPINIA PRAWNA W PRZEDMIOCIE MIKROINSTALACJI W PROJEKCIE USTAWY O OZE

PERSPEKTYWY ROZWOJU INSTALACJI FOTOWOLTAICZNYCH W KRAJU

Ćwiczenie 2 WSPÓŁPRACA JEDNAKOWYCH OGNIW FOTOWOLTAICZNYCH W RÓŻNYCH KONFIGURACJACH POŁĄCZEŃ. Opis stanowiska pomiarowego. Przebieg ćwiczenia

USTAWA. z dnia. o zmianie ustawy o odnawialnych źródłach energii 1)

Wpływ rozwoju elektromobilności na sieć elektroenergetyczną analiza rozpływowa

Przedsiębiorstwo. Projekt. Projekt instalacji fotowoltaicznej. R-Bud. Osoba kontaktowa: Anna Romaniuk

Mikroinstalacje w sieci dystrybucyjnej - przyłączenie i współpraca z siecią

Wirtualne elektrownie

Źródła generacji rozproszonej oraz sieci Smart Grid w budownictwie przemysłowym niskoenergetycznym 1

INWESTYCJE W NISKOEMISYJNĄ ENERGETYKĘ NA TERENACH NIEZURBANIZOWANYCH I TERENACH WIEJSKICH BIEŻĄCE DZIAŁANIA PREZESA URZĘDU REGULACJI ENERGETYKI

SPOTKANIE INFORMACYJNE

Czy mamy szansę wygrać walkę ze smogiem?...

Przedsiębiorstwo. Klient. Projekt. Laminer. Wprowadź w Opcje > Dane użytkownika. Laminer

Co to jest fotowoltaika? Okiem praktyka.

Energetyka rozproszona w drodze do niskoemisyjnej Polski. Szanse i bariery. Debata online, Warszawa, 28 maja 2014 r.

Nowoczesna fotowoltaika Immergas - efektywne wytwarzanie prądu i ciepła

T R Ó J P A K E N E R G E T Y C Z N Y

Przyłączanie instalacji OZE do sieci - nowe zasady. OZE 2.0. Nowy system wsparcia 27 września 2012, Hotel Marriott

Transkrypt:

Radosław SZCZERBOWSKI Politechnika Poznańska Instytut Elektroenergetyki Aspekty techniczno-ekonomiczne rozwoju i przyłączania mikroinstalacji oraz małych instalacji fotowoltaicznych Streszczenie: Polityka energetyczna musi w wyważony sposób zapewnić bezpieczeństwo dostaw energii a także promować zrównoważony rozwój różnych technologii wytwarzania energii elektrycznej. Fotowoltaika jest jedną z bardziej obiecujących technologii, a możliwości jej zastosowania w systemach energetycznych różnych skali sprawiają, że w przyszłości może ona stać się efektywnym i bezpiecznym źródłem energii oraz ważnym elementem stabilnego i niezależnego mixu energetycznego. W referacie przedstawiono perspektywy wykorzystania generacji rozproszonej ze źródłami fotowoltaicznymi. Przedstawiono problemy wynikające z pojawienia się dużej liczby źródeł rozproszonych w systemie elektroenergetycznym, stanowiących duże wyzwanie dla systemu elektroenergetycznego. Stąd konieczne jest określenie możliwości i warunków przyłączania małych źródeł do sieci elektroenergetycznych oraz konieczności rezerwowania źródeł rozproszonych. Spełnienie tego warunku wymaga znacznej przebudowy systemu elektroenergetycznego. 1. Wprowadzenie Polska zobowiązana jest do zwiększenia do 2020 r. udziału energii ze źródeł odnawialnych w bilansie energetycznym do 15%. Osiągnięcie tego celu wymaga zwiększenia liczby przedsięwzięć w tym sektorze energetyki. W tym kontekście rozwój inwestycji w dziedzinie technologii odnawialnych wydaje się być celowym. Aby ten cel był możliwy do zrealizowania, konieczne są sprzyjające rozwiązania prawne. Alternatywą dla energii produkowanej w źródłach konwencjonalnych, a w przyszłości coraz ważniejszym źródłem energii we wszystkich jej formach, są niewątpliwie, w warunkach polskich technologie związane są z wykorzystaniem biomasy, energii wiatru i fotowoltaiką. Ustawa o odnawialnych źródłach energii, której założenia zostały po raz pierwszy zaprezentowane przez Ministerstwo Gospodarki w 2011 r., rozbudziła ogromne nadzieje wśród wytwórców energii opartej na odnawialnych źródłach. W jednej z wersji ustawy zaproponowano po raz pierwszy w Polsce wprowadzenie taryf typu Feed-In Tariff (FiT) na energię elektryczną. Ten system wsparcia został skierowany do inwestujących w mikro i małe instalacje OZE. Wprowadzenie takiego systemu wsparcia gwarantowało ustalenie na określony czas ceny urzędowej na energię elektryczną odbieraną od producenta energii z OZE. System wsparcia typu FiT jest rozpowszechniony na świecie, stosuje go ponad 50 krajów i jest to dominujący systemem wsparcia w krajach Unii Europejskiej. Dotychczas istniejący system świadectw pochodzenia nie wpłynął znacząco na rozwój rynku mikroinstalacji OZE [10, 13]. Nr 179 5

W dniu 11 września 2013 r. weszła w życie znowelizowana ustawa Prawo energetyczne (tzw. Mały Trójpak) [14]. Nadal trwają ustalenia dotyczące całego pakietu ustaw energetycznych przygotowanych przez Ministerstwo Gospodarki czyli tzw. Dużego Trójpaku, w którego skład wejdą: ustawa Prawo energetyczne, ustawa Prawo gazowe, ustawa o Odnawialnych Źródłach Energii. Podstawowym celem Trójpaku jest zbudowanie spójnych ram prawnych w obszarze energetyki, z uwzględnieniem standardów europejskich, a także wyłączenie z obecnej ustawy Prawo energetyczne (wielokrotnie nowelizowanej) przepisów dotyczących zagadnień sektora elektroenergetyki, gazowych oraz odnawialnych źródeł energii, które zostaną uregulowane w oddzielnych ustawach. Rozwiązanie takie ma na celu uporządkowanie, uproszczenie i udoskonalenie obwiązujących przepisów oraz realizację zobowiązań unijnych. W proponowanej ustawie o OZE definiuje się następujące typy instalacji odnawialnych źródeł energii: mikro instalacja do 40 kw. Dla tej wielkości instalacji nie jest wymagane pozwolenie na budowę, właściciel nie musi prowadzić działalności gospodarczej. Koszt układu zabezpieczającego i pomiarowo-rozliczeniowego ponosi operator systemu dystrybucyjnego (OSD), mała instalacja od 40 kw do 200 kw. Wymagane jest pozwolenie na budowę oraz zarejestrowana działalność gospodarcza. Częściowy koszt przyłączenia do sieci, duża instalacja powyżej 200 kw. Wymagane jest pozwolenie na budowę, zarejestrowana działalność gospodarcza oraz koncesja. Częściowy lub pełny koszt przyłączenia do sieci [14]. W najbliższych latach z pewnością wzrośnie znaczenie systemów fotowoltaicznych. W 2012 r. światowa moc tych systemów przekroczyła 90 GW, ale dzięki wielkiej dynamice wzrostu przewiduje się, że w 2020 r. moc ta osiągnie 260 GW 300 GW [12]. Fotowoltaika stanie się ważnym źródłem energii dla świata, a także i w Polsce. Obecnie w naszym kraju systemy fotowoltaiczne mają moc zaledwie 3,9 MW (z czego tylko 1,75 MW przyłączone do sieci elektroenergetycznej), podczas gdy w Niemczech ich moc przekroczyła 34 GW. Po wejściu w życie ustawy o odnawialnych źródłach energii, nad którą wciąż trwają prace rządu, energetyka rozproszona może stać się jednym z filarów systemu elektroenergetycznego. Energetyka rozproszona nie zastąpi jednak konwencjonalnej. Może jednak być jej doskonałym uzupełnieniem, pod warunkiem określenia optymalnego modelu polskiej energetyki. Rozwój energetyki wiatrowej oraz fotowoltaiki w dużej mierze zależeć będzie od możliwości magazynowania energii. Jeżeli w przyszłości będzie można realnie wykorzystywać systemy magazynowania energii do stabilizacji pracy sieci i poprawy jakości energii, źródła te z pewnością zyskają na swoim rozwoju [3, 4]. 6

Fotowoltaika jest dziedziną energetyki, która w ostatnich latach rozwijana jest na szeroką skalę. Moduły fotowoltaiczne dostępne na rynku mają powierzchnię od 0,3 m 2 do 3 m 2, a ich moc zwykle kształtuje się pomiędzy 30 W 300 W. Produkcja energii elektrycznej przy pomocy ogniw słonecznych odbywa się z relatywnie dużą sprawnością, wynoszącą 13% 20%. Rys. 1. Prognoza rozwoju fotowoltaiki w Polsce Ta stosunkowo duża sprawność wynika z faktu, że energia promieniowania słonecznego zamienia się w energię elektryczną bez udziału ciepła. Wadą systemów fotowoltaicznych jest najwyższa spośród wszystkich źródeł niestabilność mocy produkowanej oraz najbardziej dynamiczne zmiany jej produkcji. Ogniwa fotowoltaiczne mogą być stosowane w trzech segmentach rynków: mikro instalacje PV do 10 kw na budynkach mieszkalnych, małe i średnie systemy (10 W 100 kw) instalowane na budynkach przemysłowych, duże systemy naziemne powyżej 100 kw. Szacuje się, że rozwój fotowoltaiki w Polsce (rys. 3) do roku 2030 osiągnie poziom 32 MW [5]. 2. Podstawowe parametry ogniw Zamiana energii słonecznej na energię elektryczną, w sposób bezpośredni, odbywa się za pomocą ogniwa fotowoltaicznego. Jest to urządzenie półprzewodnikowe zawierające w swej strukturze złącze p-n. W chwili obecnej dostępnych jest na rynku już kilka kolejnych generacji ogniw fotowoltaicznych. Ogniwa fotowoltaiczne I generacji oparte o krzemowe złącze typu p-n charakteryzują się sprawnością rzędu 17% 22%, ale także stosunkowo wysokimi kosztami produkcji. Są to najczęściej stosowane typy ogniw, wśród nich są ogniwa monokrystaliczne (sprawność ok. 18% 22%), ogniwa polikrystaliczne (sprawność 14% 18%) oraz ogniwa amorficzne (sprawność 6% 10%). Nr 179 7

Ogniwa fotowoltaiczne II generacji ze złączem typu p-n zbudowane w oparciu o takie materiały jak: gal, tellurek kadmu (CdTe), mieszanina miedzi, indu, selenu (CIGS) czy krzem amorficzny. Są znacznie tańsze w produkcji, ale charakteryzują się niższą sprawnością w stosunku do ogniw I generacji. Najczęściej spotykane ogniwa II generacji to ogniwa CdTe wykonane z tellurku kadmu (sprawność ok. 10% 12%), ogniwa CIGS wykonane z mieszaniny półprzewodników, np. miedź, ind, gal, selen (sprawność ok. 12% 14%). Ogniwa fotowoltaiczne III generacji pozbawione są złącza p-n. Do tej grupy zalicza się różne zaawansowane technologie, np. ogniwa organiczne z wykorzystaniem polimerów. Niezależnie od rodzaju i technologii wytwarzania, każdy moduł fotowoltaiczny można scharakteryzować kilkoma parametrami, które dostarczają informacji o ich jakości. Parametry te to między innymi: napięcie ogniwa rozwartego, prąd zwarcia, rezystancja szeregowa, punkt mocy maksymalnej, współczynnik wypełnienia, sprawność. Pod wpływem padania promieniowania słonecznego na ogniwo, na jego rozwartych zaciskach powstaje napięcie ogniwa rozwartego U OC (ang. open circuit voltage), inaczej nazywane napięciem jałowym (prąd jest równy zero). Dołączenie obciążenia (rezystancji szeregowej) R S do tych zacisków, spowoduje zamknięcie obwodu, przepływ prądu, zależny od R S. Najwyższa wartość prądu, przy R S = 0, nazywana jest prądem zwarcia I SC (ang. short circuit current). Powyższe parametry zaznaczono na charakterystyce prądowo-napięciowej (rys. 2). Kolejnym istotnym parametrem jest punkt mocy maksymalnej MPP (ang. maximum power point), można go zdefiniować jako prostokąt o maksymalnym polu powierzchni, oparty na osiach współrzędnych i wierzchołku należącym do charakterystyki, którego wierzchołek określa moc maksymalną, znamionową ogniwa P MPP. Napięcie U MPP i prąd I MPP dla punktu mocy maksymalnej stanowią parametry znamionowe ogniwa. Punkt MPP można również określić na podstawie charakterystyki obciążenia (rys. 2), inaczej zwanej mocową. Ważną wielkość stanowi współczynnik wypełnienia, FF (ang. fill factor), nazywany także współczynnikiem wykorzystania ogniwa. Rys. 2. Charakterystyka prądowo-napięciowa i charakterystyka obciążenia (mocowa) 8

Osiąga on wartość równą 1, kiedy krzywa prądowo-napięciowa jest prostokątem o bokach U OC i I SC. Sytuacja taka opisuje warunki idealne. Współczynnik wypełnienia można wyrazić za pomocą następującej zależności: pole pow. B PMPP U MPPI MPP FF = = = (1) pole pow. A UOCISC UOCISC gdzie: P MPP moc maksymalna (znamionowa) ogniwa, U OC napięcie ogniwa rozwartego, I SC prąd zwarcia, U MPP i I MPP napięcie i prąd w punkcie maksymalnej mocy. Sprawność ogniwa (modułu) wyraża stosunek wytworzonej mocy elektrycznej, P MPP do mocy padającego promieniowania świetlnego, P in : η = P P MPP in U MPPI = E s gdzie: E natężenie promieniowania [W/m 2 ], s powierzchnia badanego modułu [m 2 ]. Istotnym parametrem, który wpływa na uzysk energii elektrycznej, jest temperatura pracy ogniwa. Producenci podają dane znamionowe zazwyczaj dla temperatury 25 C oraz gęstości promieniowania 1000 W/m 2. Dla temperatury powyżej 25 C każdy przyrost temperatury ogniwa powoduje spadek mocy maksymalnej, zaś dla temperatury poniżej 25 C każdy spadek temperatury ogniwa powoduje wzrost mocy maksymalnej (rys. 3). Biorąc pod uwagę negatywny wpływ wzrostu temperatury ogniwa na sprawność, należy zapewnić odpowiednie chłodzenie, wentylację dla modułów. Zadanie to realizowane jest przez odpowiedni montaż modułów, zapewniający swobodny przepływ powietrza przy instalacji [6, 7, 8]. MPP (2) Rys. 3. Wpływ temperatury ogniwa na jego sprawność Nr 179 9

3. Wybrane elementy projektowania elektrowni fotowoltaicznych Ważnym aspektem podczas projektowania układów fotowoltaicznych jest ustawienie modułów w kierunku promieniowania słonecznego. W zależności od położenia geograficznego konieczny jest odpowiedni wybór optymalnego kąta nachylenia modułów względem powierzchni (kąt α) oraz ustawienie w kierunku południowym. Moduł fotowoltaiczny odbiera największą ilość energii, gdy promienie słoneczne padają prostopadle do jego płaszczyzny. Nieznaczne odchylenie modułu od kierunku południowego (kąt β) ma niewielki wpływ na efektywność pracy instalacji, jednak wiąże się ze zmniejszeniem uzysków energetycznych. Rys. 4. Dobór odstępów między rzędami modułów fotowoltaicznych Optymalną odległość pomiędzy modułami można wyznaczyć na podstawie zależności (rys. 4): 10 ( cos β + sinβ cosα ) a = d (3) gdzie: a odległość między początkami następnych rzędów modułów, h wysokość krawędzi modułu od ziemi, d długość modułu, α kąt padania promieni słonecznych, β kąt nachylenia modułu do powierzchni. Możliwe są dwa podstawowe sposoby łączenia modułów: szeregowo i równolegle. Połączenie szeregowe powoduje wzrost napięcia proporcjonalnie do ilości modułów, np. dla trzech modułów trzykrotnie (rys. 5). Należy zwrócić uwagę, że łączone moduły, które tworzą łańcuch, muszą posiadać te same parametry, przede wszystkim ten sam typ oraz prądy. Degradacja prądowa jednego z elementów będzie miała wpływ na cały łańcuch. Połączenie równoległe powoduje wzrost prądu proporcjonalnie do ilości modułów. Łączenie równoległe kilku łańcuchów szeregowych możliwe jest wyłącznie dla identycznej liczby modułów w szeregu. Moduł fotowoltaiczny dostarcza prąd stały, stąd konieczne jest wykorzystanie falownika. Charakteryzuje go kilka parametrów: moc, zakres napięć pracy, napięcie startu, minimalne napięcie wejściowe, maksy-

malne napięcie wejściowe, maksymalne napięcie pracy (w punkcie MPP), ilość wejść mocy (trackerów MPP). Można wyróżnić trzy podstawowe rodzaje włączenia falowników (rys. 6): centralny, szeregowy (stringowy) oraz mikroinwerter wbudowany w moduł [6, 7, 8]. Rys. 5. Połączenie szeregowo-równoległe ogniw (modułów) fotowoltaicznych a) b) c) Rys. 6. Rodzaje falowników: a) centralny, b) szeregowy, c) falownik-mikroinwerter wbudowany w moduł Nr 179 11

Energia wprowadzana do sieci musi spełniać wysokie wymagania co do jakości, m.in. kształtu przebiegu napięcia i prądu, które powinny być idealnym przebiegiem sinusoidalnym. Najbardziej rozpowszechnioną obecnie metodą jest tzw. kluczowanie czyli szybkie wyłączanie i włączanie napięcia stałego według takiego algorytmu, aby uzyskać żądany przebieg. Służy do tego odpowiednio sterowany mostek kluczy tranzystorowych zainstalowanych w falowniku. Pozostałe główne elementy falownika to układy wejściowe, do których podłącza się łańcuchy modułów i które zapewniają ich bezpieczeństwo, a także możliwość ich odłączenia. Ważnym elementem jest również układ śledzenia maksymalnego punktu pracy (ang. Maximum Power Point Tracking, MPPT), który może zwiększyć ilość przetworzonej energii nawet o 20%. Ważnym elementem są zabezpieczenia falownika zapewniające jego wydajną i bezpieczną współpracę z siecią. Jednym z podstawowych zadań falownika jest ciągłe monitorowanie parametrów sieci takich jak: napięcie, częstotliwość i odpowiednie reagowanie na ich zmiany, w tym odłączenie falownika od sieci w przypadku, gdy wartości tych parametrów znajdą się poza dozwolonym zakresem. Niemożliwa zatem jest tak zwana wyspowa praca falownika (ang. off-grid), ponieważ bez dodatkowych urządzeń separujących go od sieci mógłby stanowić spore zagrożenie w przypadku awarii. 4. System energetyczny a źródła rozproszone Krajowy system energetyczny nie jest jeszcze gotowy do przyjęcia na większą skalę energii ze źródeł rozproszonych. Kiedy go projektowano i budowano nikt nie zakładał, że pojawią się lokalnie małe źródła energii. W chwili obecnej mamy sytuację, że do tych nowych pojawiających się coraz częściej małych źródeł trzeba będzie dopasować całą sieć. Patrząc na rozwój energetyki rozproszonej w krajach europejskich można sobie wyobrazić wiele instalacji małych turbin wiatrowych, paneli fotowoltaicznych oraz innych źródeł energetyki rozproszonej przyłączanych do systemu energetycznego. Dodatkowym argumentem przemawiającym za rozwojem tych źródeł jest unijna polityka promowania energetyki odnawialnej i rozproszonej. Z pewnością do tych źródeł należy energetyczna przyszłość i obecne proporcje wykorzystania energetyki opartej na OZE na pewno zmienią się na jej korzyść. Stan polskich sieci elektroenergetycznych wymaga generalnej modernizacji. Sieć musi nie tylko dostarczać energię z dużych elektrowni do odbiorcy, ale też odbierać ją z powstających coraz liczniej źródeł rozproszonych. Niezbędnym działaniem jest, obok modernizacji sieci dystrybucyjnej, wzrost liczby połączeń z siecią PSE, aby zwiększyć możliwość oddawania nadwyżek mocy do krajowego systemu. Konieczna jest również rozbudowa sieci przesyłowej, tak aby coraz większa produkcja w sieciach dystrybucyjnych nie powodowała zaburzeń w funkcjonowaniu całego systemu. Wiele wyzwań występuje także na niższych poziomach napięć, tam gdzie instalowane będą źródła generacji rozproszonej. Sieci niskiego napięcia są bardzo zróżnicowane, jeżeli chodzi o ich przygotowanie do przyłączenia większej liczby małych źródeł. Z prowadzonych przez wielu ekspertów analiz wynika, że przyłączenie kilku małych 12

mikroźródeł na poziomie jednego obwodu, bez odpowiednich rozwiązań technicznych, może negatywnie wpłynąć na parametry energii [4, 11]. Do ograniczenia tego problemu z pewnością przyczynią się stosowane rozwiązania z obszaru inteligentnych sieci elektroenergetycznych, dzięki którym można będzie lepiej zarządzać nie tylko odbiorem energii, ale też rozproszonym wytwarzaniem. Istotnym elementem tych sieci są liczniki inteligentne, które pozwalają nie tylko na zdalne monitorowanie poziomu zużycia energii elektrycznej, ale również na bieżące informowanie o poziomie produkcji w mikroźródłach. Konieczne są także rozwiązania techniczne pozwalające na integrację źródeł rozproszonych z siecią elektroenergetyczną, które minimalizują negatywny wpływ tych źródeł na pracę sieci. Projekt ustawy o OZE przewiduje, że jeśli moc zainstalowana mikroinstalacji, o przyłączenie której ubiega się podmiot, nie jest większa niż określona w już wydanych warunkach przyłączenia, to przyłączenie do sieci odbywa się na podstawie zgłoszenia. Jest to rozwiązanie dość kontrowersyjne, ponieważ sieci niskiego napięcia oraz zasilające je stacje SN/nn nie były projektowane ani budowane pod kątem możliwości odbioru energii z sieci niskich napięć, zwłaszcza jeśli pojawią się tam lokalnie spore moce. Istnieje obawa, że w przypadku niekontrolowanego przyłączania mikroinstalacji będą występowały przeciążenia sieci, stanowiące zagrożenie dla urządzeń przyłączonych do tej sieci. Szereg barier głównie natury technicznej i organizacyjno-prawnej z pewnością w znaczny sposób hamuje rozwój generacji rozproszonej. Do istotnych problemów można zaliczyć również: obawę przed destabilizacją systemu elektroenergetycznego przy dużym udziale w bilansie energetycznym niestabilnych źródeł OZE (rys. 7 przykładowy wykres udziału generacji OZE w niemieckim systemie elektroenergetycznym); brak szczegółowych wytycznych dotyczących przyłączania małych jednostek wytwórczych do sieci niskiego napięcia; brak regulacji prawnych umożliwiających powstawanie lokalnych rynków energii, w tym brak dynamicznego systemu taryf [9]. Zgodnie z zapisami zawartymi w małym trójpaku, obowiązek monitorowania rynku mikroinstalacji spada na operatorów sieci dystrybucyjnych, którzy będą musieli sporządzać dla URE sprawozdania z wykazami mikroinstalacji i ilości produkowanej przez nie energii. Mały trójpak określa, że wytwarzanie energii elektrycznej w mikroinstalacji przez osobę fizyczną, która nie jest przedsiębiorcą w rozumieniu ustawy o swobodzie działalności gospodarczej, a także sprzedaż tej energii przez tę osobę, nie jest uznawane za działalność gospodarczą. Za przyłączenie mikroinstalacji do sieci elektroenergetycznej jej operator nie będzie pobierać opłaty, a koszt instalacji układu zabezpieczającego i układu pomiarowo-rozliczeniowego będzie ponosić operator systemu dystrybucyjnego. Mały trójpak określa ponadto, że w przypadku gdy podmiot ubiegający się o przyłączenie mikroinstalacji do sieci dystrybucyjnej jest przyłączony jako odbiorca końcowy, a moc zainstalowana mikroinstalacji nie jest większa niż określona w wy- Nr 179 13

danych warunkach przyłączenia, przyłączenie do sieci będzie odbywać się na podstawie zgłoszenia złożonego w przedsiębiorstwie energetycznym, po zainstalowaniu odpowiednich układów zabezpieczających i układu pomiarowo-rozliczeniowego. W innym przypadku przyłączenie mikroinstalacji do sieci dystrybucyjnej ma się odbywać na podstawie umowy o przyłączenie do sieci. Rys. 7. Zużycie i konsumpcja energii w Niemczech (06.06.2013 maksymalny udział fotowoltaiki ok. 23,4 GW). Źródło: www.agora-energiewende.de Zgodnie z regulacjami, które znalazły się w małym trójpaku, przyłączane mikroinstalacje będą musiały spełniać wymagania techniczne i eksploatacyjne określone w art. 7a ust. 1 i ust. 2 Prawa energetycznego. Szczegółowe warunki przyłączenia, wymagania techniczne oraz warunki współpracy mikroinstalacji z systemem elektroenergetycznym mają zostać określone także w odpowiednim rozporządzeniu ministra gospodarki [14]. 5. Analiza energetyczna i ekonomiczna elektrowni fotowoltaicznej W nowelizacji Prawa energetycznego z 26 lipca 2013 r., która weszła w życie 11 września br., znalazł się zapis istotny dla gospodarstw domowych i firm zainteresowanych montażem instalacji fotowoltaicznych o mocy do 40 kw. Zgodnie z nowymi przepisami osoby zainteresowane montażem mikroinstalacji OZE nie muszą już rejestrować działalności gospodarczej, a nadwyżki produkowanej energii mogą sprzedawać do sieci po cenie wynoszącej 80% średniej ceny z rynku hurtowego w roku wcześniejszym. Cena gwarantowana za sprzedaż energii nie dotyczy jednak eksploatujących mikroinstalacje fotowoltaiczne przedsiębiorców, którzy w dalszym ciągu mogą korzystać ze wsparcia w ramach obecnego systemu zielonych certyfikatów. Przedsiębiorców nie dotyczy także kolejne ułatwienie przewidziane w małym trójpaku dla osób montujących mikroinstalacje OZE. Chodzi o koncesję, którą w przeciwieństwie do gospodarstwa domowego eksploatującego mikroinstalację fotowoltaiczną przedsiębiorca będący właścicielem takiego systemu musi posiadać. 14

Nr 179 Generacja rozproszona Zgodnie z przepisami prawa energetycznego przyłączenie mikroinstalacji do sieci elektroenergetycznej jest darmowe. Zakład energetyczny pokrywa koszty wymiany licznika na dwukierunkowy. Niestety oddawana do sieci energia jest skupowana po bardzo niskich stawkach ok. 0,156 zł/kwh. Stawka ta jest określona ustawowo jako 80% średniej ceny energii z poprzedniego roku. Czy w takich warunkach instalacja PV może być ekonomicznie uzasadniona? Zakładając, że część wytworzonej energii elektrycznej zużywamy na potrzeby własne, możemy uniknąć kosztu zakupu energii, która w chwili obecnej wynosi ok. 0,6 zł/kwh. Sama instalacja nie może być zbyt duża, aby współczynnik konsumpcji był możliwie wysoki. Tab. 1. Wyniki analizy ekonomicznej Moc [kw] 4 10 Nakład inwestycyjny [zł] 16 000 50 000 Czas pracy [h] 950 950 Ilość wyprodukowanej energii [MWh] 3,8 9,5 Ilość energii sprzedanej [%] 30 40 50 10 30 50 Czas zwrotu inwestycji [lata] 18 21 >25 19 >25 >25 Czas pracy [h] 1000 1000 Ilość wyprodukowanej energii [MWh] 4 10 Ilość energii sprzedanej [%] 30 40 50 10 30 50 Czas zwrotu inwestycji [lata] 17 19 23 18 24 >25 Analizie ekonomicznej poddane zostały dwa układy fotowoltaiczne o mocach: 4 kw oraz 10 kw. Oba zainstalowane dla małego gospodarstwa domowego. Wyniki analizy przedstawiono w tablicy 1. Założenia: stały spadek wielkości produkcji paneli fotowoltaicznych związany ze spadkiem sprawności 0,8% rocznie, stały 2% wzrost cen energii elektrycznej. Nakład inwestycyjny na instalację założono dla tanich dostępnych na rynku paneli fotowoltaicznych oraz bez kosztów montażu. Obliczenia wykonano dla dwóch czasów pracy instalacji: 950 h oraz 1000 h w ciągu roku. Założono także sprzedaż nadwyżek wyprodukowanej energii do sieci elektroenergetycznej od 10% do 50%. 6. Podsumowanie Mimo że możliwości rozwoju rynku fotowoltaicznego w Polsce są ograniczone, to jednak celowym jest zwrócenie uwagi na możliwości wykorzystania energii słonecznej w aspekcie bezpośrednich korzyści. Są to korzyści ekologiczne, ekonomiczne i społeczne. Polska zobowiązana jest do ograniczania emisji CO 2 do atmosfery, więc zwiększanie udziału energii odnawialnych w strukturze energii pierwotnej, bezpośrednio przyczyni się do obniżenia emisji. Na podstawie przeprowadzonej analizy można zauważyć, że czas zwrotu z inwestycji w obu analizowanych przypadkach jest bardzo długi od 17 lat do nawet powyżej 25 lat, czyli teoretycznie przekracza czas życia paneli fotowoltaicznych. Czas zwrotu silnie zależy od czasu wykorzystania paneli fotowoltaicznych. Ustawodawca pisząc założenia do małego trójpaku wyraźnie określił zakres stosowania układów 15

fotowoltaicznych w mikroskali. Z analizy wynika, że najbardziej opłacalne jest stosowanie układów o mocach porównywalnych z mocą zużywaną w budynku. Im wyższa ilość energii sprzedawanej do sieci, tym dłuższy czas zwrotu inwestycji. Mimo że fotowoltaika jeszcze bardzo długo nie będzie stanowiła konkurencji dla energetyki opartej o surowce kopalne, to jej udział powinien sukcesywnie wzrastać, doprowadzając w przyszłości do zmiany struktury produkcji energii oraz czyniąc energetykę przyjazną dla człowieka i środowiska naturalnego. 7. Bibliografia 1. Dyrektywa Parlamentu Europejskiego i Rady 2009/28/WE z dnia 23 kwietnia 2009 r. w sprawie promowania stosowania energii ze źródeł odnawialnych zmieniająca i w następstwie uchylająca dyrektywy 2001/77/WE oraz 2003/30/WE. 2. Paska J., Wytwarzanie rozproszone energii elektrycznej i ciepła, Ofic. Wydawnicza Politechniki Warszawskiej, Warszawa 2010. 3. Sroka K., Szczerbowski R., Warunki techniczno-ekonomiczne rozwoju generacji rozproszonej w Polsce, Seminarium PAN KNE w Poznaniu przy PP. 4. Szczerbowski R., Generacja rozproszona oraz sieci Smart Grid wirtualne elektrownie. Polityka Energetyczna tom 14, z. 2. Wyd. Instytutu GSMiE PAN, Kraków 2011, s. 391 404. PL ISSN 1429-6675. 5. Pietruszko S., Perspektywy i bariery rozwoju fotowoltaiki w Polsce, Czysta Energia, Nr 1/2012 (125). 6. Klugmann-Radziemska E., Fotowoltaika w teorii i praktyce, Wydawnictwo BTC, Legionowo 2010. 7. Stapleton G., Neill S., Grid-Connected Solar Electric Systems, Earthscan, London 2012. 8. Haberlin H., Photovoltaics. System Design and Practice, Wiley, 2012. 9. Kłos M., Generacja rozproszona w krajowym systemie elektroenergetycznym korzyści i problemy Generacja rozproszona w nowoczesnej polityce energetycznej wybrane problemy i wyzwania, red. J. Rączka, M. Swora, W. Stawiany Narodowy Fundusz Ochrony Środowiska i Gospodarki Wodnej. Warszawa 2012, s. 29 34. 10. Krawiec F., Odnawialne źródła energii w świetle globalnego kryzysu energetycznego, Difin, Warszawa 2010. 11. Majchrzak H., 2013 Wpływ PV na bilansowanie KSE, Czysta Energia, nr 6/2013. 12. PVPS Report A Snapshot of Global PV 1992-2012 Preliminary information from the IEA PVPS Programme Report IEA-PVPS T1-22:2013. 13. Wiśniewski G. (red.), Krajowy Plan Rozwoju Mikroinstalacji Odnawialnych Źródeł Energii Do 2020 roku Synteza Instytut Energetyki Odnawialnej we współpracy z członkami i partnerami Zw. Pracodawców Forum Energetyki Odnawialnej Warszawa 2012. 14. Ustawa z dnia 26 lipca 2013 r. o zmianie ustawy Prawo energetyczne oraz niektórych innych ustaw, Dz.U. 2013 poz. 984. 16 Artykuł był publikowany w formie referatu na XVI Sympozjum O. Poznańskiego SEP, które odbyło się 20 21 listopada 2013 r. w Poznaniu.