DETERMINING THE ENERGY OF A WIND ROTOR IN A PULVERIZING AERATOR SYSTEM



Podobne dokumenty
MODELLING OF PULVERISING AERATOR OPERATION PARAMETERS. Ryszard Konieczny

Has the heat wave frequency or intensity changed in Poland since 1950?

BIOPHYSICS. Politechnika Łódzka, ul. Żeromskiego 116, Łódź, tel. (042)

Regionalny Dyrektor Ochrony Środowiska ul. 28 czerwca 1956 Poznań

GLOBAL METHANE INITIATIVE PARTNERSHIP-WIDE MEETING Kraków, Poland

Exposure assessment of mercury emissions

Cracow University of Economics Poland

I INTERNATIONAL SCIENTIFIC CONFERENCE

Sargent Opens Sonairte Farmers' Market

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Pomiary hydrometryczne w zlewni rzek

Akademia Morska w Szczecinie. Wydział Mechaniczny

Gospodarka Elektroenergetyczna. Power Systems Economy. Energetics 1 st degree (1st degree / 2nd degree) General (general / practical)

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

DETERMINATION OF KINETIC ENERGY OF PHOSPHORUS IN THE OPEN TROUGH WATERS OF LAKE STARZYC

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

ISSN ISSN Aesthetics and ethics of pedagogical action Issue 11

Reporting on dissemination activities carried out within the frame of the DESIRE project (WP8)

The analysis of the energy demand for heating and cooling of the house built on the basis of the traditional Canadian wood-frame construction

Equipment for ultrasound disintegration of sewage sludge disseminated within the Record Biomap project (Horizon 2020)

METODA OGÓLNEJ OCENY STANU ŚRODO- WISKA OBSZARÓW WIEJSKICH NA PODSTAWIE INFORMACJI Z BANKU DANYCH REGIONALNYCH GUS I OSZACOWAŃ PROGRAMU EMEP

Odnawialne źródła energii. Renewable Energy Resources. Energetics 1 st degree (1st degree / 2nd degree) General (general / practical)

WPŁYW AKTUALIZACJI NIEKTÓRYCH WSKAŹNIKÓW EKSPLOATACYJNO-EKONOMICZNYCH NA KOSZTY EKSPLOATACJI CIĄGNIKÓW ROLNICZYCH NOWEJ GENERACJI

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

No matter how much you have, it matters how much you need

INSTITUTE OF METEOROLOGY AND WATER MANAGEMENT NATIONAL RESEARCH INSTITUTE

ROZPRAWA DOKTORSKA. Model obliczeniowy ogrzewań mikroprzewodowych

PRODUCTION HALL OFFER

Lecture 18 Review for Exam 1

Prof. dr hab. inż. Tadeusz Szelangiewicz. transport morski

Działania w dziedzinie klimatu, środowisko, efektywna gospodarka zasobami i surowce

PL-DE data test case. Kamil Rybka. Helsinki, November 2017

Streszczenie rozprawy doktorskiej

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

Knovel Math: Jakość produktu

Outline of a method for fatigue life determination for selected aircraft s elements

Zarządzanie sieciami telekomunikacyjnymi

The Overview of Civilian Applications of Airborne SAR Systems

Health Resorts Pearls of Eastern Europe Innovative Cluster Health and Tourism

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET

Extraclass. Football Men. Season 2009/10 - Autumn round

WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET

WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET

Institute of Meteorology and Water Management, Wroclaw Branch PP 10. Wrocław, June 2007

SPIS TREŚCI SPIS WAŻNIEJSZYCH OZNACZEŃ WSTĘP KRÓTKA CHARAKTERYSTYKA SEKTORA ENERGETYCZNEGO W POLSCE... 14

MULTI-MODEL PROJECTION OF TEMPERATURE EXTREMES IN POLAND IN

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ

Conception of reuse of the waste from onshore and offshore in the aspect of

WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET

WYBRANE PROBLEMY BADAWCZE EKOLOGII, ORGANIZACJI I INFRASTRUKTURY TRANSPORTU

Krytyczne czynniki sukcesu w zarządzaniu projektami

WSCHÓD I ZACHÓD SŁOŃCA SUNRISE / SUNSET

WPŁYW WYBRANYCH PARAMETRÓW TECHNICZNYCH I TECHNOLOGICZNYCH NA WYDAJNOŚĆ AERATORA PULWERYZACYJNEGO

SPITSBERGEN HORNSUND

Recent Developments in Poland: Higher Education Reform Qualifications Frameworks Environmental Studies

SZACOWANIE POTENCJAŁU ENERGETYCZNEGO BIOMASY RO LINNEJ POCHODZENIA ROLNICZEGO W WOJEWÓDZTWIE KUJAWSKO-POMORSKIM

WENYLATORY PROMIENIOWE ROOF-MOUNTED CENTRIFUGAL DACHOWE WPD FAN WPD

KOMUNIKAT 2. The 44 th International Biometrical Colloquium and IV Polish-Portuguese Workshop on Biometry. Conference information:

METODYKA BADAŃ MAŁYCH SIŁOWNI WIATROWYCH

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

Call 2013 national eligibility criteria and funding rates

OPTYMALIZACJA STEROWANIA MIKROKLIMATEM W PIECZARKARNI

TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

HemoRec in Poland. Summary of bleeding episodes of haemophilia patients with inhibitor recorded in the years 2008 and /2010

REHABILITATION OF MEDIUM-HEAD HYDROPOWER PLANTS WITH EXPLOITED TWIN-FRANCIS TURBINES.

PROJECT. Syllabus for course Global Marketing. on the study program: Management

Nie równomierne nagrzanie powierzchni Ziemi i ruch obrotowy Ziemi

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ MECHANICZNY ROZPRAWA DOKTORSKA. mgr inż. Piotr Smurawski

PRACE NAUKOWE UNIWERSYTETU EKONOMICZNEGO WE WROCŁAWIU RESEARCH PAPERS OF WROCŁAW UNIVERSITY OF ECONOMICS

miniature, low-voltage lighting system MIKRUS S

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

Zagrożenie powodziowe na obszarach zurbanizowanych w dolnym biegu Odry

Umowa Licencyjna Użytkownika Końcowego End-user licence agreement

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

WYZNACZANIE WSPÓŁCZYNNIKÓW AERODYNAMICZNYCH RÓŻNYCH TYPÓW ŁOPAT WIRNIKA KARUZELOWEGO

SPITSBERGEN HORNSUND

Rev Źródło:

Power Machines and Technology. Energetics 1 st degree (1st degree / 2nd degree) General (general / practical) Full-time (full-time / part-time)

Economical utilization of coal bed methane emitted during exploitation of coal seams energetic and environmental aspects

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

Comprehensive solutions to limit the inflow of pollutants to surface and groundwater

Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH

ETICS: Few words about the Polish market Dr. Jacek Michalak Stowarzyszenie na Rzecz Systemów Ociepleń (SSO), Warsaw, Poland

WENTYLATORY PROMIENIOWE SINGLE-INLET DRUM BĘBNOWE JEDNOSTRUMIENIOWE CENTRIFUGAL FAN

3.

deep learning for NLP (5 lectures)

ELECTRIC AND MAGNETIC FIELDS NEAR NEW POWER TRANSMISSION LINES POLA ELEKTRYCZNE I MAGNETYCZNE WOKÓŁ NOWYCH LINII ELEKTROENERGETYCZNYCH

Formularz recenzji magazynu. Journal of Corporate Responsibility and Leadership Review Form

PERSPEKTYWY ZRÓWNOWAŻONEGO ROZWOJU TRANSPORTU DROGOWEGO W POLSCE DO 2030 ROKU

XXIII Konferencja Naukowa POJAZDY SZYNOWE 2018

Przesyłanie energii elektrycznej. Electric Energy Transmission. Energetics 1 st degree (1st degree / 2nd degree) General (general / practical)

Planning and Cabling Networks

PEX PharmaSequence monthly report - January 2018 Total open market (sell-out report)

Reporting on dissemination activities carried out within the frame of the DESIRE project (WP8)

Effective Governance of Education at the Local Level

OPTYMALIZACJA PUBLICZNEGO TRANSPORTU ZBIOROWEGO W GMINIE ŚRODA WIELKOPOLSKA

Transkrypt:

TEKA Kom. Mot. Energ. Roln. OL PAN, 2007, 7A, 46 51 DETERMINING THE ENERGY OF A WIND ROTOR IN A PULVERIZING AERATOR SYSTEM Ryszard Konieczny *, Lech Pieczyński ** * Institute for Land Reclamation and Grassland Farming (ILRGF) at Falenty, Western Pomeranian Research Centre in Szczecin, ul. Czesława 9, 71-504 Szczecin, Poland e-mail: rkoniecz@poczta.onet.pl ** Regional Fund For Environmental Protection & Water Management Province of Western Pomerania, ul. Solskiego 3, 71-323 Szczecin, Poland Summary. The paper discusses problems of lake water quality improvement aided by slow-moving wind turbines, the structure and function of a wind-driven pulverising aerator, and mathematical calculation of rotor energy. Knowledge on the theoretical Savonius rotor energy in the pulverising aerator system will assist in the selection of aerator operation parameters and improve the efficiency of pulverising aeration of Lake Starzyc. Key words: wind energy, Savonius rotor, pulverising aerator, lakes INTRODUCTION Advanced eutrophication has become a world-wide problem [Mientki 2000] which calls for actions involving reduction of wastewater discharge to lakes and some complementary technological measures [Podsiadłowski 2007]. In view of threats for the natural environment posed by the use of fossil fuels [Turowski 2000] it is particularly worthwhile to consider slow-moving rotor-based wind-driven devices to be applied in efforts aimed at improving the present water quality of lakes [Piesik J., Piesik Z. 2003]. Technical parameters of slow-moving rotors [Jagodziński 1959] make it possible to utilise wind energy resources from the minimum speed of 2 m s -1 [Mikielewicz 2004]. A slow-moving wind-driven rotor was first used in lake rehabilitation-oriented aeration of Polish lakes [Jankowski 2007; Solarczyk, Burak 2000] in the late 1980 s when it was positioned on the shore of Lake Starodworskie in Olsztyn. Favourable results of the relevant research [Jaszczułt 1990] led to the development, by the Agricultural University in Poznań, and application, in 1996 on Lake Jaroszewskie at Sieraków, of a new type of wind-driven aerator (Fig. 1.) functioning in the so-called pulverising aeration technology [Zimny 2004]. The aerator, described in the literature [Konieczny 2006; Podsiadłowski et al. 2000], is capable of moving freely on the lake surface (within an area delimited by the length of the anchor line) and transporting the aerated water down to the near-bottom zone. Water aeration occurs on the surface in the pulverising segment via a Savonius rotor-driven paddle wheel through a transmission system. The near-bottom water flows through the aerator via hoses (risers) according to the principle of connected vessels.

DETERMINING THE ENERGY OF A WIND ROTOR... 47 Fig. 1. A model of pulverising aeration technology system (after Podsiadłowski): 1, pulverising segment; 2, aeration chamber; 3, water intake chamber; 4, paddle wheel; 5, aeration chamber nozzle; 6, suction chamber nozzle; 7, pumping hose; 8, suction hose; 9, splash plate The present work was aimed at presenting a mathematical method for calculation and determination of wind rotor energy under climatic conditions of Lake Starzyc which, together with an adjacent area, is a component of the Iński Landscape Park s buffer zone [Wesołowski et al. 2006]. It is assumed that an ability and possibility of mathematical calculation of the Savonius rotor energy will aid in an appropriate selection of aerator operation parameters and in undertaking effective measures for improving the quality of near-bottom water in Lake Starzyc, using the pulverising aeration technology for lake rehabilitation via water aeration. METHODS OF STUDY Calculation and determination of the Savonius wind rotor energy in the pulverising aerator system, placed 2 m from the Lake Starzyc surface, includes: height h s =5 m of a rotor (cross-section surface A=20 m 2 in the vertical rotation axis); decadal wind velocity data (Resko IMWM station) [Biuletyny Agrometeorologiczne 1980-1991] over the growing seasons (April-September) of 1980-1991; wind energy utilisation index C l =0.2; land-water roughness index K sz =1.4 [Massel 1995]; and a constant air stream density ρ=1.168kg m -3. The decadal wind velocities were re-calculated with respect to the Lake Starzyc surface and to 11 levels of profile h s subdivided into 10 sections 0.5-m long each. Wind velocities in the vertical profile were calculated with a nomogram (Fig. 2) and a correction factor calculated with a power function, using the Microsoft Excel software: K z =0.7271 z 0.1383 (1) Taking into account the relationships given by Sobolewski and Żurański [1981] for determining wind energy resources, the calculations made use of a formula for kinetic energy of air moving at a speed v (m s -1 ): E=0.5 m v 2 J s -1, (2) m=ρ A v kg s -1 (3)

48 Ryszard Konieczny, Lech Pieczyński is the air stream density (ρ) vector perpendicular to surface A. Fig. 2. Nomogram of wind speed changes in a vertical profile [Massel 1995; Wiśniewski, Wolski 2005]: K z, correction factor; U z, wind speed at height z; U 10, wind speed at height 10 m RESULTS Wind speed variability results in changes in the air stream energy. The air stream effects on Lake Starzyc area subjected to wind action [PN-77/B-02011] and on the IMWM Resko station is a net result of a number of factors resulting primarily from land and water roughness effect and local differences in the vertical profile. To simplify the calculations for the Savonius rotor energy in the pulverising aerator system, mean decadal wind speeds were used. Wind resources under the climatic conditions of Lake Starzyc were calculated with: v=v 10 K sz m s -1, (4) v 10 wind speed (m s -1 ) at height 10 m in the meteorological station profile; K sz land-water roughness coefficient. Power function (1) and the nomogram were used to recalculate the wind speeds (4) at every 0.5 m at the rotor height h s. The obtained horizontal air stream speeds (v, m s -1 ) were averaged across 10 0.5-m wide sections of the vertical profile A, using the formula: v r vh v 0,5 m s 2-1, (5) v śr mean horizontal wind speed, m s -1 ; v h wind speed (m s -1 ) at the considered vertical profile height level; v 0,5 wind speed (m s -1 ) at a distance of 0.5 m from the point of reference.

DETERMINING THE ENERGY OF A WIND ROTOR... 49 Equations (2) and (3) describing unit kinetic energy of air moving across rotor surface A were used to calculate decadal wind stream power in the following way: P=0.5 ρ A v 3 W, (6) where index v was determined, at constant air mass stream density ρ adopted for standard conditions (25 o C; 100kPa) as used in aerodynamics, by: v n v ri i 1 n the number of partial surfaces A in the rotor cross-section; decadal mean wind speed (m s -1 ) in the i-th section of rotor h s. m s -1, (7) As a wind rotor transforms the air mass stream into rotation mechanical energy (which involves energy losses), the rotor energy calculations included an aerodynamic index of wind energy utilisation [Marecki 1995; Bleckwell et al. 1977]: C l = η sm ξ t. (8) where the term η sm is the rotor aerodynamic efficiency and ξ t is the theoretical coefficient of wind energy utilisation: ξ t =4 e (1-e) (1+e) -1, (9) in which the term e, denoting coefficient of air stream inhibition is determined by: v 1 air speed (m s -1 ) in front of wind-driven rotor; v 2 air speed (m s -1 ) behind the wind-driven rotor. e=v 2 v 1-1, (10) Considering equations (6), (8), and literature information [Pudlik 2005; Zeńczak 2004; Marecki 1995], the theoretical power of the Savonius rotor was determined as: P śr =0.5 ρ A v 3 C l 10-3 kw, (11) for mean net wind speeds in the profile h s. Calculations carried out with equation (11) involved time t (s) of wind duration in a decade. The formula: n Ec P i 1 ri t i kwh, (12) which is a sum of products of power P and time t of wind duration in a decade, the total theoretical energy of a wind rotor in the pulverising aerator system was determined for individual months of growing seasons of 1980-1991. Because the magnitude of the monthly rotor energy is important in view of assessing a remediating potential of water aeration with the system used, equation (12) was entered into equation:

50 Ryszard Konieczny, Lech Pieczyński Ec Em kwh, (13) i i the number of months in the decades considered, and theoretical values of mean monthly rotor energy were calculated. The data obtained (Table 1) served as a basis on which to determine operational parameters of a pulverising aerator and water pulverising energy necessary for the remediating aeration of near-bottom water in Lake Starzyc. Table 1. Mean monthly theoretical energy (kwh) of Savonius rotor in a pulverising aerator system under climatic conditions of Lake Starzyc Lake April May June July August September Starzyc 39.77 29.92 36.31 20.76 19.31 36.13 CONCLUSIONS 1. The Savonius rotor energy depends on wind speed distribution along a vertical profile and on energy losses associated with air stream mass flow through the rotor. 2. For the growing season and climatic conditions of Lake Starzyc, the mean monthly theoretical energy of a Savonius rotor is estimated at 19-40 kwh. 3. Mathematical calculations and determination of the Savonius rotor energy make it possible to select appropriate parameters of aerator operation in the system of pulverising aeration of Lake Starzyc. REFERENCES Biuletyny Agrometeorologiczne, 1980-1991, IMGW, Warszawa. Blackwell B.F., Sheldahl R.E., Feltz L.V. 1977: Wind Tunnel Performance Data for Two- and Three- Bucket Savonius Rotors. Prep. by Sandia Laboratories, Albuquerque, USA. Jagodziński W. 1959: Silniki wiatrowe. PWT, Warszawa, 330 pp. Jankowski J. 2007: Stan prac rekultywacyjnych w Polsce. [In:] Ochrona i rekultywacja jezior. In: R. Wiśniewski and J. Piotrkowiak (eds), Conference Proceedings, the 6th Polish Conferencea, Toruń, 14-16 June 2007. Wyd. Polskie Zrzeszenie Inżynierów i Techników Sanitarnych, Toruń, pp. 83-94. Jaszczułt R. 1990: Badania skuteczności sztucznego napowietrzania jeziora Starodworskiego przy wykorzystaniu energii wiatru (Ph.D.Thesis). Manuscript, WOW i RS ART Olsztyn, 71 pp. Konieczny R. 2006: Sztuczne napowietrzanie jezior Polski w technologii aeracji pulweryzacyjnej. Wiadomości Melioracyjne i Łąkarskie, No. 4 (411), pp. 182-184. Marecki J. 1995: Podstawy przemian energetycznych. WNT, Warszawa, 208 pp. Massel S. 1995: Poradnik hydrotechnika. Wyd. Morskie Gdańsk, 338 pp. Mientki Cz. 2000: Korzystne efekty prowadzonej metodą krotowską rekultywacji Jeziora Rudnickiego Wielkiego w Grudziądzu. [In:] A. Giziński and Sz. Burak (eds), Ochrona i rekultywacja jezior; Conference Proceedins, the 4th International Scientific-Technological Conference, Przysiek, 12-14 June 2000. Wyd. Polskie Zrzeszenie Inżynierów i Techników Sanitarnych, Toruń, pp. 123-130.

DETERMINING THE ENERGY OF A WIND ROTOR... 51 Mikielewicz J. 2004: Techniczne aspekty wykorzystania energii biomasy i wiatrowej w Unii Europejskiej i w Polsce. [In:] P. Lewandowski and W. Nowak (eds), Rozwój energii odnawialnej na Pomorzu Zachodnim. Koszalin, 8-9 December 2004. Wyd. Hogben, Szczecin, pp. 147-166. Piesik J., Piesik Z. 2003: Możliwości wykorzystania energii wiatrowej dla rewitalizacji jezior przymorskich. [In:] P. Lewandowski, W. Nowak, S. Flejterski (eds), Energia odnawialna na Pomorzu Zachodnim. The 1st Regional Conference and Exhibition, Szczecin, 26 November 2003. Wyd. Hogben, Szczecin, pp. 381-383. PN-77/B-02011, 1985. Obciążenia w obliczeniach statycznych. Obciążenie wiatrem. Polski Komitet Normalizacji i Miar. Wyd. Norm. ALFA, Warszawa, pp. 1-37. Podsiadłowski S. 2007: Metoda precyzyjnej inaktywacji fosforu w wodach jeziornych [In:] Monitoring funkcjonowania i przemian geoekosystemów jeziornych. The Polish Scientific Conference on Functioning of lacustrine geoecosystems. Międzyzdroje, 9-11 October 2007. Manuscript, Instytut Paleogeografii i Geoekologii UAM, Poznań, pp. 53-54. Podsiadłowski S., Mastyński J., Andrzejewski W., Konieczny R. 2000: Aeracja jezior. [In:] Rybactwo jeziorowe. The 5th Polish Conference of Fisheries-Associated Lake Users. Olsztyn, 14-16 June 2000. Wyd. Instytut Rybactwa Śródlądowego, Olsztyn, pp. 121-127. Pudlik M. 2005: Основные положения использования ветра в качестве источника энергии для нужд сельского хозяйства. MOTROL Kom. Mot. Energ. Rol., Lublin, vol. 7, pp. 149-153. Sobolewski A., Żurański J.A. 1981: Metodyka określania zasobów energetycznych wiatru. [In:] Energetyzacja Rolnictwa. Biuletyn informacyjny IBMER, No 1, Warszawa, pp. 60-69. Solarczyk A., Burak Sz. 2000: Informacja o stanie rekultywacji jezior w Polsce. [In:] Ochrona i rekultywacja jezior. In: A. Giziński and Sz. Burak (eds), Conference Proceedings, the 4th International Scientific-Technological Conference, Przysiek, 12-14 June 2000. Wyd. Polskie Zrzeszenie Inżynierów i Techników Sanitarnych, Toruń, pp. 113-122. Turowski S. 2000: Wykorzystanie energii wiatru do wytwarzania energii elektrycznej i w gospodarce wodnej. [In:] Wdrażanie nowych technologii w zakresie zastosowania niekonwencjonalnych źródeł energii w rolnictwie i na obszarach wiejskich. Conference Proceedings, Stare Pole, 14-15 November 2000. Manuscript, Pomorski Urząd Wojewódzki, Gdańsk, pp. 77-86. Wesołowski P., Trzaskoś R., Konieczny R. 2006: Zróżnicowanie florystyczne i walory przyrodnicze roślinności przybrzeżnej jeziora Starzyc. [In:] Łąkarstwo w Polsce. Wyd. PŁT, Poznań, No. 9, pp. 233-243. Wiśniewski B., Wolski T. 2005: Uwarunkowania pogodowe eksploatacji elektrowni wiatrowych na Pomorzu Zachodnim i w strefie zatoki pomorskiej. [In:] M. Ciaciura (ed.), Alternatywne źródła energii dobrodziejstwa i zagrożenia. Wyd. ZUPW OPTIMEX Szczecin, pp. 27-44. Zeńczak W. 2004: The possibility of renewable energy use on ships. [In:] J. Mikielewicz and W. Nowak (eds), Heat transfer and Renewable sources of energy 2004. Wyd. Uczelniane Politechniki Szczecińskiej, Szczecin, pp. 317-324. Zimny R. 2004: Rekultywacja Jeziora Jaroszewskiego doświadczenia samorządu Gminy Sieraków. [In:] Ochrona i rekultywacja jezior. The 5th Scientific Conference, Grudziądz, 11-13 May 2004. Wyd. Polskie Zrzeszenie Inżynierów i Techników Sanitarnych, Toruń, pp. 247-252.