Działanie realizowane w ramach projektu Absolwent informatyki lub matematyki specjalistą na rynku pracy Matematyka i informatyka może i trudne, ale nie nudne Komputerowe dowodzenie twierdze ń matematycznych Adam Naumowicz Instytut Informatyki Uniwersytet w Białymstoku adamn@mizar.org 16 wrześ nia 1 Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
O czym będzie ten wykład? W jaki sposób komputery pomagają matematykom? Rodzaje komputerowych narzędzi matematycznych Matematyczne wyzwania w dobie komputerów Czy komputery mogą zastąpić matematyków? System weryfikacji dowodów matematycznych MIZAR Biblioteka komputerowo sprawdzonej wiedzy matematycznej MIZAR na Wydziale Matematyki i Informatyki Uniwersytetu w Białymstoku 2
Software dla matematyków Obliczenia numeryczne Liczby: komputer -> człowiek Algebra komputerowa Formuły: komputer -> człowiek Automatyczne dowodzenie twierdzeń Wyszukiwanie dowodów ( theorem provers ) Weryfikacja dowodów ( -checkers ) 3
Matematyczne wyzwania w dobie komputerów Twierdzenie Robbinsa Każda algebra Robbinsa jest algebrą Boole'a Prime Number Theorem Twierdzenie Jordana Hipoteza Kepplera 4
Automatyczne dowodzenie twierdzeń (Pre)historia początek lat 70-tych XX w. Automath (N. de Bruijn) LCF (R. Milner) MIZAR (A. Trybulec) Nqthm (R. Boyer, J. Moore) Evidence Algorithm (V. Glushkov) F. Wiedijk The seventeen provers of the world Provers / -checkers / assistants 5
System MIZAR w pigułce Język MIZAR powstał (i wciąż jest rozwijany!) aby jak najbliżej odpowiadał konstrukcjom używanym w nieformalnych pracach matematycznych Podstawą są klasyczna logika, dowody założeniowe oraz dedukcja naturalna Słowa kluczowe są zaczerpnięte z jęz. angielskiego System (weryfikator) sprawdza poprawność logiczną dowodów pisanych przez człowieka Strona WWW projektu: http://mizar.org Dostępna wersja dla wielu platform 6 Dodatkowe serwisy wspomagające pracę autorów
Języki wzorowane na systemie MIZAR MIZAR mode for HOL (J. Harrison) Declare (D. Syme) Isabelle/Isar (M. Wenzel) Mizar-light for HOL-Light (F. Wiedijk) MMode/DPL Declarative Proof Language for Coq (P. Corbineau) 7
Podstawy języka MIZAR Podstawowe wyrażenia języka MIZAR do budowania formuł matematycznych: 8
Podstawy języka MIZAR strategie dowodzenia A implies B :: thesis = A implies B assume A; :: thesis = B thus B; :: thesis = {} A & B :: thesis = A & B thus A; :: thesis = B thus B; :: thesis = {} 9
Podstawy języka MIZAR strategie dowodzenia for x holds A(x) :: thesis = for x holds A(x) let a; :: thesis = A(a) thus A(a); :: thesis = {} ex x st A(x) :: thesis = ex x st A(x) take a; :: thesis = A(a) thus A(a); :: thesis = {} 10
Podstawy języka MIZAR strategie dowodzenia A & B implies C :: thesis = A & B implies C assume A; :: thesis = B implies C assume B; :: thesis = C thus C; :: thesis = {} A implies (B implies C):: thesis = A implies (B implies C) assume A; :: thesis = B implies C assume B; :: thesis = C thus C; :: thesis = {} 11
Podstawy języka MIZAR strategie dowodzenia A :: thesis = A assume not A; :: thesis = contradiction thus contradiction; :: thesis = {} :: thesis = 12 assume not thesis; :: thesis = contradiction thus contradiction; :: thesis = {}
MIZAR Mathematical Library (MML) A good system without a library is useless. A good library for a bad system is still very interesting So the library is what counts.'' F. Wiedijk, Estimating the Cost of a Standard Library for a Mathematical Proof Checker MML to obecnie największa na świecie baza komputerowo sprawdzonej wiedzy matematycznej Systematyczne budowanie bazy rozpoczęło się w 1989 r. Baza oparta na aksjomatyce Tarskiego-Grothendiecka 13
MIZAR Mathematical Library (MML) - statystyki Ponad 48000 twierdzeń i 700 schematów Ponad 11000 definicji Ponad 220 autorów z kilkunastu krajów: Polska Japonia Chiny Kanada Niemcy USA Włochy 14 Holandia
Nauka systemu MIZAR na UwB F. Wiedijk: assistants tend to resemble their implementation language Object Pascal: 29 symboli specjalnych, 65 słów zastrzeżonych + 39 dyrektyw MIZAR: 27 symboli specjalnych, 110 słów zastrzeżonych 10 wspólnych symboli 15 identycznych słów zastrzeżonych MIZAR to obiektywny nauczyciel Doskonale nadaje się do nauczania na odległość 15
Nauka systemu MIZAR na UwB przykład 1 reserve R,S,T for Relation; R is transitive implies R*R c= R assume a: R is transitive; let a,b; assume [a,b] in R*R; then consider c such that c: [a,c] in R & [c,b] in R by RELATION:def 7; thus [a,b] in R by c,a,relation:def 12; 16
Nauka systemu MIZAR na UwB przykład 2 ex R,S,T st not R*(S \ T) c= (R*S) \ (R*T) reconsider R={[1,2],[1,3]} as Relation by RELATION:2; reconsider S={[2,1]},T={[3,1]} as Relation by RELATION:1; take R,S,T; b: [1,2] in R by ENUMSET:def 4; d: [2,1] in S by ENUMSET:def 3; [2,1] <> [3,1] by ENUMSET:2; then not [2,1] in T by ENUMSET:def 3; then [2,1] in S \ T by d,relation:def 6; then a: [1,1] in R*(S \ T) by b,relation:def 7; e: [1,3] in R by ENUMSET:def 4; [3,1] in T by ENUMSET:def 3; then [1,1] in R*T by e,relation:def 7; then not [1,1] in (R*S) \ (R*T) by RELATION:def 6; hence not R*(S \ T) c= (R*S) \ (R*T) by RELATION:def 9,a; 17
Nauka systemu MIZAR na UwB przykład 3 reserve i,j,k,l for natural number; 18 i+k = j+k implies i=j; defpred P[natural number] means i+$1 = j+$1 implies i=j; A1: P[0] assume B0: i+0 = j+0; B1: i+0 = i by INDUCT:3; j+0 = j by INDUCT:3; hence thesis by B0,B1; A2: for k st P[k] holds P[succ k] let l such that C1: P[l]; assume i+succ l=j+succ l; then succ(i+l) = j+succ l by INDUCT:4.= succ(j+l) by INDUCT:4; hence thesis by C1,INDUCT:2; for k holds P[k] from INDUCT:sch 1(A1,A2); hence thesis;
MIZAR jako -assistant 19 MIZAR jako -assistant MMLQuery Mizar mode for GNU Emacs MoMM interreduction and retrieval of matching theorems from MML MIZAR Proof Advisor On-line MIZAR Systemy do reprezentacji wiedzy matematycznej Formalized Mathematics XML-based hyper-linked articles Dodatkowe serisy Mizar-forum mailing list MIZAR Twiki MIZAR User Service
Działanie realizowane w ramach projektu Absolwent informatyki lub matematyki specjalistą na rynku pracy Matematyka i informatyka może i trudne, ale nie nudne Dziękuj ę za uwagę 20 Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego