KONCEPCJA SZKLANYCH DOMÓW W BUDOWNICTWIE ENERGOOSZCZĘDNYM

Podobne dokumenty
Okna w nowobudowanych domach - co zmieni się od 2014 roku?

Przegrody przezroczyste a jakość energetyczna budynku - Energooszczędne okno PVC. Jacek Kowalczyk Menedżer ds. Współpracy z Architektami

OCENA OCHRONY CIEPLNEJ

Dziennik Ustaw 31 Poz WYMAGANIA IZOLACYJNOŚCI CIEPLNEJ I INNE WYMAGANIA ZWIĄZANE Z OSZCZĘDNOŚCIĄ ENERGII

ROZWIĄZANIA TECHNOLOGICZNE DLA NOWOCZESNYCH FASAD W ŚWIETLE NAJNOWSZYCH PRZEPISÓW

mib.gov.pl mib.gov.pl Stan przepisów dot. projektowania budynków. Zamierzenia i kierunek dalszych prac legislacyjnych mib.gov.pl

Efektywna Energetycznie Stolarka Okienna. pasywnej w Budzowie. dr arch. Agnieszka Cena Soroko Dolnośląska Agencja Energii i Środowiska

Ekspercka propozycja zmiany Działu X oraz Załącznika nr 2, uwzględniająca wariantowość proponowanych rozwiązań. Dział X

Optymalizacja energetyczna okien nowych i wymienianych Część 1

Załącznik nr 2. Wymagania izolacyjności cieplnej i inne wymagania związane z oszczędnością energii

WPŁYW przegród przezroczystych w budynku ogrzewanym i chłodzonym na jego jakość energetyczną

ANALIZA OSZCZĘDNOŚCI ENERGII CIEPLNEJ W BUDOWNICTWIE MIESZKANIOWYM JEDNORODZINNYM

R = 0,2 / 0,04 = 5 [m 2 K/W]

OKREŚLANIE OPTYMALNEGO UDZIAŁU OKIEN W BUDYNKU MIESZKALNYM

OKNA ALUMINIOWE W BUDYNKU ENERGOOSZCZĘDNYM I PASYWNYM

PRZYKŁAD 3. PR P Z R E Z G E R G O R D O Y D TRÓ R J Ó W J A W RS R T S WO W W O E

ROZPORZĄDZENIE MINISTRA TRANSPORTU, BUDOWNICTWA I GOSPODARKI MORSKIEJ 1

ENERGOCHŁONNOŚĆ BUDYNKÓW EDUKACYJNYCH I ICH IZOLACYJNOŚĆ CIEPLNA W ŚWIETLE AKTUALNYCH WYMAGAŃ

IZOLACYJNOŚĆ TERMICZNA STOLARKI BUDOWLANEJ

PRZEZROCZYSTYCH na JAKOŚĆ ENERGETYCZNĄ BUDYNKU

Warszawa, dnia 13 sierpnia 2013 r. Poz. 926 ROZPORZĄDZENIE MINISTRA TRANSPORTU, BUDOWNICTWA I GOSPODARKI MORSKIEJ 1) z dnia 5 lipca 2013 r.

Warunki techniczne. do poprawy?

WYROK W IMIENIU RZECZPOSPOLITEJ POLSKIEJ

Opracowanie charakterystyki energetycznej wg nowych wymagań prawnych

Współczynnik przenikania ciepła okien

budownictwo niskoenergetyczne

Oznaczenie budynku lub części budynku... Miejscowość...Ulica i nr domu...

Załącznik 2. Wymagania izolacyjności cieplnej i inne wymagania związane z oszczędnością energii

Optymalizacja energetyczna okien nowych i wymienianych

Mostki cieplne wpływ mostków na izolacyjność ścian w budynkach

Dom.pl Współczynnik przenikania ciepła okna: cieplejsze okna od 2017 roku

Wentylacja i klimatyzacja rozwiązania. Mgr inż. Andrzej Jurkiewicz Andrzej.jurkiewicz@egie.pl

SYSTEMY RSP Rubber System Polska

Projektowanie systemów WKiCh (03)

Budownictwo pasywne i jego wpływ na ochronę środowiska. Anna Woroszyńska

PRZEGRODY PRZEŹROCZYSTE

Termomodernizacja a mostki cieplne w budownictwie

PN-B-02025:2001. temperaturze powietrza wewnętrznego =20 o C, mnożnikach stałych we wzorach,

Projektowana charakterystyka energetyczna budynku

Podręczny informator w zakresie wymagań prawnych dotyczących produktów FAKRO

Licencja dla: Instal Planet Piotr Wiśniewski [L01]

Narodowy Fundusz Ochrony Środowiska i Gospodarki Wodnej. Prezentacja IV Potwierdzenie spełnienia wymagań Programu przez projekt budowlany

Efektywność energetyczna szansą na modernizację i rozwój polskiej gospodarki

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA

Warszawa, 20 lutego 2012 SNB-3-2/3/2013. Szanowny Pan Tomasz ŻUCHOWSKI

PROJEKTOWANIE ENERGOOSZCZĘDNEJ STOLARKI BUDOWLANEJ WG AKTUALNYCH WYMAGAŃ PRAWNYCH

Dom.pl Profile aluminiowe. Ciepłe i energooszczędne okna do nowoczesnych domów

MOŻLIWOŚCI POPRAWY EFEKTYWNOŚCI ENERGETYCZNEJ BUDYNKÓW EDUKACYJNYCH

Energochłonność budynków badanie szczelności obiektów i termowizja gwarancją efektywnej eksploatacji

Standardy energetyczne budynków w świetle obowiązujących przepisów

Narodowy Fundusz Ochrony Środowiska i Gospodarki Wodnej. Prezentacja IV Potwierdzenie spełnienia wymagań Programu przez projekt budowlany

1. PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA

Dz.U ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i

EKRAN 15. Zużycie ciepłej wody użytkowej

PN-EN ISO Cieplne właściwości użytkowe budynków Obliczanie zużycia energii do ogrzewania. Wprowadzenie

PROJEKT TERMOMODERNIZACJI BUDYNKU ZAKRES I OCZEKIWANE REZULTATY PLANOWANYCH DZIAŁAŃ, ANALIZA UWARUNKOWAŃ I OGRANICZEŃ

Koncepcja fasady bioklimatycznej. oszczędność kosztów i energii oraz wzrost komfortu użytkowników

Jak zbudować dom poradnik

Zasoby a Perspektywy

PORÓWNANIE METOD STOSOWANYCH DO OKREŚLANIA DŁUGOŚCI OKRESU OGRZEWCZEGO

Rozporządzenie MI z dn r. w sprawie metodologii obliczania charakterystyki energetycznej budynku...

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU MIESZKALNEGO JEDNORODZINNEGO "TK20"

Projektowana charakterystyka energetyczna

ZMIANY W NORMALIZACJI KT 179

Formularz 1. DANE PODSTAWOWE do świadectwa i charakterystyki energetycznej budynku. c.o. Rok budowy/rok modernizacji instalacji

Jak ZAPROJEKTOWAĆ charakterystykę energetyczną budynku spełniająceą aktualne wymagania prawne?

Dom.pl Zanim kupisz nowe okna, sprawdź, co oznaczają najważniejsze parametry okien

SGG PLANITHERM szkła niskoemisyjne SGG COMFORT

Efektywność energetyczna budynków w Polsce i w Niemczech. Aktualny stan prawny w zakresie efektywności energetycznej w budownictwie

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU MIESZKALNEGO JEDNORODZINNEGO "TK-109"

Wymagania dla nowego budynku a

Jakie elementy i parametry techniczne powinniśmy brać pod uwagę, szukając energooszczędnego okna dachowego?

Warunki techniczne co się zmieni w budowie domu?

Wyniki - Ogólne. Podstawowe informacje: Nazwa projektu: PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA. HAJNÓWKA Adres: UL.

INTERAKCJA OBCIĄŻEŃ W UKŁADZIE DWÓCH SZYB O RÓŻNYCH SZTYWNOŚCIACH POŁĄCZONYCH SZCZELNĄ WARSTWĄ GAZOWĄ

Co nowego w CERTO. nieogrzewanych (zgodnie z PN-EN ISO 13789:2008)

BUDOWNICTWO ENERGOOSZCZĘDNE W POLSCE

DOM ENERGOOSZCZĘDNY PROJEKT INFORMACYJNO-EDUKACYJNY PROMUJĄCY BUDOWNICTWO ENERGOOSZCZĘDNE I EKOLOGICZNE WŚRÓD MIESZKAŃCÓW GMINY PSARY

Okna a oszczędność energii w budynkach

Etykietowanie energetyczne - okna pionowe, geometria cz. 2 Jerzy Żurawski, Dolnośląska Agencja Energii i Środowiska

AUDYTY TERMOMODERNIZACYJNE A STOSOWANIE AKTUALNYCH NORM

Szkło materiał przyszłości

5.5. Możliwości wpływu na zużycie energii w fazie wznoszenia

Jerzy Żurawski Wrocław, ul. Pełczyńska 11, tel ,

Termomodernizacja budynków na przykładzie obiektów o różnym przeznaczeniu, z wykorzystaniem technologii pasywnych

budownictwo niskoenergetyczne - standard pasywny

DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ

ROZWÓJ TECHNOLOGII I KONSTRUKCJI OKIEN ZEWNĘTRZNYCH

ŚWIADECTWO CHARAKTERYSTYKI ENERGETYCZNEJ BUDYNKU

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA

Nakłady finansowe i korzyści wynikające z budowy różnych budynków energooszczędnych w POLSCE

Józef Frączek Jerzy Janiec Ewa Krzysztoń Łukasz Kucab Daniel Paściak

Optymalizacja energetyczna okien nowych i wymienianych Część 3. Bilans energetyczny okien w sezonie grzewczym

1. Szczelność powietrzna budynku

metoda obliczeniowa Oceniany budynek EU = 49,23 kwh/(m 2 rok) EP = 173,51 kwh/(m 2 rok) /(m 2 rok)

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA

IV. OBLICZENIE ZAPOTRZEBOWANIA NA CIEPŁO BUDYNKU WG PN EN 832:2001

EKRAN 5. Zyski ciepła wg rozporządzenia [1]

Transkrypt:

Budownictwo o zoptymalizowanym potencjale energetycznym 2(14) 2014, s. 60-66 Alina PIETRZAK Politechnika Częstochowska KONCEPCJA SZKLANYCH DOMÓW W BUDOWNICTWIE ENERGOOSZCZĘDNYM W artykule omówiono funkcje, jakie w budownictwie pełnią szklane przegrody. Przedstawiono również wymagania pod względem izolacyjności cieplnej oraz bilansu energetycznego przeszkleń. Słowa kluczowe: szklane domy, izolacyjność cieplna przeszkleń, bilans energetyczny przeszkleń WPROWADZENIE W XXI wieku obserwuje się wzrost świadomości społeczeństwa na temat ochrony środowiska naturalnego, jako że działalność człowieka wpływa na nie w coraz większym stopniu. Bardzo istotne staje się więc zrozumienie konsekwencji podejmowanych przez nas działań, racjonalne kształtowanie środowiska, a przede wszystkim odpowiednie gospodarowanie jego zasobami. Świadomość społeczeństwa o konieczności ochrony środowiska naturalnego pogłębia się i rozszerza na kolejne dziedziny życia, w tym także na technologie wykorzystywane w budownictwie. Budynki energooszczędne i pasywne coraz częściej i chętniej brane są pod uwagę przy decyzji o budowie czy zakupie nowego, własnego mieszkania lub domu. Zastosowanie nowoczesnych, proekologicznych technologii i rozwiązań to nie tylko bycie trendy, ale przede wszystkim przejaw odpowiedzialności za środowisko, które nas otacza. 1. FUNKCJE SZKLANYCH PRZEGRÓD W BUDYNKACH Stosowanie szklanych przegród w budynkach wynika z potrzeby doświetlenia pomieszczeń światłem dziennym oraz utrzymania kontaktu wzrokowego użytkownika z otoczeniem lub między pomieszczeniami w budynku (rys. 1), a także stworzenia wrażenia przestrzeni. Szklane przegrody budowlane muszą spełniać jednak różnorodne funkcje, tzn. z jednej strony maksymalizują zyski i minimalizują straty ciepła w czasie chłodów, a z drugiej chronią przed promieniowaniem słonecznym w czasie upałów. Zewnętrzne przegrody przezroczyste powinny również, poprzez

Koncepcja szklanych domów w budownictwie energooszczędnym 61 możliwość kontrolowanego rozszczelnienia, zapewnić dopływ odpowiedniej ilości powietrza do wentylacji pomieszczeń. a) b) c) Rys. 1. Przykłady budynków ze szklanymi przegrodami: a) Wydział Zarządzania Politechniki Częstochowskiej, b) Biblioteka Śląska w Katowicach, c) Złote Tarasy w Warszawie [1] Dodatkowe wymagania dla szklanych przegród, wynikające z warunków użytkowania: bezpieczeństwo użytkowania, tzn. minimalizacja możliwości skaleczenia się przez ludzi przy nagłym, niekontrolowanym zniszczeniu; ochrona przed włamaniem; ochrona przed hałasem wewnętrznym bądź zewnętrznym; ochrona przed rozprzestrzenianiem się ognia; estetyczny wygląd zarówno elewacji budynku, jak i wewnątrz pomieszczeń. W wyniku postępu, jaki dokonał się w zakresie technologii szkła, spełnienie tych wszystkich, częściowo sprzecznych ze sobą, wymagań jest jednak możliwe. Mądre rozwiązania materiałowo-konstrukcyjne pozwoliły na skonstruowanie przeszkleń o ściśle określonych parametrach użytkowych. Na dzień dzisiejszy możliwy

62 A. Pietrzak jest wybór spośród wielu istniejących rozwiązań materiałowo-konstrukcyjnych wysokoprzetwarzanego, modyfikowanego szkła budowlanego. Rozwiązania te stopniowo zyskują coraz większą popularność. 2. WYMAGANIA IZOLACYJNOŚCI CIEPLNEJ PRZESZKLEŃ Współczynnik przenikania ciepła U [W/m 2 K] jest podstawowym parametrem służącym do szacowania strat ciepła przez przegrodę, w tym też przez przegrodę szklaną. Wielkość ta opisuje wymianę ciepła jednostki powierzchni przegrody przy jednostkowej różnicy temperatur powietrza po obu jej stronach. Ograniczenie strat ciepła w budynkach sprowadza się przede wszystkim do zmniejszenia współczynnika U przegród budowlanych. Obowiązującym aktem prawnym jest Rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie [2]. Wymogi z początkiem bieżącego roku zostały zaostrzone (tab. 1), co wiąże się z coraz większym wykorzystaniem szyb ciepłochłonnych w większości typów budynków realizowanych w naszych warunkach klimatycznych. Tabela 1. Współczynnik przenikania ciepła U dla okien i przegród przezroczystych, zawarty w rozporządzeniu [2] 1 2 3 4 5 Okna, drzwi balkonowe i zewnętrzne Współczynnik przenikania ciepła U (max) [W/(m 2 K)] od 1.01.2014 r. od 1.01.2017 r. Okna (z wyjątkiem połaciowych), drzwi balkonowe i powierzchnie przezroczyste nieotwieralne od 1.01.2021 r. przy t i 16 C 1,3 1,1 0,9 przy t i < 16 C 1,8 1,6 1,4 Okna połaciowe przy t i 16 C 1,5 1,3 1,1 przy t i < 16 C 1,8 1,6 1,4 Okna w ścianach wewnętrznych przy t i 8 C 50,3 29,7 6,7 przy t i < 8 C oddzielające pomieszczenie ogrzewane od nieogrzewanego Drzwi w przegrodach zewnętrznych lub w przegrodach między pomieszczeniami ogrzewanymi i nieogrzewanymi Okna i drzwi zewnętrzne w przegrodach zewnętrznych pomieszczeń nieogrzewanych bez wymagań 1,5 1,3 1,1 1,7 1,5 1,3 bez wymagań

Koncepcja szklanych domów w budownictwie energooszczędnym 63 Przy doborze przegród szklanych w budynkach bardzo ważne jest uwzględnienie wytycznych dotyczących powierzchni przegród szklanych w budynkach. W dziale III rozporządzenia [2] dotyczącym oświetlenia i nasłonecznienia przedstawione są wymogi odnośnie do powierzchni oszkleń pomieszczeń przeznaczonych na pobyt ludzi. Stosunek powierzchni okien, liczonej w świetle ościeżnic, do powierzchni podłogi powinien wynosić co najmniej 1:8, natomiast w pomieszczeniach, w których oświetlenie dzienne jest wymagane ze względu na przeznaczenie - co najmniej 1:12. W załączniku nr 2 rozporządzenia [2] dotyczącym innych wymagań związanych z oszczędnością energii sformułowano warunek, że powierzchnia okien oraz przegród szklanych i przezroczystych A o [m 2 ], o współczynniku przenikania ciepła U nie mniejszym niż 0,9 W/(m 2 K), obliczona według wymiarów modularnych, w budynkach mieszkalnych i zamieszkania zbiorowego, nie powinna być większa od wartości A o max obliczonej według wzoru: A = 0,15A + 0,03A (1) o max gdzie: A z - suma pól powierzchni rzutu poziomego wszystkich kondygnacji nadziemnych (w zewnętrznym obrysie budynku) w pasie o szerokości 5 m wzdłuż ścian zewnętrznych, A w - suma pól powierzchni pozostałej części rzutu poziomego wszystkich kondygnacji po odjęciu A z. Ten sam warunek powinien być spełniony w budynku użyteczności publicznej, jeśli nie jest to sprzeczne z warunkami odnośnie do zapewnienia niezbędnego oświetlenia światłem dziennym pomieszczeń [2]. Współczynnik przenikania ciepła okien Nowoczesne układy szyb zespolonych mają znacznie poprawioną izolacyjność cieplną, co doprowadziło do sytuacji, gdzie oszklenie posiada lepszą izolacyjność cieplną niż materiał ramy, tzn. okno traktowane jako całość posiada najczęściej gorsze parametry izolacyjności cieplnej niż oszklenie. Należy również uwzględnić właściwości cieplne obrzeża szyby, które jest mostkiem termicznym (miejscem wzmożonej ucieczki ciepła), przez co pogarsza się współczynnik przenikania ciepła okna. Szyba zespolona posiada więc współczynnik przenikania ciepła lepszy niż średnioważony współczynnik obliczony dla całego okna [1]. Współczynnik przenikania ciepła okna U w [W/(m 2 K)] dla standardowych okien z szybami zespolonymi zaleca się, zgodnie z metodyką przytoczoną w normie [3], określać wzorem: U w g z f w AgUg + Af Uf + lgψg = (2) A + A

64 A. Pietrzak gdzie: A g - pole powierzchni oszklonej [m 2 ], A f - pole powierzchni ramy [m 2 ], l g - obwód oszklenia [m], U g - współczynnik przenikania ciepła oszklenia (szyby zespolonej) [W/(m 2 K)], U f - współczynnik przenikania ciepła ramy okiennej [W/(m 2 K)], Ψ g - liniowy współczynnik przenikania ciepła na obrzeżu oszklenia [W/(m K)]. Dla ram okiennych orientacyjnie współczynniki U f można przyjmować na poziomie [1]: dla ramy drewnianej U f = 1,4 W/m 2 K, dla ramy z tworzywa sztucznego U f 2,0 W/m 2 K, dla ramy aluminiowej U f = 2,0 3,0 W/m 2 K. 3. BILANS ENERGETYCZNY PRZESZKLEŃ Bilans energetyczny przeszkleń E (efektywny współczynnik przenikania ciepła) jest to różnica między stratami ciepła przez przenikanie (wartość współczynnika przenikania ciepła szyby U) a zyskami energetycznymi z promieniowania słonecznego (z uwzględnieniem współczynnika g), w rozpatrywanym czasie (najczęściej jest to okres grzewczy). Parametr ten stanowi ważny element przy analizie zysków i strat energii budynku. Współczynnik E może przyjmować wartości ujemne - oznacza to, że zyski ciepła są wyższe niż straty. Metodykę określania bilansu energetycznego opisuje europejska norma [4]. Bilans energetyczny zaleca się obliczać ze wzoru: η g f Hp E = U (3) D gdzie: η - współczynnik użyteczności; stosunek uzyskanego ciepła, które zastępuje funkcjonalne ogrzewanie w okresie grzewczym, do całkowitych zysków ciepła w tym okresie; dla celów porównawczych norma zaleca przyjąć η = 0,6; f - współczynnik stosowany do oszkleń zabrudzonych lub zacienionych; dla celów porównawczych norma zaleca przyjąć f = 0,8; H p - wartość promieniowania słonecznego [kwh/m 2 ], padającego na pionową powierzchnię podczas rozpatrywanego okresu, D p - suma jednostek temperaturowych, gdzie jedna jednostka jest liczbą stopni, o którą średnia temperatura w ciągu dnia jest niższa od temperatury podstawowej (którą dla celów porównawczych norma [4] zaleca przyjmować 18 C); liczbę jednostek oblicza się dla każdego dnia rozpatrywanego okresu i sumuje. Norma zaleca przyjmować wartości H p i D p na podstawie danych klimatycznych. Zamieszczone przykładowe dane lokalizacyjne nie obejmują Polski - dla Berlina p

Koncepcja szklanych domów w budownictwie energooszczędnym 65 określono następujące przykładowe współczynniki obejmujące sezon grzewczy wrzesień-maj: D p = 3335 K 24 h, H p = 203 kwh/m 2 dla elewacji północnej, H p = 358 kwh/m 2 dla elewacji wschodniej i zachodniej, H p = 518 kwh/m 2 dla elewacji południowej. Norma [4] dopuszcza również szacowanie bilansu energetycznego metodą uproszczoną: E= U g S (4) gdzie S - jest współczynnikiem charakterystycznym dla określonego kraju lub regionu; w literaturze niemieckiej dla Europy Środkowej proponuje się: 1,0 dla elewacji północnej, 1,4 dla elewacji wschodniej i zachodniej, 2,0 dla elewacji południowej. ZAKOŃCZENIE Szkło niemal od zawsze inspirowało wielkich architektów. Mityczne szklane domy w XXI wieku stały się rozwiązaniem realnym i bardzo atrakcyjnym wizualnie, o nieograniczonych możliwościach i wysokim komforcie mieszkalnym, choć niestety ich wykonanie na dzień dzisiejszy nie należy do najtańszych. Przede wszystkim jest to rozwiązanie sprzyjające ochronie środowiska naturalnego, na co kładzie się dzisiaj ogromny nacisk. Dzięki zastosowaniu powierzchni przeszklonych uzyskujemy wizualnie powiększoną przestrzeń, co ma znaczenie przy niewielkich metrażach, a przede wszystkim powierzchnię domu doskonale naświetloną, co pozwala znacząco ograniczyć koszty zużycia energii. Poza tym zastosowanie szklanych przegród daje niezwykłe i oryginalne możliwości designerskie. Szkło wykorzystywane do budowy powinno być niezwykle wytrzymałe, co zapewnia oryginalny wygląd budynku przez wiele lat. LITERATURA [1] Respondek Z., Sprzężone gazowo płyty szklane w budownictwie. Sposoby badań i obliczeń, Seria Monografie Nr 151, Wyd. Politechniki Częstochowskiej, Częstochowa 2009. [2] Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie, DzU Nr 75, poz. 690 z późniejszymi zmianami. [3] PN-EN ISO 10077-1 Właściwości cieplne okien, drzwi i żaluzji. Obliczanie współczynnika przenikania ciepła. Część 1: Metoda uproszczona. [4] PN-EN ISO 14438:2005 Szkło w budownictwie. Określenie wartości bilansu energetycznego. Metoda obliczeniowa. [5] Zabłocka-Kos A., Szklane domy, Budowlany Informator Techniczny 2001, 12.

66 A. Pietrzak [6] Respondek Z., Rajczyk M., Nowoczesne technologie produkcji szyb - nowe możliwości poprawy funkcjonalności przeszkleń, [w:] Zwiększenie efektywności procesów przemysłowych i budowlanych w budownictwie, Wydawnictwo Politechniki Częstochowskiej, Częstochowa 2004, 127-135. [7] Respondek Z., Nowoczesne sposoby modyfikacji szkła budowlanego, [w:] Budownictwo o zoptymalizowanym potencjale energetycznym, pod red. T. Bobki, J. Rajczyka, Wyd. Politechniki Częstochowskiej, Częstochowa 2007, 317-324. THE CONCEPT OF GLASS HOUSES IN ENERGY-EFFICIENT CIVIL ENGINEERING The article discusses the functions performed by glass partitions in the building industry. It also presents the requirements in terms of thermal insulation glazing and energy balance. Keywords: glass houses, thermal insulation glazing, glazing energy balance