TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Sprytne rachunki. 4. Szacowanie wyników działań. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 008 R.. Liczby naturalne w dziesiątkowym układzie pozycyjnym. Uczeń: ) odczytuje i zapisuje liczby naturalne wielocyfrowe; ) interpretuje liczby naturalne na osi liczbowej; 3) porównuje liczby naturalne;. Działania na liczbach naturalnych. Uczeń ) dodaje i odejmuje w pamięci liczby naturalne dwucyfrowe, liczby wielocyfrowe w przypadkach, takich jak np. 30+80 lub 4600-00; liczbę jednocyfrową dodaje do dowolnej liczby naturalnej i odejmuje od dowolnej liczby naturalnej; 3) mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową w pamięci (w najprostszych przykładach); 4) wykonuje dzielenie z resztą liczb naturalnych; 5) stosuje wygodne dla niego sposoby ułatwiające obliczenia, w tym przemienność i łączność dodawania i mnożenia; 6) porównuje różnicowo i ilorazowo liczby naturalne; 0) oblicza kwadraty i sześciany liczb naturalnych;. Działania na liczbach naturalnych. Uczeń ) dodaje i odejmuje w pamięci liczby naturalne dwucyfrowe, liczby wielocyfrowe w przypadkach, takich jak np. 30+80 lub 4600-00; liczbę jednocyfrową dodaje do dowolnej liczby naturalnej i odejmuje od dowolnej liczby naturalnej; 3) mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową w pamięci (w najprostszych przykładach); 5) stosuje wygodne dla niego sposoby ułatwiające obliczenia, w tym przemienność i łączność dodawania i mnożenia; 6) porównuje różnicowo i ilorazowo liczby naturalne;. Działania na liczbach naturalnych. Uczeń: ) szacuje wyniki działań.
5. Działania pisemne dodawanie i odejmowanie. 6. Działania pisemne mnożenie i dzielenie. 7. Kolejność działań. 8. Zadania tekstowe.. Działania na liczbach naturalnych. Uczeń ) dodaje i odejmuje liczby naturalne wielocyfrowe pisemnie, a także za pomocą kalkulatora;. Działania na liczbach naturalnych. Uczeń 3) mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową pisemnie i za pomocą kalkulatora (w trudniejszych przykładach);. Działania na liczbach naturalnych. Uczeń: 5) stosuje wygodne dla niego sposoby ułatwiające obliczenia, w tym przemienność i łączność dodawania i mnożenia; ) stosuje reguły dotyczące kolejności wykonywania działań;. Działania na liczbach naturalnych. Uczeń: ) dodaje i odejmuje w pamięci liczby naturalne dwucyfrowe, liczby wielocyfrowe w przypadkach, liczbę jednocyfrową dodaje do dowolnej liczby naturalnej i odejmuje od dowolnej liczby naturalnej; ) dodaje i odejmuje liczby naturalne wielocyfrowe pisemnie, a także za pomocą kalkulatora; 3) mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową w pamięci (w najprostszych przykładach); 6) porównuje różnicowo i ilorazowo liczby naturalne; 4. Zadania tekstowe. Uczeń: ) czyta ze zrozumieniem prosty tekst zawierający informacje liczbowe; ) wykonuje wstępne czynności ułatwiające rozwiązanie zadania, w tym rysunek pomocniczy; 3) dostrzega zależności między podanymi informacjami; 4) dzieli rozwiązanie zadania na etapy; 5) do rozwiązania zadania osadzonego w kontekście praktycznym stosuje poznaną wiedzę z zakresu arytmetyki oraz nabyte umiejętności rachunkowe, w także własne poprawne metody; 6) weryfikuje wynik zadania, oceniając sensowność rozwiązania. Praca klasowa i jej omówienie.
. WŁASNOŚCI LICZB NATURALNYCH. Wielokrotności.. Dzielniki. 3. Cechy podzielności przez, 5, 0, 00 oraz przez 3 i 9. 4. Liczby pierwsze i liczby złożone. 5. Rozkład liczby na czynniki pierwsze. 6. Sprawdzian 3. UŁAMKI ZWYKŁE. Ułamki zwykłe i liczby mieszane.. Ułamek jako iloraz.. Działania na liczbach naturalnych. Uczeń 3) mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową w pamięci (w najprostszych przykładach) i za pomocą kalkulatora (w trudniejszych przypadkach); 6) porównuje ilorazowo liczby naturalne;. Działania na liczbach naturalnych. Uczeń 3) mnoży i dzieli liczbę naturalną przez liczbę naturalną jednocyfrową, dwucyfrową lub trzycyfrową w pamięci (w najprostszych przykładach) i za pomocą kalkulatora (w trudniejszych przypadkach); 6) porównuje ilorazowo liczby naturalne;. Działania na liczbach naturalnych. Uczeń 7) rozpoznaje liczby naturalne podzielne przez, 3, 5, 9, 0, 00;. Działania na liczbach naturalnych. Uczeń 7) rozpoznaje liczby naturalne podzielne przez, 3, 5, 9, 0, 00; 8) rozpoznaje liczbę złożoną, gdy jest ona jednocyfrowa lub dwucyfrowa, a także, gdy na istnienie dzielnika wskazuje poznana cecha podzielności;. Działania na liczbach naturalnych. Uczeń 9) rozkłada liczby dwucyfrowe na czynniki pierwsze; 4. Ułamki zwykłe i dziesiętne. Uczeń ) opisuje część danej całości za pomocą ułamka; 5) przedstawia ułamki niewłaściwe w postaci liczby mieszanej i odwrotnie; 7) zaznacza ułamki zwykłe na osi liczbowej oraz odczytuje ułamki zwykłe zaznaczone na osi liczbowej; 4. Ułamki zwykłe i dziesiętne. Uczeń ) przedstawia ułamek jako iloraz liczb naturalnych, a iloraz liczb naturalnych jako ułamek;
3. Rozszerzanie i skracanie ułamków. 4. Porównywanie ułamków. 5. Dodawanie i odejmowanie ułamków o jednakowych mianownikach. 6. Dodawanie i odejmowanie ułamków o różnych mianownikach. 7. Powtórzenie wiadomości i sprawdzian. 8. Mnożenie ułamków przez liczby naturalne. 9. Obliczanie ułamka danej liczby. 4. Ułamki zwykłe i dziesiętne. Uczeń 3) skraca i rozszerza ułamki zwykłe; 4) sprowadza ułamki do wspólnego mianownika; 4. Ułamki zwykłe i dziesiętne. Uczeń 3) skraca i rozszerza ułamki zwykłe; 4) sprowadza ułamki do wspólnego mianownika; 5) przedstawia ułamki niewłaściwe w postaci liczby mieszanej i odwrotnie; ) porównuje ułamki; ) dodaje i odejmuje ułamki zwykłe o mianownikach jedno- lub dwucyfrowych, a także liczby mieszane; 4. Ułamki zwykłe i dziesiętne. Uczeń: 3) skraca i rozszerza ułamki zwykłe; 4) sprowadza ułamki zwykłe do wspólnego mianownika; ) dodaje i odejmuje ułamki zwykłe o mianownikach jedno- lub dwucyfrowych, a także liczby mieszane; 4. Zadania tekstowe. 4. Ułamki zwykłe i dziesiętne. Uczeń 5) przedstawia ułamki niewłaściwe w postaci liczby mieszanej i odwrotnie; ) mnoży ułamki zwykłe o mianownikach jedno- lub dwucyfrowych, a także liczby mieszane; 5) oblicza ułamek danej liczby; 4. Zadania tekstowe.
0. Mnożenie ułamków zwykłych.. Dzielenie ułamków przez liczby naturalne.. Dzielenie ułamków zwykłych. 3. Powtórzenie wiadomości. 4. Praca klasowa i jej poprawa. 4. FIGURY NA PŁASZCYŹNIE. Proste prostopadłe i proste równoległe.. Kąty. 3. Mierzenie kątów. ) mnoży ułamki zwykłe o mianownikach jedno- lub dwucyfrowych, a także liczby mieszane; 5) oblicza ułamek danej liczby; 6) oblicza kwadraty i sześciany ułamków zwykłych oraz liczb mieszanych; ) dzieli ułamki zwykłe o mianownikach jedno- lub dwucyfrowych, a także liczby mieszane; ) dzieli ułamki zwykłe o mianownikach jedno- lub dwucyfrowych, a także liczby mieszane; 7. Proste i odcinki. Uczeń: ) rozpoznaje i nazywa figury: punkt, prosta, półprosta, odcinek; ) rozpoznaje odcinki i proste prostopadłe i równoległe; 3) rysuje pary odcinków prostopadłych i równoległych; 4) mierzy długość odcinka z dokładnością do mm; 5) wie, że aby znaleźć odległość punktu od prostej, należy znaleźć długość odpowiedniego odcinka prostopadłego; 8. Kąty. Uczeń: ) wskazuje w kątach ramiona i wierzchołek; 4) rozpoznaje kąt prosty, ostry i rozwarty; 8. Kąty. Uczeń: ) mierzy kąty mniejsze od 80 stopni z dokładnością do stopnia; 3) rysuje kąt o mierze mniejszej niż 80 stopni; 4) rozpoznaje kąt prosty, ostry i rozwarty; 5) porównuje kąty;
4. Kąty przyległe, wierzchołkowe. Kąty utworzone przez trzy proste. 5. Wielokąty. 6. Rodzaje trójkątów. 7. Konstruowanie trójkąta o danych bokach. 8. Miary kątów w trójkątach. 9. Prostokąty i kwadraty. 8. Kąty. Uczeń: 6) rozpoznaje kąty wierzchołkowe i kąty przyległe oraz korzysta z ich własności. 4) rozpoznaje i nazywa kwadrat, prostokąt, ) oblicza obwód wielokąta o danych długościach boków; ) rozpoznaje i nazywa trójkąty ostrokątne, prostokątne i rozwartokątne, równoboczne i równoramienne; ) oblicza obwód wielokąta o danych długościach boków; ) konstruuje trójkąt o trzech danych bokach; ustala możliwość zbudowania trójkąta (na podstawie nierówności trójkąta); 8. Kąty. Uczeń: 6) rozpoznaje kąty wierzchołkowe i kąty przyległe oraz korzysta z ich własności. 3) stosuje twierdzenie o sumie kątów trójkąta; 6) oblicza miary kątów, stosując przy tym poznane własności kątów i wielokątów. 7. Proste i odcinki. Uczeń: ) rozpoznaje odcinki i proste prostopadłe i równoległe; 3) rysuje pary odcinków prostopadłych i równoległych; 4) rozpoznaje i nazywa kwadrat, prostokąt, ; 5) zna najważniejsze własności kwadratu, prostokąta ; ) oblicza obwód wielokąta o danych długościach boków;
0. Równoległoboki i romby.. Miary kątów w równoległobokach.. Trapezy 3. Miary kątów w trapezach. 7. Proste i odcinki. Uczeń: ) rozpoznaje odcinki i proste równoległe; 3) rysuje pary odcinków równoległych; 4) rozpoznaje i nazywa romb, równoległobok, ; 5) zna najważniejsze własności rombu, równoległoboku ; ) oblicza obwód wielokąta o danych długościach boków; 5) zna najważniejsze własności rombu, równoległoboku ; 6) oblicza miary kątów, stosując przy tym poznane własności kątów i wielokątów. 7. Proste i odcinki. Uczeń: ) rozpoznaje odcinki i proste równoległe; 3) rysuje pary odcinków równoległych; 4) rozpoznaje i nazywa trapez, ; 5) zna najważniejsze własności trapezu ; ) oblicza obwód wielokąta o danych długościach boków; 5) zna najważniejsze własności trapezu; 6) oblicza miary kątów, stosując przy tym poznane własności kątów i wielokątów. 4. Czworokąty podsumowanie. 5. Figury przystające*. 6. Praca klasowa i jej omówienie.
5. UŁAMKI DZIESIĘTNE. Zapisywanie ułamków dziesiętnych.. Porównywanie ułamków dziesiętnych. 3. Różne sposoby zapisywania długości i masy. 4. Dodawanie i odejmowanie ułamków dziesiętnych. 5. Mnożenie ułamków dziesiętnych przez 0, 00, 000 6. Dzielenie ułamków dziesiętnych przez 0, 00, 000 7. Mnożenie ułamków dziesiętnych przez liczby naturalne. 4. Ułamki zwykłe i dziesiętne. Uczeń: ) opisuje część danej całości za pomocą ułamka; 7) zaznacza ułamki dziesiętne na osi liczbowej oraz odczytuje ułamki dziesiętne zaznaczone na osi liczbowej; 8) zapisuje ułamek dziesiętny skończony w postaci ułamka zwykłego; 9) zamienia ułamki zwykłe będące dzielnikami liczb 0, 00, 000 itd. na ułamki dziesiętne skończone (przez rozszerzanie ułamków zwykłych); 4. Ułamki zwykłe i dziesiętne. Uczeń: ) porównuje ułamki dziesiętne; 4. Zadania tekstowe. 4. Ułamki zwykłe i dziesiętne. Uczeń: 6) zapisuje wyrażenia dwumianowane w postaci ułamka dziesiętnego i odwrotnie;. Obliczenia praktyczne. Uczeń: 6) prawidłowo stosuje jednostki długości: metr, centymetr, decymetr, milimetr, kilometr; 7) prawidłowo stosuje jednostki masy: gram, kilogram, dekagram, tona; 4. Zadania tekstowe. ) dodaje i odejmuje ułamki dziesiętne w pamięci (w najprostszych przykładach), pisemnie i za pomocą kalkulatora (w trudniejszych przykładach); 4) porównuje różnicowo ułamki; 4. Zadania tekstowe. ) mnoży ułamki dziesiętne w pamięci(w najprostszych przykładach); 4. Zadania tekstowe. ) dzieli ułamki dziesiętne w pamięci(w najprostszych przykładach); 4. Zadania tekstowe. ) mnoży ułamki dziesiętne w pamięci (najprostsze przykłady), pisemnie; 5) oblicza ułamek danej liczby naturalnej;
8. Mnożenie ułamków dziesiętnych. 9. Dzielenie ułamków dziesiętnych przez liczby naturalne. 0. Dzielenie ułamków dziesiętnych.. Szacowanie wyników działań na ułamkach dziesiętnych..działania na ułamkach zwykłych i dziesiętnych. 3. Procenty a ułamki. ) mnoży ułamki dziesiętne w pamięci (w najprostszych przykładach), pisemnie i za pomocą kalkulatora (w trudniejszych przykładach); 6) oblicza kwadraty i sześciany ułamków dziesiętnych; ) dzieli ułamki dziesiętne w pamięci (najprostsze przykłady), pisemnie; ) dzieli ułamki dziesiętne w pamięci (w najprostszych przykładach), pisemnie i za pomocą kalkulatora (w trudniejszych przykładach); 9) szacuje wyniki działań. 4. Ułamki zwykłe i dziesiętne. Uczeń: 8) zapisuje ułamek dziesiętny skończony w postaci ułamka zwykłego; 9) zamienia ułamki zwykłe będące dzielnikami liczb 0, 00, 000 itd. na ułamki dziesiętne skończone (przez rozszerzanie ułamków zwykłych); 3) wykonuje nieskomplikowane rachunki, w których występują jednocześnie ułamki zwykłe i dziesiętne;. Obliczenia praktyczne. Uczeń: ) interpretuje 00% danej wielkości jako całość, 50% - jako połowę, 5% - jako jedną czwartą, 0% - jako jedną dziesiątą, a % - jako jedną setną danej wielkości liczbowej; ) w przypadkach osadzonych w kontekście praktycznym oblicza procent danej wielkości w stopniu trudności typu 50%, 0%, 0%. 4. Powtórzenie wiadomości 5. Praca klasowa i jej omówienie.
POLA FIGUR. Pole prostokąta i kwadratu.. Zależności między jednostkami pola. 3. Pole równoległoboku. 4. Pole rombu. 5. Pole trójkąta. ) oblicza pola: kwadratu i prostokąta przedstawionych na rysunku (w tym na własnym rysunku pomocniczym) oraz sytuacjach praktycznych; 3) stosuje jednostki pola: m, cm, km, mm, dm, ar, hektar (bez zamiany jednostek w 4. Zadania tekstowe. ) oblicza pola: kwadratu i prostokąta przedstawionych na rysunku (w tym na własnym rysunku pomocniczym) oraz sytuacjach praktycznych; 3) stosuje jednostki pola: m, cm, km, mm, dm, ar, hektar (bez zamiany jednostek w. Obliczenia praktyczne. Uczeń: 6) prawidłowo stosuje jednostki długości: metr, centymetr, decymetr, milimetr, kilometr; 4. Zadania tekstowe. ) oblicza pola: równoległoboków przedstawionych na rysunku (w tym na własnym rysunku pomocniczym) oraz sytuacjach praktycznych; 3) stosuje jednostki pola: m, cm, km, mm, dm, ar, hektar (bez zamiany jednostek w ) oblicza pola: rombów przedstawionych na rysunku (w tym na własnym rysunku pomocniczym) oraz sytuacjach praktycznych; 3) stosuje jednostki pola: m, cm, km, mm, dm, ar, hektar (bez zamiany jednostek w ) oblicza pola: trójkątów przedstawionych na rysunku (w tym na własnym rysunku pomocniczym) oraz sytuacjach praktycznych; 3) stosuje jednostki pola: m, cm, km, mm, dm, ar, hektar (bez zamiany jednostek w
6. Pole trapezu. 7. Pola wielokątów podsumowanie 8. Praca klasowa i jej omówienie LICZBY CAŁKOWITE. Liczby ujemne.. Dodawanie liczb całkowitych. 3. Odejmowanie liczb całkowitych. 4. Mnożenie i dzielenie liczb całkowitych 6. Praca klasowa i jej omówienie. GRANIASTOSŁUPY. Prostopadłościany i sześciany.. Przykłady graniastosłupów prostych. ) oblicza pola: trapezów przedstawionych na rysunku (w tym na własnym rysunku pomocniczym) oraz sytuacjach praktycznych; 3) stosuje jednostki pola: m, cm, km, mm, dm, ar, hektar (bez zamiany jednostek w 3. Liczby całkowite. Uczeń: ) podaje praktyczne przykłady stosowania liczb ujemnych; ) interpretuje liczby całkowite na osi liczbowej; 4) porównuje liczby całkowite;. Obliczenia praktyczne. Uczeń: 5)odczytuje temperaturę (dodatnią i ujemną) 3. Liczby całkowite. Uczeń: 5) wykonuje proste rachunki na liczbach całkowitych; 3. Liczby całkowite. Uczeń: 5) wykonuje proste rachunki na liczbach całkowitych; 3. Liczby całkowite. Uczeń: 5) wykonuje proste rachunki na liczbach całkowitych; 0. Bryły. Uczeń: ) wskazuje wśród graniastosłupów prostopadłościany i sześciany i uzasadnia swój wybór; 0. Bryły. Uczeń: ) rozpoznaje graniastosłupy proste w sytuacjach praktycznych i wskazuje te bryły wśród innych modeli brył; ) wskazuje wśród graniastosłupów prostopadłościany i sześciany i uzasadnia swój wybór;
3. Siatki graniastosłupów. 4. Pole powierzchni graniastosłupa prostego. 5. Objętość figury. Jednostki objętości. 6. Litry i mililitry. 7. Objętość prostopadłościanu. 8. Objętość graniastosłupa prostego. 9. Powtórzenie wiadomości. 0. Bryły. Uczeń: 3) rozpoznaje siatki graniastosłupów prostych; 4) rysuje siatki prostopadłościanów; 3) stosuje jednostki pola: m, cm, km, mm, dm, ar, hektar (bez zmiany jednostek w 4) oblicza pole powierzchni prostopadłościanu przy danych długościach krawędzi; 5) stosuje jednostki objętości i pojemności: litr, mililitr, dm 3, m 3, cm 3, mm 3 ; 5) stosuje jednostki objętości i pojemności: litr, mililitr, dm 3, m 3, cm 3, mm 3 ; 4) oblicza objętość prostopadłościanu przy danych długościach krawędzi; 5) stosuje jednostki objętości i pojemności: litr, mililitr, dm 3, m 3, cm 3, mm 3 ; 4) oblicza objętość prostopadłościanu przy danych długościach krawędzi; 5) stosuje jednostki objętości i pojemności: litr, mililitr, dm 3, m 3, cm 3, mm 3 ; 0. Praca klasowa i jej omówienie.