Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 13 Topologie sieci i urządzenia
Topologie sieci magistrali pierścienia gwiazdy siatki
Zalety: małe użycie kabla Magistrala brak dodatkowych urządzeń (koncentratory, switche) niska cena sieci łatwość instalacji awaria pojedynczego komputera nie powoduje unieruchomienia całej sieci Wady: trudna lokalizacja usterek tylko jedna możliwa transmisja w danym momencie potencjalnie duża ilość kolizji awaria głównego kabla powoduje unieruchomienie całej domeny kolizji
Pierścień Zalety: małe zużycie przewodów możliwość zastosowania łącz optoelektronicznych, które wymagają bezpośredniego nadawania i odbierania transmitowanych sygnałów możliwe wysokie osiągi, ponieważ każdy przewód łączy dwa konkretne komputery Wady: Awaria jednego węzła lub łącza może być powodem awarii całej sieci. Utrudniona diagnoza uszkodzeń. Dołączenie nowego węzła wymaga wyłączenia całej sieci. Dane poruszają się w jednym kierunku. Czas propagacji jest zależny od liczby węzłów.
Gwiazda Zalety: Sieć może działać nawet, gdy jeden lub kilka komputerów ulegnie awarii. Sieć jest elastyczna i skalowalna. Łatwość monitoringu, konserwacji, wykrywania i lokalizacji kolizji Wady: Stosunkowo wysoki koszt spowodowany jest dużą ilością kabla potrzebnego do podłączenia każdego z węzłów W wypadku awarii elementu centralnego jakim jest koncentrator (np. hub, switch) sieć nie działa
Urządzenia sieciowe
Hub Jest urządzeniem posiadającym wiele portów do przyłączania stacji roboczych przede wszystkim w topologii gwiazdy. Można je traktować jak wieloportowe wzmacniaki, z tym że nowoczesne koncentratory posiadają obwody regenerujące przesyłane ramki Ethernetowe. Zaletą takiego rozwiązania jest, to że przerwanie komunikacji pomiędzy hubem a jedną ze stacji roboczych nie powoduje zatrzymania ruchu w całej sieci (każda stacja ma oddzielne połączenie z koncentratorem), należy jednak pamiętać, że awaria koncentratora unieruchomi komunikacje ze wszystkimi podłączonymi do niego urządzeniami. Huby wymagają zasilania i wzmacniają sygnały ze stacji roboczych, co pozwala na wydłużenie połączenia.
Przełącznik (switch) Przełącznik jest urządzeniem które pracuje w warstwie łącza danych (warstwa 2 modelu OSI). Przełącznik uczy się adresów potrzebnych do sterowania dostępem do nośnika i przechowuje je w tablicy wyszukiwania. Chwilowo pomiędzy nadawcą ramki a jej odbiorcą tworzone są ścieżki przełączane czyli komutowane. Potem ramki przesyłane są dalej wzdłuż tych tymczasowych ścieżek. Typowe sieci lokalne oparte o topologię przełączaną zbudowane są tak, że posiadają wiele połączeń urządzeń z portami koncentratora. Każdy port oraz urządzenie które do niego jest przyłączone ma przydzieloną odpowiednią szerokość pasma.
Most (bridge) Most to urządzenie warstwy 2. Zadaniem mostów jest filtrowanie ruchu w sieci LAN - zachowaniu ruchu lokalnego - umożliwiając zarazem łączność z innymi częściami (segmentami) sieci LAN wobec ruchu, który jest tam kierowany. Każde urządzenie sieciowe ma unikatowy adres MAC na karcie NIC (Network Interface Card). Most śledzi, które adresy MAC znajdują się po odpowiedniej stronie mostu i podejmuje decyzje w oparciu o listę adresu MAC. Mosty filtrują ruch sieciowy operując się tylko na adresach MAC. Dlatego też mogą bardzo szybko przesłać ruch reprezentujący dowolny protokół warstwy sieci. Ponieważ mosty interesują tylko adresy MAC, nie zajmują się protokołami sieci. Zajmują się tylko przekazywaniem ramek w oparciu o dowolne adresy MAC.
Router Działanie warstwie trzeciej pozwala routerowi podejmować decyzje w oparciu o adresy sieciowe zamiast adresów MAC warstwie drugiej. Routery mogą łączyć różne technologie warstwie drugiej, na przykład Ethernet, Token Ring i FDDI. Zadaniem routera jest sprawdzenie przechodzących pakietów (danych warstwie trzeciej), wyznaczenie najlepszej ścieżki w sieci i przesłanie ich do właściwego portu wyjścia. Routery to najważniejsze urządzenie regulujące ruch w dużych sieciach. Pozwalają na komunikację między praktycznie każdym komputerem a dowolnym innym komputerem w dowolnym miejscu na świecie.
Model warstwowy sieci Różne protokoły muszą ze sobą współdziałać w szczególności TCP/IP z innymi protokołami jest to możliwe dzięki warstwowej budowie sieci. Opracowany przez OSI (Open System Interconnection) w 1984 r model warstwowy sieci opisuje sposób przepływu informacji pomiędzy komputerami połączonymi w sieć
Warstwy sieci 7 6 5 4 3 2 1 aplikacji prezentacji sesyjna transportu sieciowa łącza danych fizyczna
Warstwy sieci fizyczna kable i urządzenia aktywne stosowane do połączenia komputerów; odpowiada za przesyłanie i odbiór poszczególnych bitów, określa wymagania stawiane sprzętowi (np. charakterystyki wydajności kabli, kart) łącza danych ustala nawiązanie połączenia i jego zakończenie, zapewnia kontrolę adresów oraz poprawności transmisji (każdy pakiet pakowany jest w ramkę (frame), którą tworzy: nagłówek, pakiet oraz sekwencja kontrolna; na poziomie tej warstwy sprawdzane jest, czy wszystkie pakiety dotarły do adresata
Warstwy sieci sieciowa odpowiada za trasę przesyłki, ustala gdzie jest wolna droga ; ustala protokoły w tym IP oraz IPX, które zawierają informacje o adresie źródłowym i docelowym transportu nadzoruje przesyłanie danych, np. kolejność pakietów, ich kodowanie i rozkodowanie, w razie konieczności wysyła żądanie ponownego przesłania brakującego pakietu sesji odpowiada za koordynację komunikacji m. komputerami kto wysyła i kiedy (dot. relacji klient-klient oraz klient-serwer (sesji)
Warstwy sieci prezentacji odpowiada za sposób kodowania danych (szyfrowanie i deszyfrowanie), ich kompresję i dekompresję oraz korektę reprezentacji binarnej aplikacji pełni rolę pośrednika między systemem operacyjnym i jego aplikacjami a siecią (np. polecenie FTP powoduje uruchomienie programu-klienta FTP
Warstwy sieci W połączeniu sieciowym dane przychodzące płyną zawsze od najwyższej warstwy do najniższej, przez sieć do innego komputera, a tam od najniższej warstwy do najwyższej 7 7 1 1 Sieć komputerowa
Model warstwowy DoD Warstwa aplikacji - zapewnia interfejs pomiędzy aplikacjami użytkowymi, a usługami sieciowymi. Warstwa transportowa - obsługuje strumień danych między dwoma zdalnymi maszynami Warstwa Internet - przesyła pakiety z danymi od maszyny źródłowej do maszyny docelowej Warstwa fizyczna - odpowiada za przyjmowanie ciągów danych z warstwy Internet, łączenie danych i przesyłanie ich zawartości oraz samą transmisję strumienia bitów.