F-Theory duals of heterotic K3 orbifolds

Podobne dokumenty
Convolution semigroups with linear Jacobi parameters

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Dualities and 5-brane webs for 5d rank 2 SCFTs

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

Symmetry and Geometry of Generalized Higgs Sectors

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

OpenPoland.net API Documentation

WENTYLATORY PROMIENIOWE SINGLE-INLET DRUM BĘBNOWE JEDNOSTRUMIENIOWE CENTRIFUGAL FAN

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ

Hard-Margin Support Vector Machines

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Tychy, plan miasta: Skala 1: (Polish Edition)

Effective Governance of Education at the Local Level

Surname. Other Names. For Examiner s Use Centre Number. Candidate Number. Candidate Signature

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Lecture 18 Review for Exam 1

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Estimation and planing. Marek Majchrzak, Andrzej Bednarz Wroclaw,

ANKIETA ŚWIAT BAJEK MOJEGO DZIECKA

PLSH1 (JUN14PLSH101) General Certificate of Education Advanced Subsidiary Examination June Reading and Writing TOTAL

deep learning for NLP (5 lectures)

Polska Szkoła Weekendowa, Arklow, Co. Wicklow KWESTIONRIUSZ OSOBOWY DZIECKA CHILD RECORD FORM

DODATKOWE ĆWICZENIA EGZAMINACYJNE

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

The impact of the global gravity field models on the orbit determination of LAGEOS satellites

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

n [2, 11] 1.5 ( G. Pick 1899).

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX

PLSH1 (JUN11PLSH101) General Certificate of Education Advanced Subsidiary Examination June Reading and Writing TOTAL

Extraclass. Football Men. Season 2009/10 - Autumn round

Strings on Celestial Sphere. Stephan Stieberger, MPP München

CS 6170: Computational Topology, Spring 2019 Lecture 09

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Home Software Hardware Benchmarks Services Store Support Forums About Us

Vacuum decay rate in the standard model and beyond

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

PassMark - CPU Benchmarks - List of Benchmarked CPUs

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

Few-fermion thermometry

PX101A. Frezy do PLEXI/ Router bits for Plexi Acrylic ALU Z= str. 122

December 2010

Model standardowy i stabilność próżni

ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL

Knovel Math: Jakość produktu

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

Home Software Hardware Benchmarks Services Store Support Forums About Us

PLSH1 (JUN12PLSH101) General Certificate of Education Advanced Subsidiary Examination June Reading and Writing TOTAL

Gradient Coding using the Stochastic Block Model

OSI Data Link Layer. Network Fundamentals Chapter 7. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)

Łukasz Reszka Wiceprezes Zarządu

RADIO DISTURBANCE Zakłócenia radioelektryczne

Relaxation of the Cosmological Constant

Surname. Other Names. For Examiner s Use Centre Number. Candidate Number. Candidate Signature

Automatyczne generowanie testów z modeli. Bogdan Bereza Automatyczne generowanie testów z modeli

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Counting quadrant walks via Tutte s invariant method

DC UPS. User Manual. Page 1

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

Zasady rejestracji i instrukcja zarządzania kontem użytkownika portalu

A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Najlepsze drukarki 3D

TURNTABLES Turntables have been created to further increase the efficiency of exchanging containers. These devices are installed next

CEE 111/211 Agenda Feb 17

RADIO DISTURBANCE Zakłócenia radioelektryczne

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

PRZEWODNIK PO PRZEDMIOCIE. Negotiation techniques. Management. Stationary. II degree

Wsparcie dyplomacji ekonomicznej dla strategii surowcowej

DIAMENTOWY PLATYNOWY ZŁOTY

Recent Developments in Poland: Higher Education Reform Qualifications Frameworks Environmental Studies

Factor each completely.

Jazz EB207S is a slim, compact and outstanding looking SATA to USB 2.0 HDD enclosure. The case is

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Robotic Arm Assembly Manual

Eksperymenty reaktorowe drugiej generacji wyznaczenie ϑ 13

1945 (96,1%) backlinks currently link back (74,4%) links bear full SEO value. 0 links are set up using embedded object

POL1. General Certificate of Education June 2006 Advanced Subsidiary Examination. Responsive Writing. Time allowed: 3 hours. Instructions.

PLSH1 (JUN15PLSH101) General Certificate of Education Advanced Subsidiary Examination June Reading and Writing TOTAL

Home Software Hardware Benchmarks Services Store Support Forums About Us

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS

MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller

Camspot 4.4 Camspot 4.5

RAYA. Design: Grzegorz Olech

Homogeneous hypersurfaces

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS

How to translate Polygons

Compatible cameras for NVR-5000 series Main Stream Sub stream Support Firmware ver. 0,2-1Mbit yes yes yes n/d


Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

Appendix. Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej R. 10. Zeszyt 2 (17) /

XML. 6.6 XPath. XPath is a syntax used for selecting parts of an XML document

POLITYKA PRYWATNOŚCI / PRIVACY POLICY

Transkrypt:

F-Theory duals of heterotic K3 orbifolds Fabian Ruehle Deutsches Elektronensynchrotron DESY Hamburg String Pheno 2014 07/08/2014 Based on Ludeling, Ruehle: [1405.2928]

T 4 /Z 2 Orbifold 2 2 2 2 2 2 2 2 Details θ : (z 1, z 2 ) (e 2πi/2 z 1, e 2πi/2 z 2 ) = ( z 1, z 2 ) Singularities: 4 4 = 16 Z 2 Gauge group: E 7 SU(2) (E 8 ) Spectrum: [(56, 2) + 4(1, 1)] U + [8(56, 1) + 32(1, 2)] T Note: (56, 1), (1, 2) pseudo-real half-hypers Complex structures τ1,2, radii b 1,2 of tori unfixed [cf. talk by Vaudrevange] (spectrums from [Honecker,Trapletti]) Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 1

T 4 /Z 3 Orbifold 3 3 3 3 3 3 Details θ : (z 1, z 2 ) (e 2πi/3 z 1, e 2πi/3 z 2 ) Singularities: 3 3 = 9 Z 3 Gauge group: E 7 U(1) (E 8 ) Spectrum: [(56) 1 + (1) 2 + 2(1) 0 ] U + [9(56) + 63(1)] T Note: States differ by U(1) charges, all full hypers CS fixed by rotation to τ 1,2 = e 2πi/3, radii b 1,2 unfixed Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 2

T 4 /Z 4 Orbifold 4 4 4 2 4 2 Details θ : (z 1, z 2 ) (e 2πi/4 z 1, e 2πi/4 z 2 ) = (iz 1, iz 2 ) Singularities: 2 Z 4, 1 Z 2 per T 2 Gauge group: E 7 U(1) (E 8 ) Spectrum: [(56) 1 + 2(1) 0 ] U + [9(56) + 64(1)] T Note: States differ by U(1) charges, 5 (56) 0 are 10 half-hypers CS fixed by rotation to τ 1,2 = i, radii b 1,2 unfixed Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 3

T 4 /Z 6 Orbifold 3 3 6 2 6 2 Details θ : (z 1, z 2 ) (e 2πi/6 z 1, e 2πi/6 z 2 ) Singularities: 1 Z 6, 1 Z 3, 1 Z 2 per T 2 Gauge group: E 7 U(1) (E 8 ) Spectrum: [(56) 1 + 2(1) 0 ] U + [9(56) + 64(1)] T Note: States differ by U(1) charges, 3 (56) 0 are 6 half-hypers CS fixed by rotation to τ 1,2 = e 2πi/3, radii b 1,2 unfixed Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 4

Introduction to F-theory Constraints for heterotic duality F-theory: Introduce extra torus whose CS encodes varying Type II axio-dilaton CY 3-fold [Vafa] Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 5

Introduction to F-theory Constraints for heterotic duality F-theory: Introduce extra torus whose CS encodes varying Type II axio-dilaton CY 3-fold [Vafa] F-theories with (perturbative) heterotic dual have 1 tensor multiplet dilaton Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 5

Introduction to F-theory Constraints for heterotic duality F-theory: Introduce extra torus whose CS encodes varying Type II axio-dilaton CY 3-fold [Vafa] F-theories with (perturbative) heterotic dual have 1 tensor multiplet dilaton For duality need special fibration structure [Morrison,Vafa] elliptic fibration over base B 2 K3 fibration over P 1 Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 5

Introduction to F-theory Constraints for heterotic duality F-theory: Introduce extra torus whose CS encodes varying Type II axio-dilaton CY 3-fold [Vafa] F-theories with (perturbative) heterotic dual have 1 tensor multiplet dilaton For duality need special fibration structure [Morrison,Vafa] elliptic fibration over base B 2 K3 fibration over P 1 Take base Hirzebruch surface F N (P 1 fibration over P 1 ) Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 5

Introduction to F-theory Fiber K3 CY threefold Het. K3 Base B = N Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 5

Introduction to F-theory Constraints for heterotic duality F-theory: Introduce extra torus whose CS encodes varying Type II axio-dilaton CY 3-fold [Vafa] F-theories with heterotic dual have 1 tensor multiplet (dilaton) For duality need special fibration structure [Morrison,Vafa] elliptic fibration over base B 2 K3 fibration over P 1 Take base Hirzebruch surface F N (P 1 fibration over P 1 ) Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 5

Introduction to F-theory Constraints for heterotic duality F-theory: Introduce extra torus whose CS encodes varying Type II axio-dilaton CY 3-fold [Vafa] F-theories with heterotic dual have 1 tensor multiplet (dilaton) For duality need special fibration structure [Morrison,Vafa] elliptic fibration over base B 2 K3 fibration over P 1 Take base Hirzebruch surface F N (P 1 fibration over P 1 ) Gauge instantons embedded as (12 + N, 12 N) into E 8 E 8 Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 5

Introduction to F-theory Constraints for heterotic duality F-theory: Introduce extra torus whose CS encodes varying Type II axio-dilaton CY 3-fold [Vafa] F-theories with heterotic dual have 1 tensor multiplet (dilaton) For duality need special fibration structure [Morrison,Vafa] elliptic fibration over base B 2 K3 fibration over P 1 Take base Hirzebruch surface F N (P 1 fibration over P 1 ) Gauge instantons embedded as (12 + N, 12 N) into E 8 E 8 Second E 8 unbroken in standard embedding N = 12 Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 5

Introduction to F-theory Weierstrass description of elliptic fibration Equation: y 2 = x 3 + fxz 4 + gz 6 (f, g sections of base F 12 ) Discriminant: = 4f 3 + 27g 2 [cf. talks Palti, Cvetic, Schafer-Nameki] j-function: j(τ) = f 3 / j(i) = 1, j(e 2πi/3 ) = 0 Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 6

Introduction to F-theory Weierstrass description of elliptic fibration Equation: y 2 = x 3 + fxz 4 + gz 6 (f, g sections of base F 12 ) Discriminant: = 4f 3 + 27g 2 [cf. talks Palti, Cvetic, Schafer-Nameki] j-function: j(τ) = f 3 / j(i) = 1, j(e 2πi/3 ) = 0 Scaling s t u v x y z f g λ 1 1 12 0 28 42 0 56 84 168 µ 0 0 1 1 4 6 0 8 12 24 ν 0 0 0 0 2 3 1 0 0 0 Expand f, g in u, v, s, t f = c 56 v 8 + c 44 uv 7 + c 32 u 2 v 6 + c 20 u 3 v 5 + c 8 u 4 v 4 g = d 84 v 12 + d 72 uv 11 + d 60 u 2 v 10 + d 48 u 3 v 9 + d 36 u 4 v 8 + d 24 u 5 v 7 + d 12 u 6 v 6 + d 0 u 7 v 5 Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 6

T 4 /Z 2 Orbifold case Ansatz Heterotic side: E 7 SU(2) E 8 Spectrum: (56, 2) + 8(56, 1) + 32(1, 2) + 4(1, 1) Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 7

T 4 /Z 2 Orbifold case Ansatz Heterotic side: E 7 SU(2) E 8 Spectrum: (56, 2) + 8(56, 1) + 32(1, 2) + 4(1, 1) F-theory side Restrict f, g and relate c i, d j s.t. III, I 2, II appear: f = u 3 v 4 (...), g = u 5 v 5 (...), = u 9 v 10 (u + p 12 v) 2 red Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 7

T 4 /Z 2 Orbifold case Ansatz Heterotic side: E 7 SU(2) E 8 Spectrum: (56, 2) + 8(56, 1) + 32(1, 2) + 4(1, 1) F-theory side Restrict f, g and relate c i, d j s.t. III, I 2, II appear: f = u 3 v 4 (...), g = u 5 v 5 (...), = u 9 v 10 (u + p 12 v) 2 red Problems Fractional instantons: 24/16 = 3/2 per Z 2 fixed point Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 7

T 4 /Z 2 Orbifold case Ansatz Heterotic side: E 7 SU(2) E 8 Spectrum: (56, 2) + 8(56, 1) + 32(1, 2) + 4(1, 1) F-theory side Restrict f, g and relate c i, d j s.t. III, I 2, II appear: f = u 3 v 4 (...), g = u 5 v 5 (...), = u 9 v 10 (u + p 12 v) 2 red Problems Fractional instantons: 24/16 = 3/2 per Z 2 fixed point GG not broken by instantons Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 7

T 4 /Z 2 Orbifold case Ansatz Heterotic side: E 7 SU(2) E 8 Spectrum: (56, 2) + 8(56, 1) + 32(1, 2) + 4(1, 1) F-theory side Restrict f, g and relate c i, d j s.t. III, I 2, II appear: f = u 3 v 4 (...), g = u 5 v 5 (...), = u 9 v 10 (u + p 12 v) 2 red Problems Fractional instantons: 24/16 = 3/2 per Z 2 fixed point GG not broken by instantons Both (56, 1), (1, 2) at fixed points too singular at codim 2 Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 7

T 4 /Z 2 Orbifold case Ansatz Heterotic side: E 7 SU(2) E 8 Spectrum: (56, 2) + 8(56, 1) + 32(1, 2) + 4(1, 1) F-theory side Restrict f, g and relate c i, d j s.t. III, I 2, II appear: f = u 3 v 4 (...), g = u 5 v 5 (...), = u 9 v 10 (u + p 12 v) 2 red Problems Fractional instantons: 24/16 = 3/2 per Z 2 fixed point GG not broken by instantons Both (56, 1), (1, 2) at fixed points too singular at codim 2 {u = 0} {u + p 12 v = 0} expect 12 (56, 2), not 1 Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 7

T 4 /Z 2 Orbifold case Ansatz Heterotic side: E 7 SU(2) E 8 Spectrum: (56, 2) + 8(56, 1) + 32(1, 2) + 4(1, 1) F-theory side Restrict f, g and relate c i, d j s.t. III, I 2, II appear: f = u 3 v 4 (...), g = u 5 v 5 (...), = u 9 v 10 (u + p 12 v) 2 red Problems Fractional instantons: 24/16 = 3/2 per Z 2 fixed point GG not broken by instantons Both (56, 1), (1, 2) at fixed points too singular at codim 2 {u = 0} {u + p 12 v = 0} expect 12 (56, 2), not 1 { red = 0} {u + p 12 v = 0} expect multiples of 12 for hypers (1, 2), not 32 Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 7

Duals for T 4 /Z 2 Orbifold Alternative way of looking at the orbifold geometry Smooth fiber torus in the bulk of the base (away from singularities) Four fiber singularities over each base singularity [Braun,Ebert,Hebecker,Valandro; Buchmüller,Louis,Schmidt,Valandro] Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 8

Duals for T 4 /Z 2 Orbifold 2 2 2 2 Idea Find Weierstrass description of heterotic model w/ base P 1 (s, t) and fiber T 2 (x, y, z) 1 Pick one section (i.e. one pillow corner) Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 9

Duals for T 4 /Z 2 Orbifold 2 2 1 1 2 2 2 1 1 Idea Find Weierstrass description of heterotic model w/ base P 1 (s, t) and fiber T 2 (x, y, z) 1 Pick one section (i.e. one pillow corner) 2 Blow up fiber singularity it hits (replace Z 2 singularity w/ P 1 ) 3 Blow down other finite fiber component (original fiber pillow) Same method also used in [Braun,Ebert,Hebecker,Valandro] Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 9

Duals for T 4 /Z 2 Orbifold Results for heterotic Weierstrass Get Weierstrass model with four D 4 singularities Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 10

Duals for T 4 /Z 2 Orbifold Results for heterotic Weierstrass Get Weierstrass model with four D 4 singularities Heterotic Weierstrass: y 2 = x 3 + f H 8 xz4 + g H 12 z6 Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 10

Duals for T 4 /Z 2 Orbifold Results for heterotic Weierstrass Get Weierstrass model with four D 4 singularities Heterotic Weierstrass: y 2 = x 3 + f8 Hxz4 + g12 H z6 Need vanishing (f8 H, g 12 H, H 24 ) = (2, 3, 6) @ 4 points f8 H = αp2 4, g 12 H = βp3 4, H 24 = (α3 + β 2 )p4 6 Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 10

Duals for T 4 /Z 2 Orbifold Results for heterotic Weierstrass Get Weierstrass model with four D 4 singularities Heterotic Weierstrass: y 2 = x 3 + f8 Hxz4 + g12 H z6 Need vanishing (f8 H, g 12 H, H 24 ) = (2, 3, 6) @ 4 points f8 H = αp2 4, g 12 H = βp3 4, H 24 = (α3 + β 2 )p4 6 j(τ) = (f8 H)3 / H 24 = α3 /(α 3 + β 2 ) CS τ not fixed Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 10

Duals for T 4 /Z 2 Orbifold Results for heterotic Weierstrass Get Weierstrass model with four D 4 singularities Heterotic Weierstrass: y 2 = x 3 + f8 Hxz4 + g12 H z6 Need vanishing (f8 H, g 12 H, H 24 ) = (2, 3, 6) @ 4 points f8 H = αp2 4, g 12 H = βp3 4, H 24 = (α3 + β 2 )p4 6 j(τ) = (f8 H)3 / H 24 = α3 /(α 3 + β 2 ) CS τ not fixed Results for F-theory Weierstrass c 8 = αp 2 4, d 12 = βp 3 4 Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 10

Duals for T 4 /Z 2 Orbifold Results for heterotic Weierstrass Get Weierstrass model with four D 4 singularities Heterotic Weierstrass: y 2 = x 3 + f8 Hxz4 + g12 H z6 Need vanishing (f8 H, g 12 H, H 24 ) = (2, 3, 6) @ 4 points f8 H = αp2 4, g 12 H = βp3 4, H 24 = (α3 + β 2 )p4 6 j(τ) = (f8 H)3 / H 24 = α3 /(α 3 + β 2 ) CS τ not fixed Results for F-theory Weierstrass c 8 = αp 2 4, d 12 = βp 3 4 d 24 Instanton position d 24 = γp 6 4 Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 10

Duals for T 4 /Z 2 Orbifold Results for heterotic Weierstrass Get Weierstrass model with four D 4 singularities Heterotic Weierstrass: y 2 = x 3 + f8 Hxz4 + g12 H z6 Need vanishing (f8 H, g 12 H, H 24 ) = (2, 3, 6) @ 4 points f8 H = αp2 4, g 12 H = βp3 4, H 24 = (α3 + β 2 )p4 6 j(τ) = (f8 H)3 / H 24 = α3 /(α 3 + β 2 ) CS τ not fixed Results for F-theory Weierstrass c 8 = αp 2 4, d 12 = βp 3 4 d 24 Instanton position d 24 = γp 6 4 Extra I 2 locus c 20 = κp 5 4 Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 10

Duals for T 4 /Z 2 Orbifold Results for heterotic Weierstrass Get Weierstrass model with four D 4 singularities Heterotic Weierstrass: y 2 = x 3 + f8 Hxz4 + g12 H z6 Need vanishing (f8 H, g 12 H, H 24 ) = (2, 3, 6) @ 4 points f8 H = αp2 4, g 12 H = βp3 4, H 24 = (α3 + β 2 )p4 6 j(τ) = (f8 H)3 / H 24 = α3 /(α 3 + β 2 ) CS τ not fixed Results for F-theory Weierstrass c 8 = αp 2 4, d 12 = βp 3 4 d 24 Instanton position d 24 = γp 6 4 Extra I 2 locus c 20 = κp4 5 Numerical coefficients α, β, γ, κ related amongst each other to lead to factorization Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 10

Duals for T 4 /Z 2 Orbifold Spectrum E 8 at v = 0, E 7 at u = 0, I 2 at (u + 6p 3 4 v) = 0, I 1 at (...) = 0 Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 11

Duals for T 4 /Z 2 Orbifold Spectrum E 8 at v = 0, E 7 at u = 0, I 2 at (u + 6p 3 4 v) = 0, I 1 at (...) = 0 Nothing intersects v =0, everything else intersects @ u =p 4 =0 Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 11

Duals for T 4 /Z 2 Orbifold Spectrum E 8 at v = 0, E 7 at u = 0, I 2 at (u + 6p4 3v) = 0, I 1 at (...) = 0 Nothing intersects v =0, everything else intersects @ u =p 4 =0 Quantization in multiples of 12 broken to multiples of 4 Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 11

Duals for T 4 /Z 2 Orbifold Spectrum E 8 at v = 0, E 7 at u = 0, I 2 at (u + 6p 3 4 v) = 0, I 1 at (...) = 0 Nothing intersects v =0, everything else intersects @ u =p 4 =0 Quantization in multiples of 12 broken to multiples of 4 Get (56) s by deforming I 2 away and matching w/ SE 4 half-hypers at u = p 4 = 0 (56, 2) 16 half-hypers at u + 6p4 3 v = (...) = 0 (56, 1) Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 11

Duals for T 4 /Z 2 Orbifold Spectrum E 8 at v = 0, E 7 at u = 0, I 2 at (u + 6p 3 4 v) = 0, I 1 at (...) = 0 Nothing intersects v =0, everything else intersects @ u =p 4 =0 Quantization in multiples of 12 broken to multiples of 4 Get (56) s by deforming I 2 away and matching w/ SE 4 half-hypers at u = p 4 = 0 (56, 2) 16 half-hypers at u + 6p4 3 v = (...) = 0 (56, 1) Get (1) s from parameters in the Weierstrass equation In total 9: 5 from p4 and α, β, γ, κ 5 are related four singlets Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 11

Duals for T 4 /Z 2 Orbifold Spectrum E 8 at v = 0, E 7 at u = 0, I 2 at (u + 6p 3 4 v) = 0, I 1 at (...) = 0 Nothing intersects v =0, everything else intersects @ u =p 4 =0 Quantization in multiples of 12 broken to multiples of 4 Get (56) s by deforming I 2 away and matching w/ SE 4 half-hypers at u = p 4 = 0 (56, 2) 16 half-hypers at u + 6p4 3 v = (...) = 0 (56, 1) Get (1) s from parameters in the Weierstrass equation In total 9: 5 from p4 and α, β, γ, κ 5 are related four singlets Get (2) s from parameters that destroy I 2 locus smooth SE 69 overall in c20, c 8, d 24, d 12, d 0 Subtract 1 scaling, 4 singlets preserving I2 64 half-hyper (2) Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 11

Duals for T 4 /Z 3 Orbifold 3 1 2 3 3 3 1 2 2 1 Results for heterotic Weierstrass Get Weierstrass model with three E 6 singularities Heterotic Weierstrass: y 2 = x 3 + f8 Hxz4 + g12 H z6 Need vanishing (f8 H, g 12 H, H 24 ) = ( 3, 4, 8) f8 H 0, g 12 H = βp4 3, H 24 = (β2 )p3 8 j(τ) = (f8 H)3 / H 24 = 0 CS fixed to τ = e2πi/3 Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 12

Duals for T 4 /Z 4 Orbifold 2 2 4 3 3 4 4 1 2 2 1 Results for heterotic Weierstrass Get Weierstrass model with two E 7, one D 4 singularities Heterotic Weierstrass: y 2 = x 3 + f8 Hxz4 + g12 H z6 At E 7 need vanishing (f8 H, g 12 H, H 24 ) = (3, 5, 9) At D 4 need vanishing (f8 H, g 12 H, H 24 ) = (2, 3, 6) Combined vanishing (8, 13, 24) f8 H = αp3 1 q3 1 r 1 2, g 12 H 0 j(τ)=(f8 H)3 / H 24 =(f 8 H)3 /(f8 H)3 =1 CS fixed to τ = i Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 13

Duals for T 6 /Z 6 Orbifold 2 6 3 1 3 6 5 4 4 2 3 2 Results for heterotic Weierstrass Get Weierstrass model with one E 8, E 6, D 4 singularities Heterotic Weierstrass: y 2 = x 3 + f8 Hxz4 + g12 H z6 At E 8 (f8 H, g 12 H, H 24 ) = ( 4, 5, 10) At E 6 (f H 8, g H 12, H 24 ) = (3, 4, 8) At D 4 (f8 H, g 12 H, H 24 ) = ( 2, 3, 6) Combined vanishing ( 9, 12, 24) f8 H 0, g 12 H = βp5 1 q4 1 r 1 3 j(τ) = (f8 H)3 / H 24 = 0 CS fixed to τ = e2πi/3 Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 14

General gauge sector with different instanton embedding Construction Embedding instantons as (12 + N, 12 N) F N Transition from F N to F N±1 blowup/blowdown in base Base Blowup introduces extra tensor multiplet whose scalar component encodes NS5 brane position in S 1 /Z 2 in the Hořava Witten theory [Hořava,Witten] NS5 brane leaves one E 8 brane, travels through bulk, recombines with other E 8 brane [Seiberg,Witten;Morrison,Vafa] Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 15

Conclusion

Conclusion Approaches to duality Problem with usual approach in singular case: Fractional instantons, unbroken GG, everything @ FPs Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 16

Conclusion Approaches to duality Problem with usual approach in singular case: Fractional instantons, unbroken GG, everything @ FPs Finding the duals Blow up corner, blow down pillow Weierstrass polynomial coefficients from het. side Fixes complex structure of tori as needed by orbifold Z N orbifolds have central node w/ multiplicity N Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 16

Conclusion Approaches to duality Problem with usual approach in singular case: Fractional instantons, unbroken GG, everything @ FPs Finding the duals Blow up corner, blow down pillow Weierstrass polynomial coefficients from het. side Fixes complex structure of tori as needed by orbifold Z N orbifolds have central node w/ multiplicity N Presented arguments that ALL 6D orbifold models are connected by F-Theory by choosing polynomials and base F N Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 16

Conclusion Approaches to duality Problem with usual approach in singular case: Fractional instantons, unbroken GG, everything @ FPs Finding the duals Blow up corner, blow down pillow Weierstrass polynomial coefficients from het. side Fixes complex structure of tori as needed by orbifold Z N orbifolds have central node w/ multiplicity N Presented arguments that ALL 6D orbifold models are connected by F-Theory by choosing polynomials and base F N Outlook Apply to 4D models Use description w/o section Compare to M-Theory w/ frozen singularities Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 16

Thank you for your attention! Fabian Ruehle (DESY) F-Theory duals of heterotic K3 orbifolds String Pheno (07/08/2014) 17