Counting quadrant walks via Tutte s invariant method

Podobne dokumenty
Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations

Helena Boguta, klasa 8W, rok szkolny 2018/2019

harmonic functions and the chromatic polynomial

Convolution semigroups with linear Jacobi parameters

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

Mixed-integer Convex Representability

Rachunek lambda, zima

Hard-Margin Support Vector Machines

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Few-fermion thermometry

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Stability of Tikhonov Regularization Class 07, March 2003 Alex Rakhlin

Steeple #3: Gödel s Silver Blaze Theorem. Selmer Bringsjord Are Humans Rational? Dec RPI Troy NY USA

Matematyka 3. Suma szeregu. Promień zbieżności szeregu. Przykład 1: Przykład 2: GenerateConditions

Revenue Maximization. Sept. 25, 2018

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

OpenPoland.net API Documentation

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Homogeneous hypersurfaces

Unitary representations of SL(2, R)

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX

Twierdzenie Hilberta o nieujemnie określonych formach ternarnych stopnia 4

WSKAZANIE OBSZARÓW OBJĘTYCH OCHRONĄ ŚCISŁĄ, CZYNNĄ I KRAJOBRAZOWĄ

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07

HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

EXCEL PL PROGRAMOWANIE PDF

PRZYKŁAD ZASTOSOWANIA DOKŁADNEGO NIEPARAMETRYCZNEGO PRZEDZIAŁU UFNOŚCI DLA VaR. Wojciech Zieliński

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Has the heat wave frequency or intensity changed in Poland since 1950?

Tychy, plan miasta: Skala 1: (Polish Edition)

deep learning for NLP (5 lectures)

DODATKOWE ĆWICZENIA EGZAMINACYJNE

O przecinkach i nie tylko

Wyk lad z Algebry Liniowej dla studentów WNE UW. Rok akademicki 2017/2018. Przyk lady zadań na ćwiczenia. 1. Które z cia

New Roads to Cryptopia. Amit Sahai. An NSF Frontier Center

R E P R E S E N T A T I O N S

Title: On the curl of singular completely continous vector fields in Banach spaces

Zarządzanie sieciami telekomunikacyjnymi

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

Algorytm FIREFLY. Michał Romanowicz Piotr Wasilewski

The Lorenz System and Chaos in Nonlinear DEs

tum.de/fall2018/ in2357

Camspot 4.4 Camspot 4.5

Knovel Math: Jakość produktu

Presented by. Dr. Morten Middelfart, CTO

Aerodynamics I Compressible flow past an airfoil

Podstawa prawna: Art. 70 pkt 1 Ustawy o ofercie - nabycie lub zbycie znacznego pakietu akcji

2017 R. Robert Gajewski: Mathcad Prime 4. Solution of examples Rozwiązania przykładów

Roland HINNION. Introduction

Agnieszka Lasota Sketches/ Szkice mob

Chapter 1: Review Exercises

Traceability. matrix

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Poniżej moje uwagi po zapoznaniu się z prezentowanymi zasadami:

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

European Crime Prevention Award (ECPA) Annex I - new version 2014

DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!

Analiza matematyczna 3

Stargard Szczecinski i okolice (Polish Edition)

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS

OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.

Grupa Pancerniki ARMADILLOS

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller

Gradient Coding using the Stochastic Block Model

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition)

First-order logic. Usage. Tautologies, using rst-order logic, relations to natural language

Office 365 Midsize Business

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

Ankiety Nowe funkcje! Pomoc Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students

Sargent Opens Sonairte Farmers' Market

Primal Formulation. Find u h V h such that. A h (u h, v h )= fv h dx v h V h, where. u h v h dx. A h (u h, v h ) = DGFEM Primal Formulation.

ZARZADZANIE RYZYKIEM WALUTOWYM PDF

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

HISZPANSKI NA POZIOMIE PDF

Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)

Dupin cyclides osculating surfaces

Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc

POLITYKA PRYWATNOŚCI / PRIVACY POLICY

Zdecyduj: Czy to jest rzeczywiście prześladowanie? Czasem coś WYDAJE SIĘ złośliwe, ale wcale takie nie jest.


Strategic planning. Jolanta Żyśko University of Physical Education in Warsaw

Probability definition

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS

17-18 września 2016 Spółka Limited w UK. Jako Wehikuł Inwestycyjny. Marek Niedźwiedź. InvestCamp 2016 PL

Polska Szkoła Weekendowa, Arklow, Co. Wicklow KWESTIONRIUSZ OSOBOWY DZIECKA CHILD RECORD FORM

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Polski Krok Po Kroku: Tablice Gramatyczne (Polish Edition) By Anna Stelmach

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS

Transkrypt:

Counting quadrant walks via Tutte s invariant method Olivier Bernardi - Brandeis University Mireille Bousquet-Mélou - CNRS, Université de Bordeaux Kilian Raschel - CNRS, Université de Tours Vancouver, FPS 2016

Quadrant walks W S = set of lattice walks on N 2 starting at (0, 0) with steps in S, for some S { 1, 0, 1} 2. Example: S = w W S

Quadrant walks W S = set of lattice walks on N 2 starting at (0, 0) with steps in S, for some S { 1, 0, 1} 2. Example: S = w W S Generating function: Q(x, y) = x i(w) y j(w) t w, w W S where (i(w), j(w)) is the ending point and w is the number of steps.

Equation for Q(x, y) = w W S x i(w) y j(w) t w. Q(x, y) = 1 + ( t (i,j) S x i y j )Q(x, y)...

Equation for Q(x, y) = w W S x i(w) y j(w) t w. Q(x, y) = 1 + ( t x i y j )Q(x, y)... (i,j) S Functional equation: where ( K(x, y) = xy t K(x, y)q(x, y) = R(x) + S(y) xy, (i,j) S ) x i y j 1, Kernel R(x)=K(x, 0)Q(x, 0) K(0, 0)Q(0, 0), and S(y)=K(0, y)q(0, y).

Goals: Find a better equation for Q(x, y) (or even just for Q(0, 0)).

Goals: Find a better equation for Q(x, y) (or even just for Q(0, 0)). Determine the nature of Q(x, y): Algebraic? Pol(Q(x, y), x, y, t) = 0. D-finite? k p k(x, y, t)( t )k Q(x, y)=0 + same for x, y. D-Algebraic? Pol(Q(x, y), tq(x, y),..., x, y, t) = 0.

Goals: Find a better equation for Q(x, y) (or even just for Q(0, 0)). Determine the nature of Q(x, y): From the previous episodes... Algebraic approach: [G86, GZ92, B-M02, B-MMi10] Computer approach: [KaZ08, KaKoZ09, BKa10, KaY15] Analytic approach: [FIMa99, BKuRa13, R12, KuR12] Asymptotic approach: [MiRe09, BRaS12, DW15] Starring: Bostan, Bousquet-Mélou, Denisov, Fayolle, Gessel, Iasnogorodski, Kauers, Koutschan, Kurkova, Malyshev, Mishna, Raschel, Rechnitzer, Salvy, Watchel, Yatchak, Zeilberger...

Goals: Find a better equation for Q(x, y) (or even just for Q(0, 0)). Determine the nature of Q(x, y): From the previous episodes... There are 79 non-isomorphic, non-trivial choices of S. Algebraic D-finite not algebraic not D-finite 4 19 56

Goals: Find a better equation for Q(x, y) (or even just for Q(0, 0)). Determine the nature of Q(x, y): From the previous episodes... There are 79 non-isomorphic, non-trivial choices of S. Algebraic D-finite not algebraic not D-finite 4 19 56 Q(x, y) is D-finite group Γ is finite. ( ) ( c(y) Γ =< φ, ψ > where φ(x, y)= ã(y)x, y c(x) and ψ(x, y)= x, a(x)y where K(x, y) = ã(y)x 2 + b(y)x + c(y) = a(x)y 2 + b(x)y + c(x). )

Goals: Find a better equation for Q(x, y) (or even just for Q(0, 0)). Determine the nature of Q(x, y): From the previous episodes... There are 79 non-isomorphic, non-trivial choices of S. Algebraic D-finite not algebraic not D-finite 4 19 56 Q(x, y) is D-finite group Γ is finite. Q(x, y) is algebraic γ Γ( 1) γ γ(xy) = 0.

Goals: Find a better equation for Q(x, y) (or even just for Q(0, 0)). Determine the nature of Q(x, y): From the previous episodes... There are 79 non-isomorphic, non-trivial choices of S. Algebraic D-finite not algebraic not D-finite 4 19 56 Q(x, y) is D-finite group Γ is finite. Q(x, y) is algebraic γ Γ( 1) γ γ(xy) = 0. Expressions of Q(x, y) in terms of Weierstrass elliptic function.

Our contributions Simpler, uniform, proofs for the 4 algebraic models. S = Gessel Model

Our contributions Simpler, uniform, proofs for the 4 algebraic models. S = Gessel Model Extension to 4 algebraic weighted models. 1 1 2 1 1 1 1 2 1 S = 1 2 1 2 2 1 2 1 1 λ 1 1 1 1 2 1 1 1 New! (conjectured Kauers & Yatchak)

Our contributions Simpler, uniform, proofs for the 4 algebraic models. S = Gessel Model Extension to 4 algebraic weighted models. 1 1 2 1 1 1 1 2 1 S = 1 2 1 2 2 1 2 1 1 λ 1 1 1 1 2 1 1 1 New! (conjectured Kauers & Yatchak) Proof of D-algebraicity + simpler expressions for 9 non-d-finite models.

A source of inspiration William Tutte G(x, y) = x(q 1) + xytg(1, y)g(x, y) x 2 G(x, y) G(1, y) yt + xt x 1 [Tutte: Chromatic Sum Revisited (95)] G(x, y) G(x, 0) y.

Invariant method - Case of Gessel walks

Sketch of the invariant method Functional equation: ( K(x, y)q(x, y) = R(x) + S(y) xy, ( ) where K(x, y) = xy t ) x i y j 1 and S(y)=K(0, y)q(0, y). (i,j) S

Sketch of the invariant method Functional equation: ( K(x, y)q(x, y) = R(x) + S(y) xy, ( ) where K(x, y) = xy t ) x i y j 1 and S(y)=K(0, y)q(0, y). (i,j) S Let Y 1 Y 1 (x) and Y 2 Y 2 (x) be such that K(x, Y i ) = 0.

Sketch of the invariant method Functional equation: ( K(x, y)q(x, y) = R(x) + S(y) xy, ( ) where K(x, y) = xy t ) x i y j 1 and S(y)=K(0, y)q(0, y). (i,j) S Let Y 1 Y 1 (x) and Y 2 Y 2 (x) be such that K(x, Y i ) = 0. { K(x, Y 1 ) = 0 = K(x, Y 2 ), ( ) S(Y 1 ) xy 1 = R(x) = S(Y 2 ) xy 2.

Sketch of the invariant method Functional equation: ( K(x, y)q(x, y) = R(x) + S(y) xy, ( ) where K(x, y) = xy t ) x i y j 1 and S(y)=K(0, y)q(0, y). (i,j) S Let Y 1 Y 1 (x) and Y 2 Y 2 (x) be such that K(x, Y i ) = 0. { K(x, Y 1 ) = 0 = K(x, Y 2 ), ( ) S(Y 1 ) xy 1 = R(x) = S(Y 2 ) xy 2. Def. An invariant is a series I(y) such that I(Y 1 ) = I(Y 2 ).

Sketch of the invariant method Functional equation: ( K(x, y)q(x, y) = R(x) + S(y) xy, ( ) where K(x, y) = xy t ) x i y j 1 and S(y)=K(0, y)q(0, y). (i,j) S Let Y 1 Y 1 (x) and Y 2 Y 2 (x) be such that K(x, Y i ) = 0. { K(x, Y 1 ) = 0 = K(x, Y 2 ), ( ) S(Y 1 ) xy 1 = R(x) = S(Y 2 ) xy 2. Def. An invariant is a series I(y) such that I(Y 1 ) = I(Y 2 ). { I(Y 1 ) = I(Y 2 ), with I(y) rational S(Y 1 ) G(Y 1 ) = S(Y 2 ) G(Y 2 ), with G(y) is rational

Sketch of the invariant method Functional equation: ( K(x, y)q(x, y) = R(x) + S(y) xy, ( ) where K(x, y) = xy t ) x i y j 1 and S(y)=K(0, y)q(0, y). (i,j) S Let Y 1 Y 1 (x) and Y 2 Y 2 (x) be such that K(x, Y i ) = 0. { K(x, Y 1 ) = 0 = K(x, Y 2 ), ( ) S(Y 1 ) xy 1 = R(x) = S(Y 2 ) xy 2. Def. An invariant is a series I(y) such that I(Y 1 ) = I(Y 2 ). { I(Y 1 ) = I(Y 2 ), with I(y) rational S(Y 1 ) G(Y 1 ) = S(Y 2 ) G(Y 2 ), with G(y) is rational Def. A decoupling function is a series G(y) such that x Y 1 x Y 2 = G(Y 1 ) G(Y 2 ).

Sketch of the invariant method Functional equation: ( K(x, y)q(x, y) = R(x) + S(y) xy, ( ) where K(x, y) = xy t ) x i y j 1 and S(y)=K(0, y)q(0, y). (i,j) S Let Y 1 Y 1 (x) and Y 2 Y 2 (x) be such that K(x, Y i ) = 0. { K(x, Y 1 ) = 0 = K(x, Y 2 ), ( ) S(Y 1 ) xy 1 = R(x) = S(Y 2 ) xy 2. Def. An invariant is a series I(y) such that I(Y 1 ) = I(Y 2 ). { I(Y1 ) = I(Y 2 ), J(Y 1 ) = J(Y 2 ), where J(y) = S(y) G(y). Equation between I(y) and J(y) (i.e. equation for S(y)). Invariant Lemma

Example: Invariant method for Gessel walks Functional equation: K(x, y)q(x, y) = R(x) + S(y) xy, ( ) where K(x, y)=tx 2 y 2 +(tx 2 x+t)y+t and S(y)=t(1 + y)q(0, y).

Example: Invariant method for Gessel walks Functional equation: K(x, y)q(x, y) = R(x) + S(y) xy, ( ) where K(x, y)=tx 2 y 2 +(tx 2 x+t)y+t and S(y)=t(1 + y)q(0, y). ( ) { K(x, Y1 ) = 0 = K(x, Y 2 ), S(Y 1 ) xy 1 = S(Y 2 ) xy 2. ( ) Upon setting x = t + t 2 (u + 1 u )

Example: Invariant method for Gessel walks Functional equation: K(x, y)q(x, y) = R(x) + S(y) xy, ( ) where K(x, y)=tx 2 y 2 +(tx 2 x+t)y+t and S(y)=t(1 + y)q(0, y). ( ) { K(x, Y1 ) = 0 = K(x, Y 2 ), S(Y 1 ) xy 1 = S(Y 2 ) xy 2. y I(Y 1 ) = I(Y 2 ), for I(y) = t(1+y) 2 + t(1+y)2. y J(Y 1 ) = J(Y 2 ), for J(y) = S(y) + 1 t(1+y). rational invariant decoupling function

Example: Invariant method for Gessel walks Invariant Lemma: If a series P (y) = n= n 0 n+n 0 j=0 is an invariant, then P (y) is in fact independent of y. a j,n y j t 2n (J(y) J(0))I(y) + a J(y) 3 + b J(y) 2 + c J(y) + d = 0, with J(y), a, b, c, d given in terms of S(y).

Example: Invariant method for Gessel walks Invariant Lemma: If a series P (y) = ( ) ( ) S (y) + 1 t(y+1) S (0) 1 1 t t(y+1)(1+1/y) ( ) + t (y + 1 + 1/y) 3 ( ) 2 +t S (y) + 1 t(y+1) (2 + ts (0)) S (y) + 1 t(y+1) ( ) ts(0)+2 S ( 1)t t 2 1 S (y) + 1 t t(y+1) + 2 S(0)S ( 1)t S(0)t 2 S ( 1)+3 S ( 1) t = 0. t n= n 0 n+n 0 j=0 is an invariant, then P (y) is in fact independent of y. a j,n y j t 2n

Example: Invariant method for Gessel walks Invariant Lemma: If a series P (y) = ( ) ( ) S (y) + 1 t(y+1) S (0) 1 1 t t(y+1)(1+1/y) ( ) + t (y + 1 + 1/y) 3 ( ) 2 +t S (y) + 1 t(y+1) (2 + ts (0)) S (y) + 1 t(y+1) ( ) ts(0)+2 S ( 1)t t 2 1 S (y) + 1 t t(y+1) + 2 S(0)S ( 1)t S(0)t 2 S ( 1)+3 S ( 1) t = 0. t n= n 0 n+n 0 j=0 is an invariant, then P (y) is in fact independent of y. a j,n y j t 2n [Bousquet-Mélou, Jehanne 06] Algebraic equation for S(y) (hence for Q(x, y)).

Summary Invariant method requires: Rational invariant I(y): I(Y 1 ) = I(Y 2 ). Decoupling function G(y): xy 1 xy 2 = G(Y 1 ) G(Y 2 ). Invariant Lemma. It gives: Algebraic equation for S(y).

Algebraic models Rational invariant I(y) t/y 2 1/y ty ty 2 y t/y Decoupling function G(y) 1/y 1/y Invariant Lemma Gessel 1 1 2 1 λ 1 1 1 2 1 2 1 1 1 2 1 1 1 2 1 1 2 2 1 1 1 1 t/y ty 1+2t y+1 y t(1+y) 2 + t(1+y)2 y ( t 2 y + 1+λt y+1 1+λt y+1 t(t y(2t+1) y 3 (3t+1)) y 2 (1+3t)(4t+1) y+1 ) 2 + (3t+1)2 (y+1) 2 t(ty 3 y 2 (2t+1) (3t+1)) y (1+3t)(4t+1) + (3t+1)2 1/y+1 (1/y+1) 2 t(t y(2t+1) y 3 (3t+1)) y 2 (1+3t)(4t+1) y+1 + (3t+1)2 (y+1) 2 1/y 1/t(1 + y) (1 + λt)/t(1 + y) 1/y y (1+3t)/t(1+y) y(1 y+1/t) (1+3t)/ty y + 1/y

Other models? Prop. For the 79 unweighted models, Rational invariant I(y) exists Group Γ is finite Q(x, y) is D-finite.

Other models? Prop. For the 79 unweighted models, Rational invariant I(y) exists Group Γ is finite Q(x, y) is D-finite. Prop. For models such that the group Γ is finite, Decoupling function G(y) exists γ Γ ( 1) γ γ(xy) = 0 Q(x, y) is algebraic. Moreover, the decoupling function can be found as a sum over Γ.

Other models? Prop. For the 79 unweighted models, Rational invariant I(y) exists Group Γ is finite Q(x, y) is D-finite. Prop. For models such that the group Γ is finite, Decoupling function G(y) exists γ Γ ( 1) γ γ(xy) = 0 Q(x, y) is algebraic. Moreover, the decoupling function can be found as a sum over Γ. Prop. Among the 56 unweighted models such that group Γ is infinite, exactly 9 have a decoupling function.

Analytic invariant method

Weak invariants Let Y i (x) = b(x)± (x) 2a(x) be such that K(x, Y i (x))) = 0.

Weak invariants Let Y i (x) = b(x)± (x) 2a(x) be such that K(x, Y i (x))) = 0. Fact [FIM99]: For all t [0, 1/ S ], (x) -1 x 1 x 2 x 3 x 4 or + 1 x

Weak invariants Let Y i (x) = b(x)± (x) 2a(x) be such that K(x, Y i (x))) = 0. Fact [FIM99]: For all t [0, 1/ S ], (x) -1 x 1 x 2 x 3 x 4 or + 1 x Let L = Y 1 ([x 1, x 2 ]) Y 2 ([x 1, x 2 ]). G L G L

Weak invariants Let Y i (x) = b(x)± (x) 2a(x) be such that K(x, Y i (x))) = 0. Fact [FIM99]: For all t [0, 1/ S ], (x) -1 x 1 x 2 x 3 x 4 or + 1 x Let L = Y 1 ([x 1, x 2 ]) Y 2 ([x 1, x 2 ]). Def. Fix t < 1/ S. A weak invariant is a function I(y) such that I(y) is meromorphic in G L and has finite values on L. x [x 1, x 2 ], I(Y 1 (x)) = I(Y 2 (x)).

Analytic invariant method Thm. For all S { 1, 0, 1} 2 there exists a weak invariant W (y) which is moreover injective in G L (conformal map) and D-algebraic.

Analytic invariant method Thm. For all S { 1, 0, 1} 2 there exists a weak invariant W (y) which is moreover injective in G L (conformal map) and D-algebraic. W (y) = ω1,ω 3 ( ω 1 + ω 2 2 + 1 ω 1,ω 2 ( a + b )), y c where a, b, c are explicit constants (algebraic in t), ω 1 = i x2 dx (x), ω 2 = x3 dx (x), ω 3 = x1 dx (x). x 1 x 2 Y (x 1 ) and α,β (z) is Weierstrass elliptic function: α,β (z) = 1 z 2 + (m,n) Z 2 \{(0,0)} 1 (z + mα + nβ) 2 1 (mα + nβ) 2.

Analytic invariant method Thm. For all S { 1, 0, 1} 2 there exists a weak invariant W (y) which is moreover injective in G L (conformal map) and D-algebraic. Thm. Let S { 1, 0, 1} be a non-singular model. If I(y) is a weak invariant and is bounded on G L, then I(y) is independent of y.

Analytic invariant method Thm. For all S { 1, 0, 1} 2 there exists a weak invariant W (y) which is moreover injective in G L (conformal map) and D-algebraic. Thm. Let S { 1, 0, 1} be a non-singular model. If I(y) is a weak invariant and is bounded on G L, then I(y) is independent of y. Applications: For the last algebraic model: an algebraic equation for S(y). (from 2 algebraic equations between I(y), J(y), and W (y)). For the 9 non-algebraic models having a decoupling function: Expression of S(y) in terms of W (y) (+ proof of D-algebraicity).

Open Questions

1. Decoupling functions No decoupling function Finite group Algebraic D-finite transcendental Infinite group Differentially algebraic??? 2. For the 9 non-algebraic models having a decoupling function: What are the D-algebraic equations? 3. Is there a bijective proof for the number of Gessel walks? q n = 16 n (1/2) n(5/6) n (2) n (5/3) n, where (a) n = a(a + 1) (a + n 1).

Thanks.