Some Linear Algebra. Vectors operations = =(,, ) =( 1 + 2, 1 + 2, ) λ =(λ,λ,λ ) Addition. Scalar multiplication.

Podobne dokumenty
Helena Boguta, klasa 8W, rok szkolny 2018/2019

Hard-Margin Support Vector Machines

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Wyk lad z Algebry Liniowej dla studentów WNE UW. Rok akademicki 2017/2018. Przyk lady zadań na ćwiczenia. 1. Które z cia

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

Lecture 18 Review for Exam 1

2017 R. Robert Gajewski: Mathcad Prime 4. Solution of examples Rozwiązania przykładów

harmonic functions and the chromatic polynomial

Camspot 4.4 Camspot 4.5

Previously on CSCI 4622

deep learning for NLP (5 lectures)

Convolution semigroups with linear Jacobi parameters

MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller

Teoria i praktyka programowania gier komputerowych

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

Egzamin maturalny z języka angielskiego na poziomie dwujęzycznym Rozmowa wstępna (wyłącznie dla egzaminującego)

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

Aerodynamics I Compressible flow past an airfoil

Revenue Maximization. Sept. 25, 2018

Tychy, plan miasta: Skala 1: (Polish Edition)

KONSPEKT DO LEKCJI MATEMATYKI W KLASIE 3 POLO/ A LAYER FOR CLASS 3 POLO MATHEMATICS

The Overview of Civilian Applications of Airborne SAR Systems

Physics-Based Animation 4 Mass-spring systems

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Standardized Test Practice

Chapter 10 Test Study Guide

Gradient Coding using the Stochastic Block Model

OpenPoland.net API Documentation

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

JĘZYK ANGIELSKI ĆWICZENIA ORAZ REPETYTORIUM GRAMATYCZNE

SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS

Date Period Find the area of each regular polygon. Round your answer to the nearest tenth if necessary. 1) 10.3 yd. 6 m 11.2 m -1-

Zarządzanie sieciami telekomunikacyjnymi


Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

How to translate Polygons

ITIL 4 Certification

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

Installation of EuroCert software for qualified electronic signature

Few-fermion thermometry

CS 6170: Computational Topology, Spring 2019 Lecture 09

DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!

Dupin cyclides osculating surfaces

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

STAŁE TRASY LOTNICTWA WOJSKOWEGO (MRT) MILITARY ROUTES (MRT)

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów

Stargard Szczecinski i okolice (Polish Edition)

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

KINEMATYKA (punkt materialny)

DEFORMATION NETS FOR PLANE MIRROR ANAMORPHS

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum

Poniżej moje uwagi po zapoznaniu się z prezentowanymi zasadami:

Klaps za karę. Wyniki badania dotyczącego postaw i stosowania kar fizycznych. Joanna Włodarczyk

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

ANKIETA ŚWIAT BAJEK MOJEGO DZIECKA

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS

Estimation and planing. Marek Majchrzak, Andrzej Bednarz Wroclaw,

Życie za granicą Studia

Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy

Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX

Jak działa grawitacja?

Rachunek lambda, zima

HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07

HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

WOJSKOWE TRASY LOTÓW (MRT) NA MAŁYCH WYSOKOŚCIACH LOW FLYING MILITARY TRAINING ROUTES (MRT)

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)


Extraclass. Football Men. Season 2009/10 - Autumn round

Stability of Tikhonov Regularization Class 07, March 2003 Alex Rakhlin

Before Adam starts work he needs to know where everything is. Maria shows him around the restaurant.

Immigration Studying. Studying - University. Stating that you want to enroll. Stating that you want to apply for a course.

Mixed-integer Convex Representability

A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

SNP SNP Business Partner Data Checker. Prezentacja produktu

Copyright 2013 Zbigniew Płotnicki. Licence allows only a publication on arxiv.org and vixra.org. Beside it all rights reserved.

Automatic Control and Robotics 1 st degree (1st degree / 2nd degree) General (general / practical) Full-time (full-time / part-time)

18. Przydatne zwroty podczas egzaminu ustnego. 19. Mo liwe pytania egzaminatora i przyk³adowe odpowiedzi egzaminowanego

POLITYKA PRYWATNOŚCI / PRIVACY POLICY

Agnostic Learning and VC dimension

adasalai.org POWERS OF IMAGINARY UNIT = i i 2001 Division algorithm : n = 4(q) + r

ZDANIA ANGIELSKIE W PARAFRAZIE

tum.de/fall2018/ in2357

USB firmware changing guide. Zmiana oprogramowania za przy użyciu połączenia USB. Changelog / Lista Zmian

Poniżej moje uwagi po zapoznaniu się z prezentowanymi zasadami: Str 12. Itiner pictures on the map may have: Name:

n [2, 11] 1.5 ( G. Pick 1899).

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

Surname. Other Names. For Examiner s Use Centre Number. Candidate Number. Candidate Signature

OSTC GLOBAL TRADING CHALLENGE MANUAL

Transkrypt:

Basic Geometry

Vectors operations Some Linear Algebra Addition + 2 =( 1 + 2, 1 + 2, 1 + 2 ) =(,, ) + Scalar multiplication λ =(λ,λ,λ ) Norm = 2 + 2 + 2 2

Scalar Product Commutative Linear Orthogonally Norm Some Linear Algebra Orthonormality Normalized vector = 1 2 + 1 2 + 1 2 = ( + ) = + =0 = =1 = =(,, ) 3

Some Linear Algebra Linear Transformation - Matrix Multiplication Do not Commute = =1 Matrix Transpose ( ) = ( ) = Matrix Inverse 1 = 1 = ( ) 1 = 1 1 4

Determinants If A is a 2 x 2 matrix then det( )= det(a) = area of parallelogram defined by (a,c) and (b,d) General determinate is defined recursively by minors minors are computed by eliminating the row and column of an entry and computing the determinant on the residue. Few reminders n i j nxn = ij ( 1) + ij j= 1 A a M = = 1 = 1 = 5

Cross products The cross product of two vectors V 1 and V 2 is defined (in determinant form) 1 2 = 1 1 1 2 2 2 1 2 = 1 1 sin( ) Meanings The area of the parallelogram that is defined by V 1 and V 2 The direction of the normal to the plane that is determined by V 1 and V 2 A vector which is orthogonal to both V 1 and V 2 6

Cross Product Properties 1 2 = 2 1 V 1 x V 2 Reverse the direction. V 2 1 2 = 1 1 sin ( ) α V 1 V 2 x V 1 = -V 1 x V 2 7

Right and Left Coordinate Systems Question: What is a positive angle of rotation around an axis specified by a vector? Answer: Align your thumb with the vector. Your other fingers indicate the direction of a positive rotation. Definition: A three-dimensional left (right) coordinate system is such that the positive rotation direction around the Z axis using the left (right) thumb rotates X towards Y. A three-dimensional left coordinate system. A three-dimensional right coordinate system. X Z Z Y X 8 Y

Model Coordinate System World Coordinate System View Coordinate System Projection Transform Screen Coordinate System Coordinate Systems 9

Model and World Coordinate Systems The model coordinate system is the coordinate system where the object is defined (modeled) Customarily, objects are modeled around the center of axes Why? The world coordinate system is the global coordinate system where all the object reside To move objects from one coordinates system to the other we apply transformations on the object Multiply the vertices of a polygonal object by a proper [4X4] matrix Modeling Transform Demo 10

View Coordinate System Coordinate system that is centered on the camera All objects in a scene are either in positive (in front of the camera) or negative (behind) Z Positions the viewing volume in the world. After multiplying objects by the viewing matrix, these objects are transformed from the world coordinate system to the view (camera) coordinate system 11

Projection Transform & screen coordinates The location where a 3D object is projected onto a 2D plane (image). There are several options there will be discussed during the lectures Usually it is preferred to consider normalized projected space where the projection transform maps to [-1,1]X[-1,1] square After the projection transform took place, the object is not yet in device coordinate systems. These are the integer values 12

The complete pipeline For every vertex V in a polygonal model apply M, the concatenated matrix which contain all the transformations. M = a e i m b f j n c g l o d a' h e' l i' p m' b' f ' j' n' c' g' k' o' d' a'' h' e'' l' i'' p' m'' b'' f '' j'' n'' c'' g'' k'' o'' d'' a` h'' e` l'' i` p'' m` b` f ` j` n` c` g` k` o` d` h` l` p` Modeling Matrix Viewing Matrix Projection Matrix Screen Matrix V ' = V M 13

Line equations What are the available forms Explicit form Implicit form Parametric form ( )= + (, )= + + =0 ( )=(1 ) 1 + 2 2 1 14

Point-Line Distance = 1 2 =(1 ) 1 + 2 = 1 2 1 2 1 2 = 1 2 = 1 2 2 1 2 15

Line-Line Distance ( )=(1 ) 1 + 2 ( )=(1 ) 1 + 2 2 2 The distance between f(t) and g(s) is (, )= ( ) ( ) Minimize (Why and how?) 2 (, ) min (, )= ( 1 1 ) ( 2 1 ) ( 2 1 ) ( 2 1 ) ( 2 1 ) 1 1 What about segment-segment? Need to check end points seperately 16

The distance is Point-Plane Distance + + + =0 =( 0, 0, 0 ) =(,, ) = = 0+ 0 + 0 + 2 + 2 + 2 17

Collision Detection 18

Collision Detection Check if and when moving object will collide Physical simulations Video games Computational geometry Needs to be efficient and accurate Real time Not a stable problem Simpler problem - Collision of Static Primitives Check if two primitives are intersecting Much easier Answer is only yes/no Simple geometry 19

Example Line-Line Intersection 2 2 1 1 1( )=(1 ) 1+ 2, 2( )=(1 ) 1+ 2 Find r,t such that 1 ( )=(1 ) 1 + 2,=(1 ) 1 + 2 = 2 ( ) Two (why?) linear equations with two variables Question: What is the meaning of r,t < 0 or r,t >1? 20

Example Line-Sphere intersection The sphere equation is given by (, 0 )= ( 0 ) 2 +( 0 ) 2 +( 0 ) 2 = 2 Solve a quadratic system of equation If solution exists, there is an intersection Is there a simpler way? Find distance from line to center of sphere If it is less than R, there is an intersection 0 21

Linear Operators Definition: A linear operator, L:A B, satisfies the following: L(aX+bY) = al(x) + bl(y) Examples Differentiation D(h(x)) = h (x) D( af( x) + bg( x) ) = D af( x) + D bg x ( ) ( ( )) ( ( )) bd( g( x) ) = ad f x + Scaling S(h(x)) = sh(x) S = = ( af ( x) + bg( x) ) = s( af ( x) + bg( x) ) asf ( x) + bsg( x) as( f( x) ) + bs( g( x) ) Question: Is F(X) = αx+β a linear operation? 22

Answer: No!! F ( a X + b Y ) Linear Operators (cont). = α ( a X + b Y ) + β = α ( a X ) + α ( b Y ) + β = a α X + b α Y + β = a ( α X + β ) + b ( α Y + β ) + (1 a b ) β = a F ( X ) + b F ( Y ) + (1 a b ) β Definition: An affine operator, A, satisfies: A(aX+bY) = aa(x) + ba(y), for a+b = 1 Question: Is F(X) = αx+β an affine operation? 23

Convexity An object ϑ is convex iff for any two points P,Q ϑ, tp+(1-t)q ϑ, t [0,1]. ϑ tp+ ( 1 t)q P Q The convex hull CH(ϑ), of an object ϑ, is the minimal convex shape C, such that ϑ C. Let P i n i= 1 be n points, and let n, i= 1 n a i= 1 i = 1, a i We say that P= n a P is an affine combination of i= 1 i i n P CH P. For n= 2, P P P. i i= 1 1 2 a i C C=CH(ϑ) 0. P i n. i= 1 24 ϑ

Curves Let C(t)=[x(t),y(t)] t [T 0,T 1 ] be a continuous univariate parametric curve. The tangent vector is T=C (t): T dc( t) = C t = = dt ( ) x ( t), y ( t) [ ] The unit length tangent vector is T C( t) C(t) may be thought of as the trajectory of a point in time. C (t) is the velocity vector at time t. = C ( t) = [ x ( t), y ( t) ] x ( t) 2 + y ( t) 2 dc T = dt ( t) 25