Bergman Kernel and Kobayashi Pseudodistance in Convex Domains

Podobne dokumenty
Helena Boguta, klasa 8W, rok szkolny 2018/2019

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Revenue Maximization. Sept. 25, 2018

Rachunek lambda, zima

A sufficient condition of regularity for axially symmetric solutions to the Navier-Stokes equations

O przecinkach i nie tylko

Convolution semigroups with linear Jacobi parameters

Hard-Margin Support Vector Machines

Mixed-integer Convex Representability

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Counting quadrant walks via Tutte s invariant method

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Tychy, plan miasta: Skala 1: (Polish Edition)

OpenPoland.net API Documentation

Stability of Tikhonov Regularization Class 07, March 2003 Alex Rakhlin

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Steeple #3: Gödel s Silver Blaze Theorem. Selmer Bringsjord Are Humans Rational? Dec RPI Troy NY USA

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

Stargard Szczecinski i okolice (Polish Edition)

DODATKOWE ĆWICZENIA EGZAMINACYJNE

Sargent Opens Sonairte Farmers' Market

Gradient Coding using the Stochastic Block Model

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Baptist Church Records

harmonic functions and the chromatic polynomial

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)


Previously on CSCI 4622

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Unitary representations of SL(2, R)

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

OBWIESZCZENIE MINISTRA INFRASTRUKTURY. z dnia 18 kwietnia 2005 r.

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Few-fermion thermometry

Egzamin maturalny z języka angielskiego na poziomie dwujęzycznym Rozmowa wstępna (wyłącznie dla egzaminującego)

Instrukcja obsługi User s manual

Agnostic Learning and VC dimension

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

Chapter 1: Review Exercises

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Aerodynamics I Compressible flow past an airfoil


Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

Camspot 4.4 Camspot 4.5

Patients price acceptance SELECTED FINDINGS

R E P R E S E N T A T I O N S

SNP SNP Business Partner Data Checker. Prezentacja produktu

Polska Szkoła Weekendowa, Arklow, Co. Wicklow KWESTIONRIUSZ OSOBOWY DZIECKA CHILD RECORD FORM

Zdecyduj: Czy to jest rzeczywiście prześladowanie? Czasem coś WYDAJE SIĘ złośliwe, ale wcale takie nie jest.

European Crime Prevention Award (ECPA) Annex I - new version 2014

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition)

Title: On the curl of singular completely continous vector fields in Banach spaces

Test sprawdzający znajomość języka angielskiego

Przewody do linii napowietrznych Przewody z drutów okrągłych skręconych współosiowo

deep learning for NLP (5 lectures)

Ankiety Nowe funkcje! Pomoc Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students

Twierdzenie Hilberta o nieujemnie określonych formach ternarnych stopnia 4

New Roads to Cryptopia. Amit Sahai. An NSF Frontier Center

Inverse problems - Introduction - Probabilistic approach

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

Wyk lad z Algebry Liniowej dla studentów WNE UW. Rok akademicki 2017/2018. Przyk lady zadań na ćwiczenia. 1. Które z cia

Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)

JĘZYK ANGIELSKI ĆWICZENIA ORAZ REPETYTORIUM GRAMATYCZNE

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

[assumption]theorem [assumption]corollary [assumption]lemma [assumption]definition. Andrzej Sitarz

Roland HINNION. Introduction

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum

Hakin9 Spam Kings FREEDOMTECHNOLOGYSERVICES.CO.UK

SG-MICRO... SPRĘŻYNY GAZOWE P.103

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

18. Przydatne zwroty podczas egzaminu ustnego. 19. Mo liwe pytania egzaminatora i przyk³adowe odpowiedzi egzaminowanego

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

Życie za granicą Studia

Knovel Math: Jakość produktu

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH

Jak zasada Pareto może pomóc Ci w nauce języków obcych?


Estimation and planing. Marek Majchrzak, Andrzej Bednarz Wroclaw,

Blow-Up: Photographs in the Time of Tumult; Black and White Photography Festival Zakopane Warszawa 2002 / Powiekszenie: Fotografie w czasach zgielku

Rev Źródło:

Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2)

Zasady rejestracji i instrukcja zarządzania kontem użytkownika portalu

SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS

ANKIETA ŚWIAT BAJEK MOJEGO DZIECKA

Polski Krok Po Kroku: Tablice Gramatyczne (Polish Edition) By Anna Stelmach

Zestawienie czasów angielskich

Extraclass. Football Men. Season 2009/10 - Autumn round

SNP Business Partner Data Checker. Prezentacja produktu

Transkrypt:

Bergman Kernel and Kobayashi Pseudodistance in Convex Domains Zbigniew B locki Uniwersytet Jagielloński, Kraków, Poland http://gamma.im.uj.edu.pl/ blocki (Joint work with W lodzimierz Zwonek) NORDAN Reykjavík, April 26, 2015

Ω C n, w Ω K Ω (w) = sup{ f (w) 2 : f O(Ω), f 2 dλ 1} Ω (Bergman kernel on the diagonal) G w (z) = G Ω (z, w) = sup{u(z) : u PSH (Ω) : lim z w ( u(z) log z w ) < } (pluricomplex Green function) Theorem 0 Assume Ω is pseudoconvex in C n. Then for w Ω and t 0 K Ω (w) 1 e 2nt λ({g w < t}). Optimal constant: = if Ω = B(w, r).

Proof 1 Using Donnelly-Fefferman s estimate for one can prove where c(n, t) = K Ω (w) ( 1 + 1 c(n, t)λ({g w < t}), (1) ) 2 C, Ei(a) = Ei( nt) a ds se s (B. 2005). Now use the tensor power trick: Ω = Ω Ω C nm, w = (w,..., w) for m 0. Then K Ω( w) = (K Ω (w)) m, λ({g w < t}) = (λ({g w < t})) m, and by (1) for Ω But K Ω (w) lim c(nm, m t)1/m = e 2nt. 1 c(nm, t) 1/m λ({g w < t}).

Proof 2 (Lempert) By Berndtsson s result on log-(pluri)subharmonicity of the Bergman kernel for sections of a pseudoconvex domain it follows that log K {Gw <t}(w) is convex for t (, 0]. Therefore t 2nt + log K {Gw <t}(w) is convex and bounded, hence non-decreasing. It follows that K Ω (w) e 2nt K {Gw <t}(w) e 2nt λ({g w < t}). Berndtsson-Lempert: This method can be improved to show the Ohsawa-Takegoshi extension theorem with optimal constant.

Theorem 0 Assume Ω is pseudoconvex in C n. Then for w Ω and t 0 K Ω (w) 1 e 2nt λ({g w < t}). What happens when t? For n = 1 Theorem 0 immediately gives: Theorem (Suita conjecture) For a domain Ω C one has K Ω (w) c Ω (w) 2 /π, w Ω, (2) where c Ω (w) = exp ( lim z w (G Ω (z, w) log z w ) ) (logarithmic capacity of C \ Ω w.r.t. w). Theorem (Guan-Zhou) Equality holds in (2) iff Ω \ F, where is the unit disk and F a closed polar subset.

7 6 5 4 3 2 1 10 πk Ω c 2 Ω for Ω = {e 5 < z < 1} as a function of 2 log w

What happens with e 2nt λ({g w < t}) as t for arbitrary n? For convex Ω using Lempert s theory one can get Proposition If Ω is bounded, smooth and strongly convex in C n then for w Ω lim t e 2nt λ({g w < t}) = λ(i K Ω (w)), where I K Ω (w) = {ϕ (0) : ϕ O(, Ω), ϕ(0) = w} (Kobayashi indicatrix). Corollary If Ω C n is convex then For general Ω one can prove 1 K Ω (w) λ(iω K w Ω. (w)), Theorem If Ω is bounded and hyperconvex in C n and w Ω then lim t e 2nt λ({g w < t}) = λ(iω A (w)), where I A Ω (w) = {X Cn : lim ζ 0 ( Gw (w + ζx ) log ζ ) 0} (Azukawa indicatrix)

Corollary (SCV version of the Suita conjecture) If Ω C n is pseudoconvex and w Ω then K Ω (w) 1 λ(i A Ω (w)). Remark 1. For n = 1 one has λ(i A Ω (w)) = π/c Ω(w) 2. 2. If Ω is convex then I A Ω (w) = I K Ω (w). Conjecture For Ω pseudoconvex and w Ω the function is non-decreasing in t. t e 2nt λ({g w < t}) It would easily follow if we knew that the function t log λ({g w < t}) is convex on (, 0]. Fornæss however constructed a counterexample to this (already for n = 1).

Theorem The conjecture is true for n = 1. Proof It is be enough to prove that f (t) 0 where f (t) := log λ({g w < t}) 2t and t is a regular value of G w. By the co-area formula t dσ λ({g w < t}) = G w ds and therefore f (t) = {G w =t} {G w =s} dσ G w λ({g w < t}) By the Schwarz inequality dσ {G w =t} G w (σ({g w = t})) 2 G w dσ {G w =t} 2. = (σ({g w = t})) 2. 2π

The isoperimetric inequality gives and we obtain f (t) 0. (σ({g w = t})) 2 4πλ({G w < t}) The conjecture for arbitrary n is equivalent to the following pluricomplex isoperimetric inequality for smooth strongly pseudoconvex Ω dσ G w 2nλ(Ω). Ω The conjecture also turns out to be closely related to the problem of symmetrization of the complex Monge-Ampère equation.

What about the corresponding upper bound in the Suita conjecture? Not true in general: Proposition Let Ω = {r < z < 1}. Then K Ω ( r) (c Ω ( 2 log r r)) 2 π 3. It would be interesting to find un upper bound of the Bergman kernel for domains in C in terms of logarithmic capacity which would in particular imply the part in the well known equivalence (due to Carleson) K Ω > 0 c Ω > 0 (c 2 Ω πk Ω being a quantitative version of ).

The upper bound for the Bergman kernel holds for convex domains: Theorem For a convex Ω and w Ω set Then F Ω (w) 4. F Ω (w) := ( K Ω (w)λ(i K Ω (w)) ) 1/n. Sketch of proof Denote I := int IΩ K (w) and assume that w = 0. One can show that I 2 Ω. Then K Ω (0)λ(I ) K I /2 (0)λ(I ) = λ(i ) λ(i /2) = 4n. If Ω is in addition symmetric w.r.t. w then F Ω (w) 16/π 2 = 1.621.... Remark The proof of the optimal lower bound F Ω 1 used. The proof of the (probably) non-optimal upper bound F Ω 4 is much more elementary!

For convex domains F Ω (w) = ( λ(i Ω (w))k Ω (w)) ) 1/n is a biholomorphically invariant function satisfying 1 F Ω 4. Find an example with F Ω 1. What are the properties of the function w λ(i Ω (w))? What is the optimal upper bound for F Ω?

Formulas for some convex complex ellipsoids in C 2 E(p, q) = {z C 2 : z 1 2p + z 2 2q < 1}, p, q 1/2. Blank-Fan-Klein-Krantz-Ma-Pang (1992) found implicit formulas for the Kobayashi function of E(m, 1). They can be made explicit for m = 1/2. Using this one can prove Theorem For Ω = { z 1 + z 2 2 < 1} and b [0, 1) one has and λ(i Ω ((b, 0))) = π2 3 (1 b)3 (1 + 3b + 3b 2 b 3 ) λ(i Ω ((b, 0)))K Ω ((b, 0)) = 1 + (1 b)3 b 2 3(1 + b) 3.

1.0020 1.0015 1.0010 1.0005 F Ω ((b, 0)) for Ω = { z 1 + z 2 2 < 1}

Although the Kobayashi function of E(m, 1) is given by implicit formulas, it turns out that the volume of the Kobayashi indicatrix can be computed explicitly: Theorem For Ω = { z 1 2m + z 2 2 < 1}, m 1/2, and b [0, 1) one has λ(i Ω ((b, 0))) = π [ 2 m 1 3(m 1) 2m(3m 2)(3m 1) b6m+2 2m(m 2)(m + 1) b2m+2 For m = 2/3 m + 2(m 2)(3m 2) b6 + 3m 3m 1 b4 4m 1 2m b2 + m m + 1 ( ) λ(i Ω ((b, 0))) = π2 65b 6 + 40b 6 log b + 160b 4 27b 10/3 100b 2 + 32, 80 and m = 2 λ(i Ω ((b, 0))) = π2 ( 3b 14 25b 6 120b 6 log b + 288b 4 420b 2 + 160 ). 240 ].

About the proof Main tool: Jarnicki-Pflug-Zeinstra (1993) formula for geodesics in convex complex ellipsoids. If C U z (f (z), g(z)) I is a parametrization of an S 1 -invariant portion of I then the volume of the corresponding part of I is given by π H(z) dλ(z), (3) 2 where U H = f 2 ( g z 2 g z 2 ) + g 2 ( f z 2 f z 2 ) + 2Re ( f ḡ(f z g z f z g z ) ). Both H and the integral (3) are computed with the help of Mathematica. The same method is used for computations in other ellipsoids.

For Ω = { z 1 2m + z 2 2 < 1} the formula for the Bergman kernel is well known: K Ω (w) = 1 π 2 (1 w 2 2 ) 1/m 2 (1/m + 1)(1 w 2 2 ) 1/m + (1/m 1) w 1 2 ( (1 w2 2 ) 1/m w 1 2) 3, so that K Ω ((b, 0)) = m + 1 + (1 m)b2 π 2 m(1 b 2 ) 3. Since for t R and a the mapping Ω z (e it (1 a 2 ) 1/2m (1 āz 2 ) z 1, z ) 2 a 1/m 1 āz 2 is a holomorphic automorphism of Ω, F Ω ((b, 0)) for b [0, 1) attains all values of F Ω in Ω.

1.010 1.008 1.006 1.004 1.002 F Ω ((b, 0)) in Ω = { z 1 2m + z 2 2 < 1} for m = 1/2, 4, 8, 16, 32, 64, 128 sup F Ω ((b, 0)) 1.010182... as m 0<b<1 (highest value of F Ω obtained so far in arbitrary dimension)

Theorem For Ω = { z 1 + z 2 < 1} and b [0, 1) one has and λ(i Ω ((b, 0))) = π2 6 (1 b)4( (1 b) 4 + 8b ) 2 (1 b)4 λ(i Ω ((b, 0)))K Ω ((b, 0)) = 1 + b (1 + b) 4. The Bergman kernel for this ellipsoid was found by Hahn-Pflug (1988): K Ω (w) = 2 π 2 3(1 w 2 ) 2 (1 + w 2 ) + 4 w 1 2 w 2 2 (5 3 w 2 ) ( (1 w 2 ) 2 4 w 1 2 w 2 2) 3, so that K Ω ((b, 0)) = 6(1 + b2 ) π 2 (1 b 2 ) 4. In all examples so far the function w λ(i Ω (w)) is analytic. Is it true in general?

Theorem For Ω = { z 1 + z 2 < 1} and b [0, 1/4] one has λ(i Ω ((b, b))) = π2 ( 30b 8 64b 7 + 80b 6 80b 5 + 76b 4 16b 3 8b 2 + 1 ). 6

Since K Ω ((b, b)) = 2(3 6b2 + 8b 4 ) π 2 (1 4b 2 ) 3, we get the following picture: 1.010 1.008 1.006 1.004 1.002 1.000 5 F Ω ((b, b)) in Ω = { z 1 + z 2 < 1} for b [0, 1/4]

Since K Ω ((b, b)) = 2(3 6b2 + 8b 4 ) π 2 (1 4b 2 ) 3, we get the following picture: 1.010 1.008 1.006 1.004 1.002 1.000 5 F Ω ((b, b)) in Ω = { z 1 + z 2 < 1} for b [0, 1/4] By either of the estimates 1 F Ω 4, the function b F Ω ((b, b)) cannot be analytic on (0, 1/2)!

Theorem For Ω = { z 1 + z 2 < 1} and b [0, 1/4] one has λ(i Ω ((b, b))) = π2 ( 30b 8 64b 7 + 80b 6 80b 5 + 76b 4 16b 3 8b 2 + 1 ). 6 For b [1/4, 1/2) ( ) 2π 2 b(1 2b) 3 2b 3 + 3b 2 6b + 4 λ(i Ω ((b, b))) = 3(1 b) 2 ( ) π 30b 10 124b 9 + 238b 8 176b 7 260b 6 + 424b 5 76b 4 144b 3 + 89b 2 18b + 1 + 6(1 b) 2 ( arccos 1 + 4b 1 ) 2b 2 ( ) π(1 2b) 180b 7 + 444b 6 554b 5 + 754b 4 1214b 3 + 922b 2 305b + 37 + 4b 1 ( 72(1 b) ) 4πb(1 2b) 4 7b 2 + 2b 2 + 3(1 b) 2 arctan 4b 1 + 4πb2 (1 2b) 4 (2 b) 1 3b (1 b) 2 arctan (1 b) 4b 1.

By χ (b), resp. χ + (b), denote λ(i Ω ((b, b))) for b 1/4, resp. b 1/4. Then at b = 1/4 but χ = χ + = 15887 196608 π2, χ = χ + = 3521 6144 π2, χ = χ + = 215 1536 π2, χ (3) = χ (3) + = 1785 64 π2, χ (4) = 1549 16 π2, χ (4) + =. Corollary For Ω = { z 1 + z 2 < 1} the function w λ(i Ω (w)) is not C 3,1 at w = (1/4, 1/4).

1.010 1.008 1.006 1.004 1.002 1.000 5 F Ω ((b, b)) in Ω = { z 1 + z 2 < 1} for b [0, 1/2)

Mahler Conjecture K - convex symmetric body in R n Mahler volume := λ(k)λ(k ) K := {y R n : x y 1 for every x K} Mahler volume is an invariant of the Banach space defined by K: it is independent of linear transformations and of the choice of inner product. Blaschke-Santaló Inequality (1949) Mahler volume is maximized by balls Mahler Conjecture (1938) Mahler volume is minimized by cubes True for n = 2: Hansen-Lima bodies: starting from an interval they are produced by taking products of lower dimensional HL bodies and their duals. n = 2 n = 3

Equivalent SCV formulation (Nazarov, 2012) For u L 2 (K ) we have û(0) 2 = u dλ K with equality for u = χ K. Therefore 2 λ(k ) u 2 L 2 (K ) = (2π) n λ(k ) û 2 L 2 (R n ) λ(k ) = (2π) n sup f P f (0) 2 f 2, L 2 (R n ) where P = {û : u L 2 (K )} O(C n ). By the Paley-Wiener thm P = {f O(C n ): f (z) Ce C z, f (iy) Ce q K (y) }, where q K is the Minkowski function for K. Therefore the Mahler conjecture is equivalent to finding f P with f (0) = 1 and ( π ) n f (x) 2 dλ(x) n! λ(k). R 2 n

Bourgain-Milman Inequality Bourgain-Milman (1987) There exists c > 0 such that Mahler Conjecture: c = 1 G. Kuperberg (2006) c = π/4 λ(k)λ(k ) c n 4n n!. Nazarov (2012) SCV proof using Hörmander s estimate (c = (π/4) 3 ) Consider the tube domain T K := intk + ir n C n. Then ( π 4 ) 2n 1 (λ n (K)) 2 K T K (0) n! π n λ n (K ) λ n (K). Therefore λ n (K)λ n (K ) ( π 4 ) 3n 4 n n!.

The upper bound K TK (0) n! λ n (K ) π n easily follows from Rothaus λ n (K) formula (1968): K TK (0) = (2π) n dλ, J K where J K (y) = K R n e 2x y dλ(x). ( π ) 2n 1 To show the lower bound K TK (0) we can use the 4 (λ n (K)) 2 estimate: and K TK (0) Proposition I TK (0) 4 (K + ik) π ( π ) n 1 Conjecture K TK (0) 4 (λ n (K)) 2 1 λ 2n (I TK (0)) This would be optimal, since we have equality for cubes.

However, one can check that for K = { x 1 + x 2 + x 3 1} we have ( π ) 3 1 K TK (0) > 4 (λ 3 (K)) 2. This shows that Nazarov s proof of the Bourgain-Milman inequality cannot give the Mahler conjecture directly.

Thank you!