On the Use of Stochastic Optimization in Chemical and Process Engineering

Podobne dokumenty
Helena Boguta, klasa 8W, rok szkolny 2018/2019

Hard-Margin Support Vector Machines

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Tychy, plan miasta: Skala 1: (Polish Edition)

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Stargard Szczecinski i okolice (Polish Edition)

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Zarządzanie sieciami telekomunikacyjnymi

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Gradient Coding using the Stochastic Block Model

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2)

tum.de/fall2018/ in2357

Ankiety Nowe funkcje! Pomoc Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

Revenue Maximization. Sept. 25, 2018

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition)

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Ankiety Nowe funkcje! Pomoc Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to teachers

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

EGZAMIN MATURALNY Z JĘZYKA ANGIELSKIEGO POZIOM ROZSZERZONY MAJ 2010 CZĘŚĆ I. Czas pracy: 120 minut. Liczba punktów do uzyskania: 23 WPISUJE ZDAJĄCY

Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)

Relaxation of the Cosmological Constant

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

Presented by. Dr. Morten Middelfart, CTO

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition)

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)


Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Inverse problems - Introduction - Probabilistic approach

Patients price acceptance SELECTED FINDINGS

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów


Convolution semigroups with linear Jacobi parameters

WYŁĄCZNIK CZASOWY OUTDOOR TIMER

Wprowadzenie do programu RapidMiner, część 5 Michał Bereta

Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX

Probabilistic Methods and Statistics. Computer Science 1 st degree (1st degree / 2nd degree) General (general / practical)

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

Przedmioty do wyboru oferowane na stacjonarnych studiach II stopnia (magisterskich) dla II roku w roku akademickim 2015/2016

Filozofia z elementami logiki Klasyfikacja wnioskowań I część 2

deep learning for NLP (5 lectures)

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

EGZAMIN MATURALNY Z JĘZYKA ANGIELSKIEGO POZIOM ROZSZERZONY MAJ 2010 CZĘŚĆ I. Czas pracy: 120 minut. Liczba punktów do uzyskania: 23 WPISUJE ZDAJĄCY

Anonymous Authentication Using Electronic Identity Documents

Arrays -II. Arrays. Outline ECE Cal Poly Pomona Electrical & Computer Engineering. Introduction

Blow-Up: Photographs in the Time of Tumult; Black and White Photography Festival Zakopane Warszawa 2002 / Powiekszenie: Fotografie w czasach zgielku

Klaps za karę. Wyniki badania dotyczącego postaw i stosowania kar fizycznych. Joanna Włodarczyk

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019


P R A C A D Y P L O M O W A

Knovel Math: Jakość produktu

KONSPEKT DO LEKCJI MATEMATYKI W KLASIE 3 POLO/ A LAYER FOR CLASS 3 POLO MATHEMATICS

OpenPoland.net API Documentation

archivist: Managing Data Analysis Results

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

STATISTICAL METHODS IN BIOLOGY

SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS

Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition)

& portable system. Keep the frame, change the graphics, change position. Create a new stand!

Egzamin maturalny z języka angielskiego na poziomie dwujęzycznym Rozmowa wstępna (wyłącznie dla egzaminującego)

The Lorenz System and Chaos in Nonlinear DEs

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

ARKUSZ PRÓBNEJ MATURY Z OPERONEM

Financial support for start-uppres. Where to get money? - Equity. - Credit. - Local Labor Office - Six times the national average wage (22000 zł)

Auditorium classes. Lectures

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS

Zastosowania metod analitycznej złożoności obliczeniowej do przetwarzania sygnałów cyfrowych oraz w metodach numerycznych teorii aproksymacji

WYDZIAŁ NAUK EKONOMICZNYCH. Studia II stopnia niestacjonarne Kierunek Międzynarodowe Stosunki Gospodarcze Specjalność INERNATIONAL LOGISTICS

Jak zasada Pareto może pomóc Ci w nauce języków obcych?

PROGRAM STAŻU. Nazwa podmiotu oferującego staż / Company name IBM Global Services Delivery Centre Sp z o.o.

No matter how much you have, it matters how much you need

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

Few-fermion thermometry

Język angielski. Poziom rozszerzony Próbna Matura z OPERONEM i Gazetą Wyborczą CZĘŚĆ I KRYTERIA OCENIANIA ODPOWIEDZI POZIOM ROZSZERZONY CZĘŚĆ I

The Overview of Civilian Applications of Airborne SAR Systems

Instrukcja obsługi User s manual

POLITYKA PRYWATNOŚCI / PRIVACY POLICY

Neural Networks (The Machine-Learning Kind) BCS 247 March 2019

harmonic functions and the chromatic polynomial

Łukasz Reszka Wiceprezes Zarządu

USB firmware changing guide. Zmiana oprogramowania za przy użyciu połączenia USB. Changelog / Lista Zmian

Transkrypt:

Rzeszów University of Technology Faculty of Chemistry Department of Chemical and Process Engineering, Rzeszów,, Poland POLAND Warszawa Kraków Rzeszów On the Use of Stochastic Optimization in Chemical and Process Engineering Jacek Jeżowski

OUTLINE 1. STOCHASTIC vs. DETERMNISTIC METHODS of OPTIMIZATION 2. ADAPTIVE RANDOM SEARCH 3. SIMULATED ANNEALING with SIMPLEX (SA/S) 4. GENETIC ALGORITHMS (GA) 5. COMPUTER-SOLVER OPTI-STO 6. EXAMPLES of APPLICATIONS 7. CONCLUSIONS

OUTLINE 1. STOCHASTIC vs. DETERMNISTIC METHODS of OPTIMIZATION 2. ADAPTIVE RANDOM SEARCH 3. SIMULATED ANNEALING with SIMPLEX (SA/S) 4. GENETIC ALGORITHMS (GA) 5. COMPUTER-SOLVER OPTI-STO 6. EXAMPLES of APPLICATIONS 7. CONCLUSIONS

OUTLINE 1. STOCHASTIC vs. DETERMNISTIC METHODS of OPTIMIZATION 2. ADAPTIVE RANDOM SEARCH 3. SIMULATED ANNEALING with SIMPLEX (SA/S) 4. GENETIC ALGORITHMS (GA) 5. COMPUTER-SOLVER OPTI-STO 6. EXAMPLES of APPLICATIONS 7. CONCLUSIONS

OUTLINE 1. STOCHASTIC vs. DETERMNISTIC METHODS of OPTIMIZATION 2. ADAPTIVE RANDOM SEARCH 3. SIMULATED ANNEALING with SIMPLEX (SA/S) 4. GENETIC ALGORITHMS (GA) 5. COMPUTER-SOLVER OPTI-STO 6. EXAMPLES of APPLICATIONS 7. CONCLUSIONS

OUTLINE 1. STOCHASTIC vs. DETERMNISTIC METHODS of OPTIMIZATION 2. ADAPTIVE RANDOM SEARCH 3. SIMULATED ANNEALING with SIMPLEX (SA/S) 4. GENETIC ALGORITHMS (GA) 5. COMPUTER-SOLVER OPTI-STO 6. EXAMPLES of APPLICATIONS 7. CONCLUSIONS

OUTLINE 1. STOCHASTIC vs. DETERMNISTIC METHODS of OPTIMIZATION 2. ADAPTIVE RANDOM SEARCH 3. SIMULATED ANNEALING with SIMPLEX (SA/S) 4. GENETIC ALGORITHMS (GA) 5. COMPUTER-SOLVER OPTI-STO 6. EXAMPLES of APPLICATIONS 7. CONCLUSIONS

OUTLINE 1. STOCHASTIC vs. DETERMNISTIC METHODS of OPTIMIZATION 2. ADAPTIVE RANDOM SEARCH 3. SIMULATED ANNEALING with SIMPLEX (SA/S) 4. GENETIC ALGORITHMS (GA) 5. COMPUTER-SOLVER OPTI-STO 6. EXAMPLES of APPLICATIONS 7. CONCLUSIONS

OUTLINE 1. STOCHASTIC vs. DETERMNISTIC METHODS of OPTIMIZATION 2. ADAPTIVE RANDOM SEARCH 3. SIMULATED ANNEALING with SIMPLEX (SA/S) 4. GENETIC ALGORITHMS (GA) 5. COMPUTER-SOLVER OPTI-STO 6. EXAMPLES of APPLICATIONS 7. CONCLUSIONS

1. DETERMINISTIC vs. STOCHASTIC METHODS of OPTIMIZATION or WHY STOCHASTIC METHODS??? Because classical deterministic approaches (i.e. mathematical programming) have serious drawbacks (particularly when applied by non-experts) ARE NOT ABLE TO LOCATE the GLOBAL OPTIMUM (in NON- LINEAR PROBLEMS) REQUIRE SMOOTH FUNCTIONS WITHOUT DISCONTINUITIES and (often) ALSO DIFFERENTIABLE (even twice) DO NOT PERFORM WELL with MIXED-INTEGER VARIABLES (discrete & continuous MINLP PROBLEMS)

Additional troubles with deterministic approaches: good solvers are commercial Expensive Black-box-like (for non-expert) Work in equation mode (in practice external modules of user are very useful)

STOCHASTIC APPROACHES 1) PROVIDE HIGHER PROBABILITY of LOCATING GLOBAL OPTIMUM ( GLOBAL OPIMIZERS) 2) SIMPLE (can be coded by non-experts) 3) DISCONTINUITIES DO NOT CAUSE TROUBLES 4) CAN WORK in EQUATION and MODULAR MODE

BUT LONG COMPUTATION (CPU) TIME HEURISTIC CONTROL PARAMETERS VALUES (that usually have to be adjusted by error-and-trial procedure) DIFFICULTIES with EQUALITY CONSTRAINTS One has to choose from variety of approaches (usually not tested sufficiently)

ADAPTIVE RANDOM SEARCH (ARS) - single-point based SIMULATED ANNEALING (SA) single-point based GENETIC ALGORITHMS (GA)- population based

2. ARS METHOD CONCEPT of ADAPTIVE RANDOM SEARCH: CONCENTRATE GENERATION AROUND CURRENTLY BEST SOLUTION BY SEARCH REGION CONTRACTION AND / OR THE USE OF SPECIAL FUNCTION WITH INCREASED PROBABILITY DENSITY

LUUS - JAAKOLA (LJ) ALGORITHM IT MAKES SEVERAL SEARCHES WITHIN CURRENT SEARCH REGION without space decrease or density change (EVEN IF THERE IS A SUCCESS ) WHILE OTHER METHODS (GADDY, SALCEDO,...) INCREASE PROBABILITY DENSITY AND / OR CONTRACT REGION AFTER EACH SUCCESS LJ ALGORITHM features resemblance to populationbased methods should gives higher chance of global optimum (and is very SIMPLE)

the best point in 1st loop search space in 1st loop x 2 x 1

OUR MAJOR MODIFICATIONS and EXTENSION 1) Adaptation of LJ for MINLP problems ( consistent scheme of generating discrete variables) 2) Major changes in the scheme of decreasing the region search sizes: a) the decrease is variable dependent (i.e. Region search size decrease varies dependent on a variables), b) a rate of region search size decrease is similar to Gauss density distribution to avoid local optima traps in initial phase.

Illustration of space decrease scheme in original approach Ad 2b 1 0,8 δi k 0,6 0,4 0,2 0 0 20 40 60 80 100 NEL Illustration of space decrease scheme in modified approach 1 0,8 δi k 0,6 0,4 0,2 0 0 20 40 60 80 100 NEL

3. SIMULATED ANNEALING FUNDAMENTAL CONCEPT: SOLUTION IS ACCEPTED WITH PROBABILITY P 1 P = exp(-δf/t) where : Δ f = f T - i+ 1 if Δf < 0 if Δf 0 f i temperatur e THIS ALLOWS FOR JUMPING OFF OUT OF LOCAL OPTIMA!

GENERAL ALGORITHM 1. Fix T (initial value) and generate X 0 2. Generate X s (neighboring point), calculate f(x s ) and accept X s according to P. 3. REPEAT step 2 for decreasing value of T until stopping criteria are met Remark: X 0 has to be feasible

MODIFICATION of SA for CONTINUOUS (NLP) PROBLEMS NELDER - MEAD OPTIMIZATION ALGORITHM (SIMPLEX) EMBEDDED INTO SA SCHEME /proposition of Press and Teukolsky 91/ FUNDAMENTAL CONCEPT: Each vertex of a simplex is disturbed by: P1 = -T ln(z) z - random number from uniform distribution [0,1] HOW IT WORKS? 1) P1 is added to each vertex generated by N-M scheme 2) P1 is subtracted from reflected vertex of new simplex RANDOM MOVEMENTS of SIMPLEX

Random movements uphill (for minimization) AIM: to give additional randomization for small T values where SA/S performs similarly to Nelder-Mead (i.e. works as deterministic approach) OUR MODIFICATION

4. GENETIC ALGORITHMS (GA) Remark: this is population based approach that is often considered more robust (but also more time consuming) Specific features of our approach (GEN-COM) real coded numbers (not binary coded), The use of sub-population consisting with genetically transformed solutions. The solutions from the subpopulation and its parent population compete with each others to create the next parent population this is to eliminate premature problem, i.e. to escape from local optimum 9 mutation and crossover operators that can be used to both continuous and discrete variables 3 various mechanisms for dealing with inequality constraints

5. COMPUTER-SOLVER OPTI-STO Characteristic features: coded in C++ with the use of DLL libraries can operate under Windows and Linux, can operate in equation and equation-modular mode. Most important: Has his own generic modeling system (similar to that in GAMS).

Main goal: easy to use framework for solving equalities Remark: equalities are major problems for stochastic approaches, penalty terms, relaxation are not good solutions Most efficient is: solve the equations directly but they should be linear ones

SOLUTION SCHEME: User select decision variables such that equalities become linear in regards to dependent variables IMPORTANT: balances involves bilinear terms: X 2 1 Y1 + X2 Y +... = 0 Choose X1, X2,... decisions variables and... balances are linear in regards to Y 1, Y 2,...

SOLUTIONS FRAMEWORK: decision variables (data) solve equation set no. 1 check set of inequalities

SOLUTIONS FRAMEWORK: decision variables (data) solve equation set no. 1 check set of inequalities

SOLUTIONS FRAMEWORK: decision variables (data) solve equation set no. 1 check set of inequalities solve equation set no. 2

6.1. Mathematical NLP and MINLP problems designed for tests of optimization problems about 20 NLP unconstrained functions (highly multimodal) more than 10 NLP constrained problems with inequality and/or equality constraints some MINLP problems of small scale in regards to no. of discrete variables

Aims of the tests: 1)To evaluate robustness and efficiency of various versions of solution algorithms 2)To find good values of control parameters 3)To get knowledge on properties of the algorithms: for what types of problems, limitations,...

6.2. Small processes engineering problems Reaction equilibrium composition Alkylation process optimization Optimization of reactor train Reactor selection from the superstructure Multi-product batch train optimization Optimal sequence for separating twocomponent mixture Cross-current extraction train with recycles

6.3. Applications for process system engineering problems: Optimization of HENs with fixed structure Optimization of chromatography Retrofitting optimal HENs Designing optimal water usage networks

7. CONCLUSIONS Our experiments (and literature information) show, that stochastic approaches are easy to use, robust methods. Remember, however, on no free lunch theorem there is no universal optimization method One has to: Choose proper approach and adjust parameters Formulate properly the problem for the chosen method