Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

Podobne dokumenty
Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Hard-Margin Support Vector Machines

deep learning for NLP (5 lectures)

Tychy, plan miasta: Skala 1: (Polish Edition)

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Stargard Szczecinski i okolice (Polish Edition)

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Revenue Maximization. Sept. 25, 2018

Previously on CSCI 4622

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

tum.de/fall2018/ in2357

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2)

Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Supervised Hierarchical Clustering with Exponential Linkage. Nishant Yadav

Gradient Coding using the Stochastic Block Model

Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition)

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Camspot 4.4 Camspot 4.5

OpenPoland.net API Documentation

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Zdecyduj: Czy to jest rzeczywiście prześladowanie? Czasem coś WYDAJE SIĘ złośliwe, ale wcale takie nie jest.

Installation of EuroCert software for qualified electronic signature

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Agnostic Learning and VC dimension

Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition)

POLITYKA PRYWATNOŚCI / PRIVACY POLICY

DODATKOWE ĆWICZENIA EGZAMINACYJNE

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

Steps to build a business Examples: Qualix Comergent

Hakin9 Spam Kings FREEDOMTECHNOLOGYSERVICES.CO.UK

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

EGZAMIN MATURALNY 2012 JĘZYK ANGIELSKI

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

EGZAMIN MATURALNY 2012 JĘZYK ANGIELSKI

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

18. Przydatne zwroty podczas egzaminu ustnego. 19. Mo liwe pytania egzaminatora i przyk³adowe odpowiedzi egzaminowanego

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)

Egzamin maturalny z języka angielskiego na poziomie dwujęzycznym Rozmowa wstępna (wyłącznie dla egzaminującego)

MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller

EGZAMIN MATURALNY Z JĘZYKA ANGIELSKIEGO POZIOM ROZSZERZONY MAJ 2010 CZĘŚĆ I. Czas pracy: 120 minut. Liczba punktów do uzyskania: 23 WPISUJE ZDAJĄCY

HAPPY ANIMALS L01 HAPPY ANIMALS L03 HAPPY ANIMALS L05 HAPPY ANIMALS L07

How to share data from SQL database table to the OPC Server? Jak udostępnić dane z tabeli bazy SQL do serwera OPC? samouczek ANT.

HAPPY ANIMALS L02 HAPPY ANIMALS L04 HAPPY ANIMALS L06 HAPPY ANIMALS L08

JĘZYK ANGIELSKI POZIOM PODSTAWOWY

Blow-Up: Photographs in the Time of Tumult; Black and White Photography Festival Zakopane Warszawa 2002 / Powiekszenie: Fotografie w czasach zgielku

Poland) Wydawnictwo "Gea" (Warsaw. Click here if your download doesn"t start automatically

Lecture 18 Review for Exam 1

Zarządzanie sieciami telekomunikacyjnymi

Ogólnopolski Próbny Egzamin Ósmoklasisty z OPERONEM. Język angielski Kartoteka testu. Wymagania szczegółowe Uczeń: Poprawna odpowiedź 1.1.

Working Tax Credit Child Tax Credit Jobseeker s Allowance

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów

TEORIA CZASU PRESENT SIMPLE I PRESENT CONTINUOUS

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Test sprawdzający znajomość języka angielskiego

Jak zasada Pareto może pomóc Ci w nauce języków obcych?

17-18 września 2016 Spółka Limited w UK. Jako Wehikuł Inwestycyjny. Marek Niedźwiedź. InvestCamp 2016 PL

The Lorenz System and Chaos in Nonlinear DEs

Export Markets Enterprise Florida Inc.

DO MONTAŻU POTRZEBNE SĄ DWIE OSOBY! INSTALLATION REQUIRES TWO PEOPLE!

Zmiany techniczne wprowadzone w wersji Comarch ERP Altum


Spis treści. Virginia Evans Jenny Dooley

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

USB firmware changing guide. Zmiana oprogramowania za przy użyciu połączenia USB. Changelog / Lista Zmian

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Klaps za karę. Wyniki badania dotyczącego postaw i stosowania kar fizycznych. Joanna Włodarczyk

Dolny Slask 1: , mapa turystycznosamochodowa: Plan Wroclawia (Polish Edition)

Leba, Rowy, Ustka, Slowinski Park Narodowy, plany miast, mapa turystyczna =: Tourist map = Touristenkarte (Polish Edition)

INSTRUKCJE JAK AKTYWOWAĆ SWOJE KONTO PAYLUTION

EGZAMIN MATURALNY Z JĘZYKA ANGIELSKIEGO POZIOM ROZSZERZONY MAJ 2010 CZĘŚĆ I. Czas pracy: 120 minut. Liczba punktów do uzyskania: 23 WPISUJE ZDAJĄCY

Financial support for start-uppres. Where to get money? - Equity. - Credit. - Local Labor Office - Six times the national average wage (22000 zł)

Arrays -II. Arrays. Outline ECE Cal Poly Pomona Electrical & Computer Engineering. Introduction

Steeple #3: Gödel s Silver Blaze Theorem. Selmer Bringsjord Are Humans Rational? Dec RPI Troy NY USA

Polska Szkoła Weekendowa, Arklow, Co. Wicklow KWESTIONRIUSZ OSOBOWY DZIECKA CHILD RECORD FORM

Country fact sheet. Noise in Europe overview of policy-related data. Poland

USB firmware changing guide. Zmiana oprogramowania za przy użyciu połączenia USB. Changelog / Lista Zmian

Website review pureorganic.pl

Ilona B. Miles website Terms of Use (ewentualnie: Service)

Marzec: food, advertising, shopping and services, verb patterns, adjectives and prepositions, complaints - writing

Relaxation of the Cosmological Constant

The Overview of Civilian Applications of Airborne SAR Systems

Extraclass. Football Men. Season 2009/10 - Autumn round

PSB dla masazystow. Praca Zbiorowa. Click here if your download doesn"t start automatically

Classic Clad / Thermo Clad / ThermoPlus Clad option selection for projects with Pine / Fir wood

Odpowiedzi do zadań zamieszczonych w arkuszu egzaminu ósmoklasisty z języka angielskiego 17 KWIETNIA 2019 opracowane przez ekspertów Nowej Ery

FORMULARZ REKLAMACJI Complaint Form

Transkrypt:

Machine Learning for Data Science (CS4786) Lecture 24 Differential Privacy and Re-useable Holdout

Defining Privacy

Defining Privacy Dataset +

Defining Privacy Dataset + Learning Algorithm Distribution of outcome

Defining Privacy Dataset + Learning Algorithm Distribution of outcome Dataset + Learning Algorithm Distribution of outcome

Defining Privacy Dataset + Learning Algorithm Distribution of outcome Similar Dataset + Learning Algorithm Distribution of outcome

Differential Privacy

Differential Privacy A deterministic algorithm cannot preserve privacy

Differential Privacy A deterministic algorithm cannot preserve privacy Say S = (Data1,,Datan) is the data provided to learning algorithm (be it clustering, supervised learning etc).

Differential Privacy A deterministic algorithm cannot preserve privacy Say S = (Data1,,Datan) is the data provided to learning algorithm (be it clustering, supervised learning etc). Say (randomized) learning algorithm A takes this training data and returns solution as A(S)

Differential Privacy A deterministic algorithm cannot preserve privacy Say S = (Data1,,Datan) is the data provided to learning algorithm (be it clustering, supervised learning etc). Say (randomized) learning algorithm A takes this training data and returns solution as A(S) Algorithm A is (ε,ẟ)- differentially private if for all samples S and S that only differ by one data point and any set C P (A(S) 2 C) apple e P (A(S 0 ) 2 C)+

Differential Privacy A deterministic algorithm cannot preserve privacy Say S = (Data1,,Datan) is the data provided to learning algorithm (be it clustering, supervised learning etc). Say (randomized) learning algorithm A takes this training data and returns solution as A(S) Algorithm A is (ε,ẟ)- differentially private if for all samples S and S that only differ by one data point and any set C P (A(S) 2 C) apple e P (A(S 0 ) 2 C)+ ẟ=0 is called pure differential privacy

Differential Privacy

Differential Privacy Dataset + Dataset + C

Differential Privacy Dataset + Dataset + C P (A(S) 2 C) apple e P (A(S 0 ) 2 C)+

Differential Privacy Dataset + Dataset + C P (A(S) 2 C) apple e P (A(S 0 ) 2 C)+ 1 (for small ε)

Obtaining Differential Privacy

Obtaining Differential Privacy Typical mechanism: Add noise to outcome or inside algorithm

Obtaining Differential Privacy Typical mechanism: Add noise to outcome or inside algorithm More privacy we want the more noise we add

Why it works?

Why it works? Take any arbitrary (possibly deterministic) function f(s).

<latexit sha1_base64="64q5fqjj9rkhqykoj7qojhjzeci=">aaacbnicbvdlsgmxfm3uv62vuzcibiu0bs0ziuhgkhxjsll7ghyymmmmdu1mhiqjlmlxbvwvny4uces3upnvtb8lbt1wuydz7iw5x4sylcqyvo3u0vlk6lp6pboxubw9y+7u1wuyc0xqogshahpiekydulnumdkmbehcy6th9a/hfuoecend4e4niujw1a2otzfswnlnwzk8gm2ohtykellnjyz+vlqap1c3xghomlmrae0af4k9i1kwq8u1v9qdemecbaozjgxltilljegoihkzzdqxjbhcfdqllu0dxil0kskzi3islq70q6eruhci/t5iejdywd09yzhqyxlvlp7ntwllxzojdajykqbph/jjbluix5nadhuekzbqbgfb9v8h7igbsnljzxqi9vzji6r+vrston17ni2vz3gkwqe4anlggwtqajegamoag0fwdf7bm/fkvbjvxsd0ngxmdvbbhxifp8omlh4=</latexit> <latexit sha1_base64="64q5fqjj9rkhqykoj7qojhjzeci=">aaacbnicbvdlsgmxfm3uv62vuzcibiu0bs0ziuhgkhxjsll7ghyymmmmdu1mhiqjlmlxbvwvny4uces3upnvtb8lbt1wuydz7iw5x4sylcqyvo3u0vlk6lp6pboxubw9y+7u1wuyc0xqogshahpiekydulnumdkmbehcy6th9a/hfuoecend4e4niujw1a2otzfswnlnwzk8gm2ohtykellnjyz+vlqap1c3xghomlmrae0af4k9i1kwq8u1v9qdemecbaozjgxltilljegoihkzzdqxjbhcfdqllu0dxil0kskzi3islq70q6eruhci/t5iejdywd09yzhqyxlvlp7ntwllxzojdajykqbph/jjbluix5nadhuekzbqbgfb9v8h7igbsnljzxqi9vzji6r+vrston17ni2vz3gkwqe4anlggwtqajegamoag0fwdf7bm/fkvbjvxsd0ngxmdvbbhxifp8omlh4=</latexit> <latexit sha1_base64="64q5fqjj9rkhqykoj7qojhjzeci=">aaacbnicbvdlsgmxfm3uv62vuzcibiu0bs0ziuhgkhxjsll7ghyymmmmdu1mhiqjlmlxbvwvny4uces3upnvtb8lbt1wuydz7iw5x4sylcqyvo3u0vlk6lp6pboxubw9y+7u1wuyc0xqogshahpiekydulnumdkmbehcy6th9a/hfuoecend4e4niujw1a2otzfswnlnwzk8gm2ohtykellnjyz+vlqap1c3xghomlmrae0af4k9i1kwq8u1v9qdemecbaozjgxltilljegoihkzzdqxjbhcfdqllu0dxil0kskzi3islq70q6eruhci/t5iejdywd09yzhqyxlvlp7ntwllxzojdajykqbph/jjbluix5nadhuekzbqbgfb9v8h7igbsnljzxqi9vzji6r+vrston17ni2vz3gkwqe4anlggwtqajegamoag0fwdf7bm/fkvbjvxsd0ngxmdvbbhxifp8omlh4=</latexit> <latexit sha1_base64="64q5fqjj9rkhqykoj7qojhjzeci=">aaacbnicbvdlsgmxfm3uv62vuzcibiu0bs0ziuhgkhxjsll7ghyymmmmdu1mhiqjlmlxbvwvny4uces3upnvtb8lbt1wuydz7iw5x4sylcqyvo3u0vlk6lp6pboxubw9y+7u1wuyc0xqogshahpiekydulnumdkmbehcy6th9a/hfuoecend4e4niujw1a2otzfswnlnwzk8gm2ohtykellnjyz+vlqap1c3xghomlmrae0af4k9i1kwq8u1v9qdemecbaozjgxltilljegoihkzzdqxjbhcfdqllu0dxil0kskzi3islq70q6eruhci/t5iejdywd09yzhqyxlvlp7ntwllxzojdajykqbph/jjbluix5nadhuekzbqbgfb9v8h7igbsnljzxqi9vzji6r+vrston17ni2vz3gkwqe4anlggwtqajegamoag0fwdf7bm/fkvbjvxsd0ngxmdvbbhxifp8omlh4=</latexit> Why it works? Take any arbitrary (possibly deterministic) function f(s). B = max f(s) S,S f(s0 ) 0 Say one data point where S and S differ on

<latexit sha1_base64="64q5fqjj9rkhqykoj7qojhjzeci=">aaacbnicbvdlsgmxfm3uv62vuzcibiu0bs0ziuhgkhxjsll7ghyymmmmdu1mhiqjlmlxbvwvny4uces3upnvtb8lbt1wuydz7iw5x4sylcqyvo3u0vlk6lp6pboxubw9y+7u1wuyc0xqogshahpiekydulnumdkmbehcy6th9a/hfuoecend4e4niujw1a2otzfswnlnwzk8gm2ohtykellnjyz+vlqap1c3xghomlmrae0af4k9i1kwq8u1v9qdemecbaozjgxltilljegoihkzzdqxjbhcfdqllu0dxil0kskzi3islq70q6eruhci/t5iejdywd09yzhqyxlvlp7ntwllxzojdajykqbph/jjbluix5nadhuekzbqbgfb9v8h7igbsnljzxqi9vzji6r+vrston17ni2vz3gkwqe4anlggwtqajegamoag0fwdf7bm/fkvbjvxsd0ngxmdvbbhxifp8omlh4=</latexit> <latexit sha1_base64="64q5fqjj9rkhqykoj7qojhjzeci=">aaacbnicbvdlsgmxfm3uv62vuzcibiu0bs0ziuhgkhxjsll7ghyymmmmdu1mhiqjlmlxbvwvny4uces3upnvtb8lbt1wuydz7iw5x4sylcqyvo3u0vlk6lp6pboxubw9y+7u1wuyc0xqogshahpiekydulnumdkmbehcy6th9a/hfuoecend4e4niujw1a2otzfswnlnwzk8gm2ohtykellnjyz+vlqap1c3xghomlmrae0af4k9i1kwq8u1v9qdemecbaozjgxltilljegoihkzzdqxjbhcfdqllu0dxil0kskzi3islq70q6eruhci/t5iejdywd09yzhqyxlvlp7ntwllxzojdajykqbph/jjbluix5nadhuekzbqbgfb9v8h7igbsnljzxqi9vzji6r+vrston17ni2vz3gkwqe4anlggwtqajegamoag0fwdf7bm/fkvbjvxsd0ngxmdvbbhxifp8omlh4=</latexit> <latexit sha1_base64="64q5fqjj9rkhqykoj7qojhjzeci=">aaacbnicbvdlsgmxfm3uv62vuzcibiu0bs0ziuhgkhxjsll7ghyymmmmdu1mhiqjlmlxbvwvny4uces3upnvtb8lbt1wuydz7iw5x4sylcqyvo3u0vlk6lp6pboxubw9y+7u1wuyc0xqogshahpiekydulnumdkmbehcy6th9a/hfuoecend4e4niujw1a2otzfswnlnwzk8gm2ohtykellnjyz+vlqap1c3xghomlmrae0af4k9i1kwq8u1v9qdemecbaozjgxltilljegoihkzzdqxjbhcfdqllu0dxil0kskzi3islq70q6eruhci/t5iejdywd09yzhqyxlvlp7ntwllxzojdajykqbph/jjbluix5nadhuekzbqbgfb9v8h7igbsnljzxqi9vzji6r+vrston17ni2vz3gkwqe4anlggwtqajegamoag0fwdf7bm/fkvbjvxsd0ngxmdvbbhxifp8omlh4=</latexit> <latexit sha1_base64="64q5fqjj9rkhqykoj7qojhjzeci=">aaacbnicbvdlsgmxfm3uv62vuzcibiu0bs0ziuhgkhxjsll7ghyymmmmdu1mhiqjlmlxbvwvny4uces3upnvtb8lbt1wuydz7iw5x4sylcqyvo3u0vlk6lp6pboxubw9y+7u1wuyc0xqogshahpiekydulnumdkmbehcy6th9a/hfuoecend4e4niujw1a2otzfswnlnwzk8gm2ohtykellnjyz+vlqap1c3xghomlmrae0af4k9i1kwq8u1v9qdemecbaozjgxltilljegoihkzzdqxjbhcfdqllu0dxil0kskzi3islq70q6eruhci/t5iejdywd09yzhqyxlvlp7ntwllxzojdajykqbph/jjbluix5nadhuekzbqbgfb9v8h7igbsnljzxqi9vzji6r+vrston17ni2vz3gkwqe4anlggwtqajegamoag0fwdf7bm/fkvbjvxsd0ngxmdvbbhxifp8omlh4=</latexit> Why it works? Take any arbitrary (possibly deterministic) function f(s). B = max f(s) S,S f(s0 ) 0 Say one data point where S and S differ on A(S) = f(s) + B Laplace(0,1)/ε

<latexit sha1_base64="64q5fqjj9rkhqykoj7qojhjzeci=">aaacbnicbvdlsgmxfm3uv62vuzcibiu0bs0ziuhgkhxjsll7ghyymmmmdu1mhiqjlmlxbvwvny4uces3upnvtb8lbt1wuydz7iw5x4sylcqyvo3u0vlk6lp6pboxubw9y+7u1wuyc0xqogshahpiekydulnumdkmbehcy6th9a/hfuoecend4e4niujw1a2otzfswnlnwzk8gm2ohtykellnjyz+vlqap1c3xghomlmrae0af4k9i1kwq8u1v9qdemecbaozjgxltilljegoihkzzdqxjbhcfdqllu0dxil0kskzi3islq70q6eruhci/t5iejdywd09yzhqyxlvlp7ntwllxzojdajykqbph/jjbluix5nadhuekzbqbgfb9v8h7igbsnljzxqi9vzji6r+vrston17ni2vz3gkwqe4anlggwtqajegamoag0fwdf7bm/fkvbjvxsd0ngxmdvbbhxifp8omlh4=</latexit> <latexit sha1_base64="64q5fqjj9rkhqykoj7qojhjzeci=">aaacbnicbvdlsgmxfm3uv62vuzcibiu0bs0ziuhgkhxjsll7ghyymmmmdu1mhiqjlmlxbvwvny4uces3upnvtb8lbt1wuydz7iw5x4sylcqyvo3u0vlk6lp6pboxubw9y+7u1wuyc0xqogshahpiekydulnumdkmbehcy6th9a/hfuoecend4e4niujw1a2otzfswnlnwzk8gm2ohtykellnjyz+vlqap1c3xghomlmrae0af4k9i1kwq8u1v9qdemecbaozjgxltilljegoihkzzdqxjbhcfdqllu0dxil0kskzi3islq70q6eruhci/t5iejdywd09yzhqyxlvlp7ntwllxzojdajykqbph/jjbluix5nadhuekzbqbgfb9v8h7igbsnljzxqi9vzji6r+vrston17ni2vz3gkwqe4anlggwtqajegamoag0fwdf7bm/fkvbjvxsd0ngxmdvbbhxifp8omlh4=</latexit> <latexit sha1_base64="64q5fqjj9rkhqykoj7qojhjzeci=">aaacbnicbvdlsgmxfm3uv62vuzcibiu0bs0ziuhgkhxjsll7ghyymmmmdu1mhiqjlmlxbvwvny4uces3upnvtb8lbt1wuydz7iw5x4sylcqyvo3u0vlk6lp6pboxubw9y+7u1wuyc0xqogshahpiekydulnumdkmbehcy6th9a/hfuoecend4e4niujw1a2otzfswnlnwzk8gm2ohtykellnjyz+vlqap1c3xghomlmrae0af4k9i1kwq8u1v9qdemecbaozjgxltilljegoihkzzdqxjbhcfdqllu0dxil0kskzi3islq70q6eruhci/t5iejdywd09yzhqyxlvlp7ntwllxzojdajykqbph/jjbluix5nadhuekzbqbgfb9v8h7igbsnljzxqi9vzji6r+vrston17ni2vz3gkwqe4anlggwtqajegamoag0fwdf7bm/fkvbjvxsd0ngxmdvbbhxifp8omlh4=</latexit> <latexit sha1_base64="64q5fqjj9rkhqykoj7qojhjzeci=">aaacbnicbvdlsgmxfm3uv62vuzcibiu0bs0ziuhgkhxjsll7ghyymmmmdu1mhiqjlmlxbvwvny4uces3upnvtb8lbt1wuydz7iw5x4sylcqyvo3u0vlk6lp6pboxubw9y+7u1wuyc0xqogshahpiekydulnumdkmbehcy6th9a/hfuoecend4e4niujw1a2otzfswnlnwzk8gm2ohtykellnjyz+vlqap1c3xghomlmrae0af4k9i1kwq8u1v9qdemecbaozjgxltilljegoihkzzdqxjbhcfdqllu0dxil0kskzi3islq70q6eruhci/t5iejdywd09yzhqyxlvlp7ntwllxzojdajykqbph/jjbluix5nadhuekzbqbgfb9v8h7igbsnljzxqi9vzji6r+vrston17ni2vz3gkwqe4anlggwtqajegamoag0fwdf7bm/fkvbjvxsd0ngxmdvbbhxifp8omlh4=</latexit> Why it works? Take any arbitrary (possibly deterministic) function f(s). B = max f(s) S,S f(s0 ) 0 Say one data point where S and S differ on A(S) = f(s) + B Laplace(0,1)/ε A is (ε,0)-differentially private

<latexit sha1_base64="wnll5r0l7s6ctnk7odgkot6x4+a=">aaacbxicdzdlsgmxfiyzxmu9jbrurbci7aykrwylm6iblxxtbdpsmmmmdc1csdjigbpx46u4cagiw9/bnw9jphdq0qobj/8/h5pzo6hgsip0as0sli2vrkbw0usbm1vb9s5uxqwrpkxgaxhipkmue9xnnc21ym1qmui5gjwc4uxin26zvdzwb/qozb2p9h3uckq0kbr2qduvhmzh9u7mzv7ncum5hhvu2hmurwhhjgecuhikdjtlpqiuqzxypjjgvtwu/dhubttymk+pieq1map1jyzscyryon2ofasjhzi+axn0icduj55cmyzhrulbn5dm+rpo1o8tmfgugnmo6fsihqjfxil+5bui7zy6mffdsdofthe5kya6gekksmclo1qmdbaqufkrpaniytemulqjyx4p/b/qhtxgexx1kqmcz+jigx1wcliagykogetqbtvawt14bm/gxxqwnqxx623aumdnzvbaj7levwawczce</latexit> <latexit sha1_base64="wnll5r0l7s6ctnk7odgkot6x4+a=">aaacbxicdzdlsgmxfiyzxmu9jbrurbci7aykrwylm6iblxxtbdpsmmmmdc1csdjigbpx46u4cagiw9/bnw9jphdq0qobj/8/h5pzo6hgsip0as0sli2vrkbw0usbm1vb9s5uxqwrpkxgaxhipkmue9xnnc21ym1qmui5gjwc4uxin26zvdzwb/qozb2p9h3uckq0kbr2qduvhmzh9u7mzv7ncum5hhvu2hmurwhhjgecuhikdjtlpqiuqzxypjjgvtwu/dhubttymk+pieq1map1jyzscyryon2ofasjhzi+axn0icduj55cmyzhrulbn5dm+rpo1o8tmfgugnmo6fsihqjfxil+5bui7zy6mffdsdofthe5kya6gekksmclo1qmdbaqufkrpaniytemulqjyx4p/b/qhtxgexx1kqmcz+jigx1wcliagykogetqbtvawt14bm/gxxqwnqxx623aumdnzvbaj7levwawczce</latexit> <latexit sha1_base64="wnll5r0l7s6ctnk7odgkot6x4+a=">aaacbxicdzdlsgmxfiyzxmu9jbrurbci7aykrwylm6iblxxtbdpsmmmmdc1csdjigbpx46u4cagiw9/bnw9jphdq0qobj/8/h5pzo6hgsip0as0sli2vrkbw0usbm1vb9s5uxqwrpkxgaxhipkmue9xnnc21ym1qmui5gjwc4uxin26zvdzwb/qozb2p9h3uckq0kbr2qduvhmzh9u7mzv7ncum5hhvu2hmurwhhjgecuhikdjtlpqiuqzxypjjgvtwu/dhubttymk+pieq1map1jyzscyryon2ofasjhzi+axn0icduj55cmyzhrulbn5dm+rpo1o8tmfgugnmo6fsihqjfxil+5bui7zy6mffdsdofthe5kya6gekksmclo1qmdbaqufkrpaniytemulqjyx4p/b/qhtxgexx1kqmcz+jigx1wcliagykogetqbtvawt14bm/gxxqwnqxx623aumdnzvbaj7levwawczce</latexit> <latexit sha1_base64="wnll5r0l7s6ctnk7odgkot6x4+a=">aaacbxicdzdlsgmxfiyzxmu9jbrurbci7aykrwylm6iblxxtbdpsmmmmdc1csdjigbpx46u4cagiw9/bnw9jphdq0qobj/8/h5pzo6hgsip0as0sli2vrkbw0usbm1vb9s5uxqwrpkxgaxhipkmue9xnnc21ym1qmui5gjwc4uxin26zvdzwb/qozb2p9h3uckq0kbr2qduvhmzh9u7mzv7ncum5hhvu2hmurwhhjgecuhikdjtlpqiuqzxypjjgvtwu/dhubttymk+pieq1map1jyzscyryon2ofasjhzi+axn0icduj55cmyzhrulbn5dm+rpo1o8tmfgugnmo6fsihqjfxil+5bui7zy6mffdsdofthe5kya6gekksmclo1qmdbaqufkrpaniytemulqjyx4p/b/qhtxgexx1kqmcz+jigx1wcliagykogetqbtvawt14bm/gxxqwnqxx623aumdnzvbaj7levwawczce</latexit> Why it works? P p(x; (A(S) f(s)) =x) P (A(S 0 )=x) = e f(s) p(x; f(s 0 )) e f(s0 ) x /B x /B = e f(s0 ) x f(s) x B apple e f(s0 ) B f(s) apple e

<latexit sha1_base64="wnll5r0l7s6ctnk7odgkot6x4+a=">aaacbxicdzdlsgmxfiyzxmu9jbrurbci7aykrwylm6iblxxtbdpsmmmmdc1csdjigbpx46u4cagiw9/bnw9jphdq0qobj/8/h5pzo6hgsip0as0sli2vrkbw0usbm1vb9s5uxqwrpkxgaxhipkmue9xnnc21ym1qmui5gjwc4uxin26zvdzwb/qozb2p9h3uckq0kbr2qduvhmzh9u7mzv7ncum5hhvu2hmurwhhjgecuhikdjtlpqiuqzxypjjgvtwu/dhubttymk+pieq1map1jyzscyryon2ofasjhzi+axn0icduj55cmyzhrulbn5dm+rpo1o8tmfgugnmo6fsihqjfxil+5bui7zy6mffdsdofthe5kya6gekksmclo1qmdbaqufkrpaniytemulqjyx4p/b/qhtxgexx1kqmcz+jigx1wcliagykogetqbtvawt14bm/gxxqwnqxx623aumdnzvbaj7levwawczce</latexit> <latexit sha1_base64="wnll5r0l7s6ctnk7odgkot6x4+a=">aaacbxicdzdlsgmxfiyzxmu9jbrurbci7aykrwylm6iblxxtbdpsmmmmdc1csdjigbpx46u4cagiw9/bnw9jphdq0qobj/8/h5pzo6hgsip0as0sli2vrkbw0usbm1vb9s5uxqwrpkxgaxhipkmue9xnnc21ym1qmui5gjwc4uxin26zvdzwb/qozb2p9h3uckq0kbr2qduvhmzh9u7mzv7ncum5hhvu2hmurwhhjgecuhikdjtlpqiuqzxypjjgvtwu/dhubttymk+pieq1map1jyzscyryon2ofasjhzi+axn0icduj55cmyzhrulbn5dm+rpo1o8tmfgugnmo6fsihqjfxil+5bui7zy6mffdsdofthe5kya6gekksmclo1qmdbaqufkrpaniytemulqjyx4p/b/qhtxgexx1kqmcz+jigx1wcliagykogetqbtvawt14bm/gxxqwnqxx623aumdnzvbaj7levwawczce</latexit> <latexit sha1_base64="wnll5r0l7s6ctnk7odgkot6x4+a=">aaacbxicdzdlsgmxfiyzxmu9jbrurbci7aykrwylm6iblxxtbdpsmmmmdc1csdjigbpx46u4cagiw9/bnw9jphdq0qobj/8/h5pzo6hgsip0as0sli2vrkbw0usbm1vb9s5uxqwrpkxgaxhipkmue9xnnc21ym1qmui5gjwc4uxin26zvdzwb/qozb2p9h3uckq0kbr2qduvhmzh9u7mzv7ncum5hhvu2hmurwhhjgecuhikdjtlpqiuqzxypjjgvtwu/dhubttymk+pieq1map1jyzscyryon2ofasjhzi+axn0icduj55cmyzhrulbn5dm+rpo1o8tmfgugnmo6fsihqjfxil+5bui7zy6mffdsdofthe5kya6gekksmclo1qmdbaqufkrpaniytemulqjyx4p/b/qhtxgexx1kqmcz+jigx1wcliagykogetqbtvawt14bm/gxxqwnqxx623aumdnzvbaj7levwawczce</latexit> <latexit sha1_base64="wnll5r0l7s6ctnk7odgkot6x4+a=">aaacbxicdzdlsgmxfiyzxmu9jbrurbci7aykrwylm6iblxxtbdpsmmmmdc1csdjigbpx46u4cagiw9/bnw9jphdq0qobj/8/h5pzo6hgsip0as0sli2vrkbw0usbm1vb9s5uxqwrpkxgaxhipkmue9xnnc21ym1qmui5gjwc4uxin26zvdzwb/qozb2p9h3uckq0kbr2qduvhmzh9u7mzv7ncum5hhvu2hmurwhhjgecuhikdjtlpqiuqzxypjjgvtwu/dhubttymk+pieq1map1jyzscyryon2ofasjhzi+axn0icduj55cmyzhrulbn5dm+rpo1o8tmfgugnmo6fsihqjfxil+5bui7zy6mffdsdofthe5kya6gekksmclo1qmdbaqufkrpaniytemulqjyx4p/b/qhtxgexx1kqmcz+jigx1wcliagykogetqbtvawt14bm/gxxqwnqxx623aumdnzvbaj7levwawczce</latexit> Why it works? P p(x; (A(S) f(s)) =x) P (A(S 0 )=x) = e f(s) p(x; f(s 0 )) e f(s0 ) x /B x /B = e f(s0 ) x f(s) x B apple e f(s0 ) B f(s) apple e

<latexit sha1_base64="wnll5r0l7s6ctnk7odgkot6x4+a=">aaacbxicdzdlsgmxfiyzxmu9jbrurbci7aykrwylm6iblxxtbdpsmmmmdc1csdjigbpx46u4cagiw9/bnw9jphdq0qobj/8/h5pzo6hgsip0as0sli2vrkbw0usbm1vb9s5uxqwrpkxgaxhipkmue9xnnc21ym1qmui5gjwc4uxin26zvdzwb/qozb2p9h3uckq0kbr2qduvhmzh9u7mzv7ncum5hhvu2hmurwhhjgecuhikdjtlpqiuqzxypjjgvtwu/dhubttymk+pieq1map1jyzscyryon2ofasjhzi+axn0icduj55cmyzhrulbn5dm+rpo1o8tmfgugnmo6fsihqjfxil+5bui7zy6mffdsdofthe5kya6gekksmclo1qmdbaqufkrpaniytemulqjyx4p/b/qhtxgexx1kqmcz+jigx1wcliagykogetqbtvawt14bm/gxxqwnqxx623aumdnzvbaj7levwawczce</latexit> <latexit sha1_base64="wnll5r0l7s6ctnk7odgkot6x4+a=">aaacbxicdzdlsgmxfiyzxmu9jbrurbci7aykrwylm6iblxxtbdpsmmmmdc1csdjigbpx46u4cagiw9/bnw9jphdq0qobj/8/h5pzo6hgsip0as0sli2vrkbw0usbm1vb9s5uxqwrpkxgaxhipkmue9xnnc21ym1qmui5gjwc4uxin26zvdzwb/qozb2p9h3uckq0kbr2qduvhmzh9u7mzv7ncum5hhvu2hmurwhhjgecuhikdjtlpqiuqzxypjjgvtwu/dhubttymk+pieq1map1jyzscyryon2ofasjhzi+axn0icduj55cmyzhrulbn5dm+rpo1o8tmfgugnmo6fsihqjfxil+5bui7zy6mffdsdofthe5kya6gekksmclo1qmdbaqufkrpaniytemulqjyx4p/b/qhtxgexx1kqmcz+jigx1wcliagykogetqbtvawt14bm/gxxqwnqxx623aumdnzvbaj7levwawczce</latexit> <latexit sha1_base64="wnll5r0l7s6ctnk7odgkot6x4+a=">aaacbxicdzdlsgmxfiyzxmu9jbrurbci7aykrwylm6iblxxtbdpsmmmmdc1csdjigbpx46u4cagiw9/bnw9jphdq0qobj/8/h5pzo6hgsip0as0sli2vrkbw0usbm1vb9s5uxqwrpkxgaxhipkmue9xnnc21ym1qmui5gjwc4uxin26zvdzwb/qozb2p9h3uckq0kbr2qduvhmzh9u7mzv7ncum5hhvu2hmurwhhjgecuhikdjtlpqiuqzxypjjgvtwu/dhubttymk+pieq1map1jyzscyryon2ofasjhzi+axn0icduj55cmyzhrulbn5dm+rpo1o8tmfgugnmo6fsihqjfxil+5bui7zy6mffdsdofthe5kya6gekksmclo1qmdbaqufkrpaniytemulqjyx4p/b/qhtxgexx1kqmcz+jigx1wcliagykogetqbtvawt14bm/gxxqwnqxx623aumdnzvbaj7levwawczce</latexit> <latexit sha1_base64="wnll5r0l7s6ctnk7odgkot6x4+a=">aaacbxicdzdlsgmxfiyzxmu9jbrurbci7aykrwylm6iblxxtbdpsmmmmdc1csdjigbpx46u4cagiw9/bnw9jphdq0qobj/8/h5pzo6hgsip0as0sli2vrkbw0usbm1vb9s5uxqwrpkxgaxhipkmue9xnnc21ym1qmui5gjwc4uxin26zvdzwb/qozb2p9h3uckq0kbr2qduvhmzh9u7mzv7ncum5hhvu2hmurwhhjgecuhikdjtlpqiuqzxypjjgvtwu/dhubttymk+pieq1map1jyzscyryon2ofasjhzi+axn0icduj55cmyzhrulbn5dm+rpo1o8tmfgugnmo6fsihqjfxil+5bui7zy6mffdsdofthe5kya6gekksmclo1qmdbaqufkrpaniytemulqjyx4p/b/qhtxgexx1kqmcz+jigx1wcliagykogetqbtvawt14bm/gxxqwnqxx623aumdnzvbaj7levwawczce</latexit> Why it works? P p(x; (A(S) f(s)) =x) P (A(S 0 )=x) = e f(s) p(x; f(s 0 )) e f(s0 ) x /B x /B = e f(s0 ) x f(s) x B apple e f(s0 ) B f(s) apple e

<latexit sha1_base64="wnll5r0l7s6ctnk7odgkot6x4+a=">aaacbxicdzdlsgmxfiyzxmu9jbrurbci7aykrwylm6iblxxtbdpsmmmmdc1csdjigbpx46u4cagiw9/bnw9jphdq0qobj/8/h5pzo6hgsip0as0sli2vrkbw0usbm1vb9s5uxqwrpkxgaxhipkmue9xnnc21ym1qmui5gjwc4uxin26zvdzwb/qozb2p9h3uckq0kbr2qduvhmzh9u7mzv7ncum5hhvu2hmurwhhjgecuhikdjtlpqiuqzxypjjgvtwu/dhubttymk+pieq1map1jyzscyryon2ofasjhzi+axn0icduj55cmyzhrulbn5dm+rpo1o8tmfgugnmo6fsihqjfxil+5bui7zy6mffdsdofthe5kya6gekksmclo1qmdbaqufkrpaniytemulqjyx4p/b/qhtxgexx1kqmcz+jigx1wcliagykogetqbtvawt14bm/gxxqwnqxx623aumdnzvbaj7levwawczce</latexit> <latexit sha1_base64="wnll5r0l7s6ctnk7odgkot6x4+a=">aaacbxicdzdlsgmxfiyzxmu9jbrurbci7aykrwylm6iblxxtbdpsmmmmdc1csdjigbpx46u4cagiw9/bnw9jphdq0qobj/8/h5pzo6hgsip0as0sli2vrkbw0usbm1vb9s5uxqwrpkxgaxhipkmue9xnnc21ym1qmui5gjwc4uxin26zvdzwb/qozb2p9h3uckq0kbr2qduvhmzh9u7mzv7ncum5hhvu2hmurwhhjgecuhikdjtlpqiuqzxypjjgvtwu/dhubttymk+pieq1map1jyzscyryon2ofasjhzi+axn0icduj55cmyzhrulbn5dm+rpo1o8tmfgugnmo6fsihqjfxil+5bui7zy6mffdsdofthe5kya6gekksmclo1qmdbaqufkrpaniytemulqjyx4p/b/qhtxgexx1kqmcz+jigx1wcliagykogetqbtvawt14bm/gxxqwnqxx623aumdnzvbaj7levwawczce</latexit> <latexit sha1_base64="wnll5r0l7s6ctnk7odgkot6x4+a=">aaacbxicdzdlsgmxfiyzxmu9jbrurbci7aykrwylm6iblxxtbdpsmmmmdc1csdjigbpx46u4cagiw9/bnw9jphdq0qobj/8/h5pzo6hgsip0as0sli2vrkbw0usbm1vb9s5uxqwrpkxgaxhipkmue9xnnc21ym1qmui5gjwc4uxin26zvdzwb/qozb2p9h3uckq0kbr2qduvhmzh9u7mzv7ncum5hhvu2hmurwhhjgecuhikdjtlpqiuqzxypjjgvtwu/dhubttymk+pieq1map1jyzscyryon2ofasjhzi+axn0icduj55cmyzhrulbn5dm+rpo1o8tmfgugnmo6fsihqjfxil+5bui7zy6mffdsdofthe5kya6gekksmclo1qmdbaqufkrpaniytemulqjyx4p/b/qhtxgexx1kqmcz+jigx1wcliagykogetqbtvawt14bm/gxxqwnqxx623aumdnzvbaj7levwawczce</latexit> <latexit sha1_base64="wnll5r0l7s6ctnk7odgkot6x4+a=">aaacbxicdzdlsgmxfiyzxmu9jbrurbci7aykrwylm6iblxxtbdpsmmmmdc1csdjigbpx46u4cagiw9/bnw9jphdq0qobj/8/h5pzo6hgsip0as0sli2vrkbw0usbm1vb9s5uxqwrpkxgaxhipkmue9xnnc21ym1qmui5gjwc4uxin26zvdzwb/qozb2p9h3uckq0kbr2qduvhmzh9u7mzv7ncum5hhvu2hmurwhhjgecuhikdjtlpqiuqzxypjjgvtwu/dhubttymk+pieq1map1jyzscyryon2ofasjhzi+axn0icduj55cmyzhrulbn5dm+rpo1o8tmfgugnmo6fsihqjfxil+5bui7zy6mffdsdofthe5kya6gekksmclo1qmdbaqufkrpaniytemulqjyx4p/b/qhtxgexx1kqmcz+jigx1wcliagykogetqbtvawt14bm/gxxqwnqxx623aumdnzvbaj7levwawczce</latexit> Why it works? P p(x; (A(S) f(s)) =x) P (A(S 0 )=x) = e f(s) p(x; f(s 0 )) e f(s0 ) x /B x /B = e f(s0 ) x f(s) x B apple e f(s0 ) B f(s) apple e

<latexit sha1_base64="wnll5r0l7s6ctnk7odgkot6x4+a=">aaacbxicdzdlsgmxfiyzxmu9jbrurbci7aykrwylm6iblxxtbdpsmmmmdc1csdjigbpx46u4cagiw9/bnw9jphdq0qobj/8/h5pzo6hgsip0as0sli2vrkbw0usbm1vb9s5uxqwrpkxgaxhipkmue9xnnc21ym1qmui5gjwc4uxin26zvdzwb/qozb2p9h3uckq0kbr2qduvhmzh9u7mzv7ncum5hhvu2hmurwhhjgecuhikdjtlpqiuqzxypjjgvtwu/dhubttymk+pieq1map1jyzscyryon2ofasjhzi+axn0icduj55cmyzhrulbn5dm+rpo1o8tmfgugnmo6fsihqjfxil+5bui7zy6mffdsdofthe5kya6gekksmclo1qmdbaqufkrpaniytemulqjyx4p/b/qhtxgexx1kqmcz+jigx1wcliagykogetqbtvawt14bm/gxxqwnqxx623aumdnzvbaj7levwawczce</latexit> <latexit sha1_base64="wnll5r0l7s6ctnk7odgkot6x4+a=">aaacbxicdzdlsgmxfiyzxmu9jbrurbci7aykrwylm6iblxxtbdpsmmmmdc1csdjigbpx46u4cagiw9/bnw9jphdq0qobj/8/h5pzo6hgsip0as0sli2vrkbw0usbm1vb9s5uxqwrpkxgaxhipkmue9xnnc21ym1qmui5gjwc4uxin26zvdzwb/qozb2p9h3uckq0kbr2qduvhmzh9u7mzv7ncum5hhvu2hmurwhhjgecuhikdjtlpqiuqzxypjjgvtwu/dhubttymk+pieq1map1jyzscyryon2ofasjhzi+axn0icduj55cmyzhrulbn5dm+rpo1o8tmfgugnmo6fsihqjfxil+5bui7zy6mffdsdofthe5kya6gekksmclo1qmdbaqufkrpaniytemulqjyx4p/b/qhtxgexx1kqmcz+jigx1wcliagykogetqbtvawt14bm/gxxqwnqxx623aumdnzvbaj7levwawczce</latexit> <latexit sha1_base64="wnll5r0l7s6ctnk7odgkot6x4+a=">aaacbxicdzdlsgmxfiyzxmu9jbrurbci7aykrwylm6iblxxtbdpsmmmmdc1csdjigbpx46u4cagiw9/bnw9jphdq0qobj/8/h5pzo6hgsip0as0sli2vrkbw0usbm1vb9s5uxqwrpkxgaxhipkmue9xnnc21ym1qmui5gjwc4uxin26zvdzwb/qozb2p9h3uckq0kbr2qduvhmzh9u7mzv7ncum5hhvu2hmurwhhjgecuhikdjtlpqiuqzxypjjgvtwu/dhubttymk+pieq1map1jyzscyryon2ofasjhzi+axn0icduj55cmyzhrulbn5dm+rpo1o8tmfgugnmo6fsihqjfxil+5bui7zy6mffdsdofthe5kya6gekksmclo1qmdbaqufkrpaniytemulqjyx4p/b/qhtxgexx1kqmcz+jigx1wcliagykogetqbtvawt14bm/gxxqwnqxx623aumdnzvbaj7levwawczce</latexit> <latexit sha1_base64="wnll5r0l7s6ctnk7odgkot6x4+a=">aaacbxicdzdlsgmxfiyzxmu9jbrurbci7aykrwylm6iblxxtbdpsmmmmdc1csdjigbpx46u4cagiw9/bnw9jphdq0qobj/8/h5pzo6hgsip0as0sli2vrkbw0usbm1vb9s5uxqwrpkxgaxhipkmue9xnnc21ym1qmui5gjwc4uxin26zvdzwb/qozb2p9h3uckq0kbr2qduvhmzh9u7mzv7ncum5hhvu2hmurwhhjgecuhikdjtlpqiuqzxypjjgvtwu/dhubttymk+pieq1map1jyzscyryon2ofasjhzi+axn0icduj55cmyzhrulbn5dm+rpo1o8tmfgugnmo6fsihqjfxil+5bui7zy6mffdsdofthe5kya6gekksmclo1qmdbaqufkrpaniytemulqjyx4p/b/qhtxgexx1kqmcz+jigx1wcliagykogetqbtvawt14bm/gxxqwnqxx623aumdnzvbaj7levwawczce</latexit> Why it works? P p(x; (A(S) f(s)) =x) P (A(S 0 )=x) = e f(s) p(x; f(s 0 )) e f(s0 ) x /B x /B = e f(s0 ) x f(s) x B apple e f(s0 ) B f(s) apple e

The Magic Broker Scam Based on Aaron Roth s slide

The Magic Broker Scam Based on Aaron Roth s slide Day 1

The Magic Broker Scam Based on Aaron Roth s slide Day 1 Day 2

The Magic Broker Scam Based on Aaron Roth s slide Day 1 Day 2 Day 3

The Magic Broker Scam Based on Aaron Roth s slide Day 1 Day 2 Day 3 Day 10..

The Magic Broker Scam Based on Aaron Roth s slide Day 1 Day 2 Day 3 Day 10.. Day 11: Pay me I will help you invest

The Magic Broker Scam Based on Aaron Roth s slide Day 1 Day 2 Day 3 Day 10.. Day 11: Pay me I will help you invest What are the chances that some one guesses randomly and gets correct?

The Magic Broker Scam Based on Aaron Roth s slide Day 1 Day 2 Day 3 Day 10.. Day 11: Pay me I will help you invest What are the chances that some one guesses randomly and gets correct? 1 in 1024

The Magic Broker Scam Based on Aaron Roth s slide Day 1 Day 2 Day 3 Day 10.. Day 11: Pay me I will help you invest What are the chances that some one guesses randomly and gets correct? 1 in 1024 But the broker will always scam people, why?

The Magic Broker Scam Based on Aaron Roth s slide Day 1 Day 2 Day 3 Day 10..

The Magic Broker Scam Based on Aaron Roth s slide Day 1 Day 2 Day 3 Day 10.. Day 1: send email to a million people (1/2 + and 1/2 -)

The Magic Broker Scam Based on Aaron Roth s slide Day 1 Day 2 Day 3 Day 10.. Day 1: send email to a million people (1/2 + and 1/2 -) Day 2: only send email to 500,000 people we got right (1/2 + and 1/2 -)

The Magic Broker Scam Based on Aaron Roth s slide Day 1 Day 2 Day 3 Day 10.. Day 1: send email to a million people (1/2 + and 1/2 -) Day 2: only send email to 500,000 people we got right (1/2 + and 1/2 -)..

The Magic Broker Scam Based on Aaron Roth s slide Day 1 Day 2 Day 3 Day 10.. Day 1: send email to a million people (1/2 + and 1/2 -) Day 2: only send email to 500,000 people we got right (1/2 + and 1/2 -).. Day 11: We are left with 1000000/1024 ~ 1000 people we can scam

Reproducibility problem

Ideal ML Experiment

Data Ideal ML Experiment

Ideal ML Experiment Data Training Holdout

Ideal ML Experiment Data Training Holdout Reuse many times

Ideal ML Experiment Data Training Holdout Reuse many times Form hypothesis

Ideal ML Experiment Data Training Holdout Reuse many times Form hypothesis Use holdout set only once and report accuracy

Ideal ML Experiment Data Training Holdout Reuse many times Form hypothesis Use holdout set only once and report accuracy We are not allowed to form hypothesis based on data we used to test: age old statistics

Ideal ML Experiment Data Training Holdout Reuse many times Form hypothesis Use holdout set only once and report accuracy We are not allowed to form hypothesis based on data we used to test: age old statistics But too tempting to form more informed opinion

Ideal ML Experiment Data Training Holdout Reuse many times Form hypothesis We are not allowed to form hypothesis based on data we used to test: age old statistics But too tempting to form more informed opinion We do a train/validation/test set split Use holdout set only once and report accuracy

Ideal ML Experiment Data Training Holdout Reuse many times Form hypothesis We are not allowed to form hypothesis based on data we used to test: age old statistics But too tempting to form more informed opinion We do a train/validation/test set split Use holdout set only once and report accuracy But this means we can y reuse datasets over time

ML Today

ML Today Benchmark dataset from MNIST to IMAGENET

ML Today Benchmark dataset from MNIST to IMAGENET Competitions run with feedback from test set to competitors ;)

ML Today Benchmark dataset from MNIST to IMAGENET Competitions run with feedback from test set to competitors ;) Effort to collect public dataset to share.

ML Today Benchmark dataset from MNIST to IMAGENET Competitions run with feedback from test set to competitors ;) Effort to collect public dataset to share. All great but we need to be careful!

ML Today Benchmark dataset from MNIST to IMAGENET Competitions run with feedback from test set to competitors ;) Effort to collect public dataset to share. All great but we need to be careful! Old fix: pre-register experiment, many many examples of people fudging this.

An Example Code at: https://github.com/isofer/thresholdout-experiments/blob/master/thresholdout%20experiments.ipynb Data: 20,000 data points in 10000 dimensions drawn randomly Labels: random +1 or -1 (no correlation with input) Data-scientist runs: Split data into train and test of equal size Select best k features on training data Only use variables also good on holdout Build linear predictor out of these k variables Find best k = 10,20,30,40,.

An Example Number of features

Can we reuse holdout set?

Maybe if we do it right

Maybe if we do it right Idea: when we report back accuracies from the dataset, we add noise so as to not to leak too much information

Maybe if we do it right Idea: when we report back accuracies from the dataset, we add noise so as to not to leak too much information Eg. Report back accuracies on holdout set only when training and test accuracy are significantly different

Threshold-out Algorithm

The Example

The Guarantee Roughly: Thresholdout guarantees high accuracy, and can handle up to asked is order n^2 overfitting queries

Differential Privacy

Differential Privacy A deterministic algorithm cannot preserve privacy

Differential Privacy A deterministic algorithm cannot preserve privacy Say S = (Data1,,Datan) is the data provided to learning algorithm (be it clustering, supervised learning etc).

Differential Privacy A deterministic algorithm cannot preserve privacy Say S = (Data1,,Datan) is the data provided to learning algorithm (be it clustering, supervised learning etc). Say (randomized) learning algorithm A takes this training data and returns solution as A(S)

Differential Privacy A deterministic algorithm cannot preserve privacy Say S = (Data1,,Datan) is the data provided to learning algorithm (be it clustering, supervised learning etc). Say (randomized) learning algorithm A takes this training data and returns solution as A(S) Algorithm A is (ε,ẟ)- differentially private if for all samples S and S that only differ by one data point and any set C P (A(S) 2 C) apple e P (A(S 0 ) 2 C)+

Differential Privacy A deterministic algorithm cannot preserve privacy Say S = (Data1,,Datan) is the data provided to learning algorithm (be it clustering, supervised learning etc). Say (randomized) learning algorithm A takes this training data and returns solution as A(S) Algorithm A is (ε,ẟ)- differentially private if for all samples S and S that only differ by one data point and any set C P (A(S) 2 C) apple e P (A(S 0 ) 2 C)+ ẟ=0 is called pure differential privacy

Differential Privacy Post-processing: If A is a differentially private algorithm, and f is any mapping on the outcome space of A, then the algorithm that maps from sample S to f(a(s)) is also differentially private Composability: Algo(S) is given by following procedure For i in 1 to k If we choose any epsilon differentially private algorithm A_i based on outcomes O_1,,O_{i-1} Set O_i = A_i(S) Return O_1,,O_n The above algorithm is O(epsilon sqrt(k)) differentially private