SIGNAL PROCESSING Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt.

Podobne dokumenty
Filtry cyfrowe. h(n) odpowiedź impulsowa. Filtr cyfrowy. Procesory sygnałowe (DSP), układy programowalne

Medical electronics part 9a Electroencephalography (EEG)

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

Medical electronics part 10 Physiological transducers

SIGNAL PROCESSING Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt.

BIOPHYSICS. Politechnika Łódzka, ul. Żeromskiego 116, Łódź, tel. (042)

Hard-Margin Support Vector Machines

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

Medical electronics part 9b Electroencephalography (EEG)

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

REDUCTION OF PASS BAND AMPLITUDE DISTORTIONS IN THE EEG FILTERING SYSTEM BASED ON SELECTED IIR FILTERS

OPBOX ver USB 2.0 Mini Ultrasonic Box with Integrated Pulser and Receiver

Helena Boguta, klasa 8W, rok szkolny 2018/2019

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

Teoria sygnałów. Signal Theory. Electrical Engineering 1 st degree (1st degree / 2nd degree) General (general / practical)

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Układy reprogramowalne i SoC Język VHDL (część 4)

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

The Overview of Civilian Applications of Airborne SAR Systems

CYFROWE PRZETWARZANIE SYGNAŁÓW

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Microsystems in Medical Applications Liquid Flow Sensors

Arrays -II. Arrays. Outline ECE Cal Poly Pomona Electrical & Computer Engineering. Introduction

5.3 Frequency contents

Architektura komputerów Wprowadzenie do algorytmów

FEEDBACK CONTROL OF ACOUSTIC NOISE AT DESIRED LOCATIONS

Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH

deep learning for NLP (5 lectures)

Nauczycielem wszystkiego jest praktyka Juliusz Cezar. Nauka to wiara w ignorancję ekspertów Richard Feynman

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

WZMACNIACZE. Germanium Four. Germanium Two. Germanium. CENNIK PRODUKTÓW listopad 2013


TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

Selection of controller parameters Strojenie regulatorów

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Cyfrowe przetwarzanie sygnałów. Wykład 7. Projektowanie filtrów cyfrowych. dr inż. Robert Kazała

KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y. 2. Współczynnik korelacji Pearsona

DETECTION OF MATERIAL INTEGRATED CONDUCTORS FOR CONNECTIVE RIVETING OF FUNCTION-INTEGRATIVE TEXTILE-REINFORCED THERMOPLASTIC COMPOSITES

STATISTICAL METHODS IN BIOLOGY

Zaawansowane programowanie w języku C++ Przeciążanie operatorów

MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller

Previously on CSCI 4622

Electromagnetism Q =) E I =) B E B. ! Q! I B t =) E E t =) B. 05/06/2018 Physics 0

Has the heat wave frequency or intensity changed in Poland since 1950?

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej

PROCESOR CENNIK PRODUKTÓW RAINBOW MAJ 2015 DSP 1.8

Pomoc do programu konfiguracyjnego RFID-CS27-Reader User Guide of setup software RFID-CS27-Reader

Układy reprogramowalne i SoC Implementacja w układach FPGA

Opracowanie metod identyfikacji oraz separacji komponento w charakterystycznych badanych sygnało w Autorzy: Urbanek J., Jabłon ski A.

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów.

Discretization of continuous signals (M 19) Dyskretyzacja sygnałów ciągłych

POŁÓWKOWO-PASMOWE FILTRY CYFROWE

LED PAR 56 7*10W RGBW 4in1 SLIM


Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

Lecture 20. Fraunhofer Diffraction - Transforms

Zastosowania metod analitycznej złożoności obliczeniowej do przetwarzania sygnałów cyfrowych oraz w metodach numerycznych teorii aproksymacji

BLACKLIGHT SPOT 400W F

Typ VME FOR THE MEASUREMENT OF VOLUME FLOW RATES IN DUCTS

Filtry elektroniczne sygnałów ciągłych - cz.1

Zarządzanie sieciami telekomunikacyjnymi

Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (1)

tum.de/fall2018/ in2357

Patients price acceptance SELECTED FINDINGS

Z-ZIP Równania Różniczkowe. Differential Equations

Podstawy automatyki. Energetics 1 st degree (1st degree / 2nd degree) General (general / practical) Full-time (full-time / part-time)

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Hippo Boombox MM209N CD. Instrukcja obsługi User s Manual

Aerodynamics I Compressible flow past an airfoil

Stargard Szczecinski i okolice (Polish Edition)

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

Rozwiązania dla radiodyfuzji naziemnej Digital Audio Broadcasting Digital Multimedia Broadcasting

Wybrane metody redukcji zakłóceń utrwalonych w dowodowych nagraniach dźwiękowych

TRÓJFAZOWY RÓWNOLEGŁY ENERGETYCZNY FILTR AKTYWNY ZE Z ZMODYFIKOWANYM ALGORYTMEM STEROWANIA OPARTYM NA TEORII MOCY CHWILOWEJ

OpenPoland.net API Documentation

Magdalena Drabek (Politechnika Łódzka) Żaneta Mucha (ESN SGGW) Joanna Jóźwik (FRSE) Warszawa, 27 listopada 2015 r.

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej

Revenue Maximization. Sept. 25, 2018

CZY ZALEŻNOŚCI W UKŁADZIE WIELOKANAŁOWYM MOŻNA BADAĆ PARAMI?

MODEL SYMULACYJNY DO BADANIA FILTRÓW ANTYALIASINGOWYCH STOSOWANYCH W STRUKTURACH CYFROWEJ AUTOMATYKI ZABEZPIECZENIOWEJ

THE INFLUENCE OF OIL LEAK IN MODERN VEHICLE SHOCK ABSORBER ON ITS DUMPING CHARACTERISTICS

Krytyczne czynniki sukcesu w zarządzaniu projektami

Medical Imaging. Politechnika Łódzka, ul. śeromskiego 116, Łódź, tel. (042)


Owner s manual. English

Nazwa projektu: Kreatywni i innowacyjni uczniowie konkurencyjni na rynku pracy

Lecture 18 Review for Exam 1

Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej. Laboratorium cyfrowej techniki pomiarowej. Ćwiczenie 3

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

EGARA Adam Małyszko FORS. POLAND - KRAKÓW r

RESONANCE OF TORSIONAL VIBRATION OF SHAFTS COUPLED BY MECHANISMS

Studia podyplomowe realizowane w ramach zadania 5 Systemy mobilne i techniki multimedialne

Transkrypt:

SIGNAL PROCESSING Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka bez ograniczeń - zintegrowany rozwój Politechniki Łódzkiej - zarządzanie Uczelnią, nowoczesna oferta edukacyjna i wzmacniania zdolności do zatrudniania osób niepełnosprawnych Politechnika Łódzka, ul. Żeromskiego 116, 9-924 Łódź, tel. (42) 631 28 83 www.kapitalludzki.p.lodz.pl

Digital filters 2 Digital signal processors (DSP), programmable circuits x(n) Digital filter y(n) h(n) - impulse response x(n) y(n) y(n) = x(n) h(n)

Signal processing 3 analog (anty-aliasing) filtering sampling A/D Digital processing D/A sensor transducer Amplifier fm f 2 f s M Sprectral methods Correlation methods Filtering Compressing Analog processing

Digital filters 4 Why to filter the signal? to reduce noise (eg. from the mains network) to change the spectral characteristic of the signal (preemphasis, deemphasis) to filter out the components of intrest from the given signal (detection)

Signal smoothing by filtering.3 smoothing filters 5.2.1 -.1 -.2 -.3 -.4 -.5 -.6 -.7 11 12 13 14 15 16 17 18 19

Uo/Ui An analogue low-pass filter example 6 1.9.8.7 Filter amplitude transfer function -3dB.77 U i U o.6.5.4.3.2.1 Amplitude transfer function: 1-2 1-1 1 1 1 U U o i 1 1 RC 2 f[hz] f c =?

Frequency characteristics ideal filters 7 A(f) High-pass A(f) Low-pass f f A(f) Band-pass A(f) band-stop f f

Frequency characteristics 8 Low-pass filter (eg. antialiasing filter, noise reduction) A(f) Pass band f p f s Transient band Stop band f High-pass filter A(f) (eg. preemphasis) f

Frequency characteristics 9 A(f) Band-pass filter (eg. feature detection) Band-stop fiter A(f) f (eg. mains interference reduction) 5 Hz f

Frequency characteristics - examples 1 A(f) Low-pass filter (noise reduction) f 15 15 1 1 5 5 V V 2 4 6 8 1 2 4 6 8 1

Frequency characteristics - examples 11 A(f) High-pass filter (eg. mean subtraction) f 15 1 5 1 5 V 2 4 6 8 1-5 V -1-15 2 4 6 8 1

Frequency characteristics - examples 12 Narrow band-pass filter A(f) (eg. feature detection) 15 1 6 4 2 f 5 V 2 4 6 8 1-2 2 4 6 8 1

Frequency characteristics - examples 13 A(f) Band-stop filter (eg. Reduction of noise of precise frequency) 5 Hz f 16 15 14 13 12 11 1 9 2 4 6 8 1 14 13 12 11 1 9 2 4 6 8 1

Filter types 14 A Plot filter characteristics: B C Filter LP filter HP filter BP filter?

Application of filters to ECG processing 15 lowpass (radio noise reduction, reduction of skeletal muscles activity noise) highpass (elimination of izoelectric line migration, f g =.5 Hz, see. ecg_mit.mat ) bandpass (ECG feature detection, eg. P, T, QRS waves) bandstop (mains network interference reduction, f=5 Hz)

Digital filters FIR i IIR 16 Another division: 1.8 Finite Impulse Response (FIR).6.4.2 5 1 15 2 1 Infinite Impulse Response (IIR) co called recursive filters.8.6.4.2 5 1 15 2

Digital filters FIR i IIR 17 The following elementary functional operators are used in the design of a digital filter : Summation Multiplication by a constant Unit delay u 1 (n) u 2 (n ) n u n u n y 1 2 y(n) u(n) c y(n) u(n) z -1 y(n) yn cun yn un 1

The idea of digital filtering Moving average coefficients x(n) b Autoregression coefficients a y(n) =1 18 z -1 t z -1 t x(n-1) b 1 a 1 y(n-1) z -1 t t z -1 x(n-2) b 2 a 2 y(n-2) z -1 t z -1 t x(n-m) b M a N y(n-n)

Finite impulse response (FIR) filter - example 19 x(n) b =.5 LP: y n.5xn.5xn 1 x(n-1) z -1 t b 1 =.5 HP: y n.5xn.5xn 1 BP:?

Infinite response filter (IIR) - example 2 y n a yn 1 xn 1 Feedback loop x(n) y(n) a 1 y(n-1) a1 y(n-1) t

21 which is equivalent to a difference equation: Difference equation of a digital filter M k N k k n x k b k n y k a N k M k k n y k a k n x k b n y a 1 a[]=1

Difference equation of a digital filter 22 y M n bk xn kak yn k k N k1 If all a(k) coefficients are equal zero, then the difference equation defines a FIR filter and an IIR filter otherwise.

Finite response filter (FIR) - example 23 x(n) b =.5 LP: y b b 1 n.5xn.5xn 1 x(n-1) z -1 t b 1 =.5 HP: y b b 1 n.5xn.5xn 1 BP:?

Finite response filter (FIR) low pass filter 24 1 Impulse response.5 h L [.5.5] 5 1 15 2 25 3 35 4 45 5 1 Transfer function.5 H L =FFT(h L ) 5 1 15 2 25 3 35 4 45 5 N/2+1 f s /2

Finite response filter (FIR) high pass filter 25 1 Impulse response h H [.5.5] -1 1 5 1 15 2 25 3 35 4 45 5 Transfer function.5 H H =FFT(h H ) 5 1 15 2 25 3 35 4 45 5 N/2+1 f s /2

Filters in a cascade connection 26 x(n) h L h H y(n) x(n) h B y(n) h B =h L *h H h B =h L *h H H B ()= H L ()H H ()

Finite response filter (FIR) band pass filter 27.5 Impulse response h B [.25.25] -.5 1 5 1 15 2 25 3 35 4 45 5 Transfer function.5 H B =FFT(h B ) 5 1 15 2 25 3 35 4 45 5 N/2+1 f s /2

Simple FIR filter example 28 Moving average filter equation is given: y 1 5 n xn 4 xn 3 xn 2 xn 1 xn Determine the vectors of coefficients a and b for this filter. Solution (simple low pass FIR filter): a=[1]; b=[.2.2.2.2.2];

Simple FIR filter example 29 What is the impulse response of this filter: y 1 5 n xn 4 xn 3 xn 2 xn 1 xn Answer: h=[.2.2.2.2.2]; Important conclusion: For FIR filters the filter coefficients are equal to filter s impulse response

radiany Amplituda Simple FIR filter example 3 3 Phase characteristic Charakterystyka fazowa 1 Amplitude characteristic Charakterystyka amplitudowa 2 1.8.6 a zero of the filter -1.4-2.2-3 2 4 6 8 1 f [Hz].2 2 4 6 8 1 f [Hz] Impuse response of the filter.15.1.5 5 1 15 2

Simple FIR filter example 31 Exercise (cont.): Observe the amplitudes and phase shifts of the output characteristics of the filter for the following inputs: sinusoid with f=1 Hz sinusoid with f=5 Hz sinusoid with f=2 Hz Confirm that filtering (convolution) in time domain is equivalent to multiplication of spectrum of the impulse response of the filter with the spectrum of the signal.

Simple FIR filter example 32 1 1 Hz.8.6.4.2 -.2 -.4 -.6 -.8-1.1.2.3.4.5.6.7.8.9 1

Simple FIR filter example 33 1 5 Hz.8.6.4.2 -.2 -.4 -.6 -.8-1.1.2.3.4.5.6.7.8.9 1

Simple FIR filter example 34 1 2 Hz.8.6.4.2 -.2 -.4 -.6 -.8-1.1.2.3.4.5.6.7.8.9 1

Simple FIR filter example 35 2 input signal 1.5 1.5 -.5-1 -1.5-2.1.2.3.4.5.6.7.8.9 1

Linear phase condition for FIR filters 36 FIR filters may be designed so that their phase characteristic is linear. For this purpose the symmetry condition for the filter coefficients is to be fulfilled. hm k hk for k,1,, M hm k hk for odd or even M! What is the advantage of the linear filter phase characteristic? The delay of the signal on the output is independent on its frequency.

Linear phase constant delay of all frequencies 37 /4 phase delay s(t)=sin(t) t d time delay s(t)=sin(2t) /2 phase delay For linear phase filters all frequencies are delayed by the same time interval!

Linear phase condition for FIR filters 38 hm k hk hm k hk for k,1,, M discrete time discrete time

Wyj Wyj Phase distortion 39 x we sin 1t sin2t x wy sin1t 2 sin 2t 2 2 2 1.5 1.5 1 1.5.5 -.5-1 -.5-1.5-1 -2.1.2.3.4.5.6.7.8.9 1 [sek] -1.5.1.2.3.4.5.6.7.8.9 1 [sek] Nonlinear phase distortion (eg. significant distortion of the acoustic signal)

Phase (degrees) Magnitude Response (db) Phase distortion - example 4 3 2 1-1.1.2.3.4.5.6.7.8.9 1 Normalized frequency (Nyquist == 1) -2-4 -6-8.1.2.3.4.5.6.7.8.9 1 Normalized frequency (Nyquist == 1)

Other FIR filter examples 41 Exercise cont.: Determine the characteristics of the filters of the following impulse response: h=.25*[1 2 1], so called von Hann filter (or Gaussian filter) h=[1-2 1], ~ second derivative of the signal

FIR filter design from scipy.signal import firwin 42 Where f is a normalised frequency f=<,1>, where 1 corresponds to fs/2

FIR filter design - example 43 M=4 no. of taps (filter order) f off =.7*fs/2 3dB fs/2 fs

IIR filter design - example 44 -db -> Butterworth filter len(coeff[])=16 len(coeff[1])=17-3db -> fs/2-6db ->

Filter implementation 45 a[]=1 45

IIR and FIR filters comparison 46 FIR Stable (from definition) Simple design condition for linear phase easy to satisfy Steep characteristic possible for very high orders of the filter Finite precision of filter coefficients is not a significant problem IIR Can be unstable Complex design Nonlinear phase Very steep characteristic possible for low orders of the filter Problems with implementation due to finite precision of filter coefficients.

Adaptative filters 47 Successive signal samples x = 1 x(n)... x(n-k) x(n-p) w w 1 w P-1 w (n) y(n) d(n) Target function: E[d(n) w T x] = [(d(n) - y(n)) 2 ] = E[ 2 ] min

Adaptative noise reduction 48 signal source noise source s(t) = x(t) + v(t) n(t) (so called reference input) adaptative filter + w S _ v(t) ^ weight adaptation rule t e e(t) = ^ x(t) t

Adaptative noise reduction 49 Minimal e(t) corresponds to the most effective (according to the minimum mean square error) noise reduction: e( t) s( t) vˆ( t) x( t) v( t) vˆ( t) E[ e 2 ] E[ x 2 ] 2E[ x( v vˆ)] E[( v vˆ) 2 ] E[ x 2 ] = signal and noise are not correlated

Adaptative noise reduction - application 5 After cancelling mathernal ECG Source: Widrow, B. ; Glover, J.R., Jr. ; McCool, J.M. ; Kaunitz, J. ;Williams, C.S. ; Hearn, R.H. ; Zeidler, J.R. ; Eugene Dong, Jr. ;Goodlin, R.C., Adaptive noise cancelling: Principles and applications, Proceedings of the IEEE Volume: 63, Issue: 12, 1975

Adaptative filtering application 51 Adaptative filters are mainly applied to filtering of nonstationary signals, eg: In reduction of noise from the mains network and from electrical surgical instruments (f~12 Hz) In reduction of the energy of the ECG signal of a mother during registration of ECG signal of a fetus As a prediction model of biological signals in detection of their disturbances (eg. Ventricular fibrillation detection implantation of defibrillators)

Synchronous averaging of the signal 52 Lowpass filters are not effective for smoothing the signals in which the noise frequency band overlaps the significant frequency components of the signal. x t st nt A(f) signal A(f) signal S noise N Frequency spectra of the signal and noise f S N noise f

Synchronous averaging of the signal Idea of synchronious averaging 53 Synchronizing signal

Synchronous averaging of the signal 54 Synchronious averaging of the signal is efficient under the following conditions: deterministic components of the signal should occur periodically (not necessarily at regularly spaced intervals) distrubance signal should be a random signal, uncorrelated with the deterministic components of the signal. there should be a possibility to detect signal features necessary for synchronization of the successive cycles.

Synchronous averaging of the signal xˆ 1 N N n 1 x n 55 x 1 x 2 x 3 x N x ^

Synchronous averaging of the signal 56 Standard deviation of the signal: Standard deviation of noise: s n Signal to noise ratio: After N averagings: SNR N N s n SNR s 1 2 1 1 n SNR impovement after N averagings: N 1 1 2 3 4 5

Synchronous averaging of the signal 57 Applications: sub-noise signal detection ( s << n ) (telecommunications) EEG electric evoked potentials analysis, ie. Analysis of potentials of the several microvolts amplitude, generated within the brain due to periodic stimulation by: light (visual evoked potentials), sound (auditory evoked potentials) or touch (touch-evoked potentials).

Touch-evoked potentials 58 M. F. El-Bab, COGNITIVE EVENT RELATED POTENTIALS DURING A LEARNING TASK, PhD, University of Southampton, UK.

Median filtering 59 Median the middle element of the orderly sequence, eg.: x(n)={1, 5, -7, 11, -25, 3,, 11, 7} Sequence sorting: x s (n)={-25, -7,, 1, 3, 5, 7, 11, 11 } Middle element

Median filtering of signals 6 sorting M=2m+1=5 Discrete time M=5

Median filtering of signals 61 x n med 3 (x n ) 2 5-1 7 3-15 9 1 2 6-9 -1 12 25 7 Direction of median mask movement 2 2 5 3???? 6 6?

Median filtering - example 62 4 39 38 37 36 x(t) y=med(x) 35 34 33 32 M=7 31 2 4 645 4 8 1 12 14 16 35 3 25 2 y=x-med(x) 15 1 5-5 2 4 6 8 1 12 14 16

Digital filters - summary 63 1. Idea of filtering 2. Frequency characteristic of a filter 3. Ideal filters 4. Implementable filters 5. Difference equation 6. FIR and IIR filters 7. Linear phase and phase distortion 8. Filter design and signal filtering 9. Adaptative filtering 1. Median filtering (nonlinear filtering)

SIGNAL PROCESSING Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka bez ograniczeń - zintegrowany rozwój Politechniki Łódzkiej - zarządzanie Uczelnią, nowoczesna oferta edukacyjna i wzmacniania zdolności do zatrudniania osób niepełnosprawnych Politechnika Łódzka, ul. Żeromskiego 116, 9-924 Łódź, tel. (42) 631 28 83 www.kapitalludzki.p.lodz.pl