Algebraic geometry and algebraic topology

Podobne dokumenty
Helena Boguta, klasa 8W, rok szkolny 2018/2019

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

Hard-Margin Support Vector Machines

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

deep learning for NLP (5 lectures)

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction

Revenue Maximization. Sept. 25, 2018

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Steeple #3: Gödel s Silver Blaze Theorem. Selmer Bringsjord Are Humans Rational? Dec RPI Troy NY USA

General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12

Tychy, plan miasta: Skala 1: (Polish Edition)

Convolution semigroups with linear Jacobi parameters

TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Gradient Coding using the Stochastic Block Model

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Few-fermion thermometry

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

OpenPoland.net API Documentation

Previously on CSCI 4622

Instrukcja konfiguracji usługi Wirtualnej Sieci Prywatnej w systemie Mac OSX

Stargard Szczecinski i okolice (Polish Edition)

Zarządzanie sieciami telekomunikacyjnymi

Inverse problems - Introduction - Probabilistic approach

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Roland HINNION. Introduction

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)


Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

EMBEDDING MODULES OF FINITE HOMOLOGICAL DIMENSION

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

DODATKOWE ĆWICZENIA EGZAMINACYJNE


SubVersion. Piotr Mikulski. SubVersion. P. Mikulski. Co to jest subversion? Zalety SubVersion. Wady SubVersion. Inne różnice SubVersion i CVS

Lecture 18 Review for Exam 1

Counting quadrant walks via Tutte s invariant method

Rachunek lambda, zima

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH


Zmiany techniczne wprowadzone w wersji Comarch ERP Altum

tum.de/fall2018/ in2357

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

Relaxation of the Cosmological Constant

Dominika Janik-Hornik (Uniwersytet Ekonomiczny w Katowicach) Kornelia Kamińska (ESN Akademia Górniczo-Hutnicza) Dorota Rytwińska (FRSE)

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Sargent Opens Sonairte Farmers' Market

Wojewodztwo Koszalinskie: Obiekty i walory krajoznawcze (Inwentaryzacja krajoznawcza Polski) (Polish Edition)

y = The Chain Rule Show all work. No calculator unless otherwise stated. If asked to Explain your answer, write in complete sentences.

First-order logic. Usage. Tautologies, using rst-order logic, relations to natural language

HOW MASSIVE ARE PROTOPLANETARY/ PLANET HOSTING/PLANET FORMING DISCS?

Twierdzenie Hilberta o nieujemnie określonych formach ternarnych stopnia 4

Wybrzeze Baltyku, mapa turystyczna 1: (Polish Edition)

1945 (96,1%) backlinks currently link back (74,4%) links bear full SEO value. 0 links are set up using embedded object

Ankiety Nowe funkcje! Pomoc Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students

harmonic functions and the chromatic polynomial

Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)

Dualities and 5-brane webs for 5d rank 2 SCFTs

Surname. Other Names. For Examiner s Use Centre Number. Candidate Number. Candidate Signature

Test sprawdzający znajomość języka angielskiego

Patients price acceptance SELECTED FINDINGS

New Roads to Cryptopia. Amit Sahai. An NSF Frontier Center

Camspot 4.4 Camspot 4.5

Unitary representations of SL(2, R)

Instrukcja obsługi User s manual

Pielgrzymka do Ojczyzny: Przemowienia i homilie Ojca Swietego Jana Pawla II (Jan Pawel II-- pierwszy Polak na Stolicy Piotrowej) (Polish Edition)

European Crime Prevention Award (ECPA) Annex I - new version 2014

January 1st, Canvas Prints including Stretching. What We Use

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów

Angielski Biznes Ciekawie

MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller

Wprowadzenie do programu RapidMiner, część 5 Michał Bereta

Bardzo formalny, odbiorca posiada specjalny tytuł, który jest używany zamiast nazwiska

Zestawienie czasów angielskich

Compatible cameras for NVR-5000 series Main Stream Sub stream Support Firmware ver. 0,2-1Mbit yes yes yes n/d

ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL

Rev Źródło:

Vacuum decay rate in the standard model and beyond

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

Emilka szuka swojej gwiazdy / Emily Climbs (Emily, #2)

Egzamin maturalny z języka angielskiego na poziomie dwujęzycznym Rozmowa wstępna (wyłącznie dla egzaminującego)

PLSH1 (JUN14PLSH101) General Certificate of Education Advanced Subsidiary Examination June Reading and Writing TOTAL

Homogeneous hypersurfaces

DOI: / /32/37

POLITYKA PRYWATNOŚCI / PRIVACY POLICY

Has the heat wave frequency or intensity changed in Poland since 1950?

Jak zasada Pareto może pomóc Ci w nauce języków obcych?

Title: On the curl of singular completely continous vector fields in Banach spaces

Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)

Marzec: food, advertising, shopping and services, verb patterns, adjectives and prepositions, complaints - writing

18. Przydatne zwroty podczas egzaminu ustnego. 19. Mo liwe pytania egzaminatora i przyk³adowe odpowiedzi egzaminowanego

Strona główna > Produkty > Systemy regulacji > System regulacji EASYLAB - LABCONTROL > Program konfiguracyjny > Typ EasyConnect.

n [2, 11] 1.5 ( G. Pick 1899).

Transkrypt:

Algebraic geometry and algebraic topology voevodsky connecting two worlds of math bringing intuitions from each area to the other coding and frobenius quantum information theory and quantum mechanics joint with Aravind Asok and Jean Fasel and Mike Hill

1890s-1970s: Many problems in mathematics were understood to be problems in algebraic topology/homotopy theory. This was due in large measure to the homotopy invariance of bundle theory. long entwined relation between fields allowing radically different intuitions to be brought to bear eg Frobenius vs complex analysis coding and eigenvalues of Frobenius quantum physics and quantum computing Story of Milnor in Dec. Theme of conference. Joyal s talk. Milnor of conj -> cat thy -> equations summarized by diagrams a la Joyal you can take that as an affirmation that we are all connected in this great universe, that the things that seem to divide us are illusions and whether by virtue of low entropy or a spirit in the sky all beings are but one being. and sometimes I have the reaction, of

1890s-1970s: Many problems in mathematics were understood to be problems in algebraic topology/homotopy theory. 1970s: Abstract homotopy theory Today: Thanks in large measure to Voevodsky, more and more mathematical questions are being understood to have a homotopy theoretic component, often rooted in abstract homotopy theory.

Question: Which complex vector bundles on complex algebraic varieties have algebraic structures?

1970s: Griffiths investigated this question on smooth affine varieties in connection with the Hodge Conjecture. Griffiths approach was via complex analysis. By a theorem of Grauert, every complex vector bundle on a Stein manifold has a unique holomorphic connection. The obstruction to the existence of an algebraic structure can be expressed in terms of the growth rate of the connection form. Griffiths used value distribution theory (Nevanlinna theory) to express this obstruction. 1990s - present: The work of Morel and Voevodsky let s us approach this question using the methods of homotopy theory.

Methods in homotopy theory f Homotopy groups Sn-1 Cell attachment X

Methods in homotopy theory Cell decompositions

Methods in homotopy theory Eilenberg-MacLane spaces Spectra Postnikov towers Brown-Gitler spectra Dyer-Lashof algebra Steenrod algebra

First examples

<latexit sha1_base64="xl6m/jqgbsadnof2bwxhm3gcfpm=">aaad1nicfvllbtnafj02pip5tbbkmykkskuqsqglzyeuqsxyikui0kako2o8vnfggc9ym+mm1sjseetywrfwjfwn4zyqjkgmzonqnnpuyyfkonpg9/9sbddu3b5zd+eed//bw0epd/eenguzkwpdkrluvyho4exa1zddozcpigne4sian1b4xruozat4biombiljbbsysoxldcnom96/3k37lx/28gyqlii6wryzy73t32esaz6cmjqtrfubn5mbjcowyqh0qgntm2gxgb191to+ysilcw0zowosqn+fgqsgb3y2f4kblhpjovtuewbpsjcvlqraf2nkmckxi72ovcl/yx3c+cboi3k1vrmedcwtww5a0hn3yc6xkbi6ei6zamp44qjcfxmrytoiildj7uh5jqb+ngggjirbfnymma1xifmxcnaimugqwnxezsr0o+gttdubmqo6mpkfnio6skuvctm7zqwjmob1nddto0jpcmswkwgiupo9hre+jirrcbkaxkckab5jctn6/z+md84nyo0qw9b5avyvbmrzkk1kotl6rcozhq781sk8wbpktvma53kyuc051+sdzz01vaiaxhwrtdgrh7x5hvs7g7n1ua1gw5wgfazawitkncuitmgntgffpitjtuk5uwfr5t4mzl+2ar8vfdyst9sl4++gz+g5aqiaham2eo/oubdrxnb39bp9qvvqx2pfa9/m1o2theypwnm1h38bo3g6hw==</latexit> <latexit sha1_base64="n1+zijylogmichit4aaa6s87l94=">aaad9hicfvplattafj3efatqk2mx3qw1pg4ei6vjky4chntrrcepbrktyitr6foemporm6pyytbpdnvssrf9nel/pinbdrftekfwueec+9kdkonmg9//s7lauhf/wco1r97jj0+fpv/fehgiza4ohfpjpephrannao4nmxz6mqksrhxoo8vdcj+9aqwzff9nkcegjylgq0ajcaf+2dsie21/82k96xf8qeg7tla7tvtb0cxg6u8wljrpqrjkidbngz+zgsxkmmqh9eideznmsrkdvo3s7tlhhbmgjnblksc5cwvjqq/sdiqst1wkxkop3ccmnkzvkyxjts7sydftykz6gauc/8locecdoynkxfjmud+wtgs5aufn1yc5x0biakk4zgqo4yvzcfxmjytpichcjvul57va+muygtqqbbnwk2i2xixm3yjaiwqiqqcxe5sr062wt9dttmcm6ejlfnio6iotvdbt6cqxjmoylspctiwipuuswaseiwpr9nbe+gukiyrlgncvkqt9gsxm6m3/md65gxblhbig7qym/8jgpifsqiqqrd/zmz7dlt/znznza1nsfmc5hneqoeegvdxps6rkfic4kxvxtosh798f1ezglruorrdhqsekuybgtgwaehhbsffascjswnhp1bunndvyfogz0nmvivi++7voyxyn8dvb551mt1u/itx0cr1gbrsgpdrfh9erokyucfqnfufxjavgdenh4+emurpsa16ibwv8+gsvjez0</latexit> <latexit sha1_base64="w5ggn1j1lncilzznt9a2pcrfrtg=">aaadtxicfvllbtnafj0mpip5tbbkmykkkfiv2aulzyeuqsxysagqasslorqpr+1rxjpwzlijzfkt2mkgh+nvgcdo1tiiksxd3xpoffn4kwfauo6fnvb73v0hd3cfoy+fph32fg//xywwmaiwopjldeutdzwjgblmofylckjic7j0z2cvfnkdsjmpvpk8hwlcisfcromxqfphd3g913f77vlh7ccrgw6q3/b6v/v7ekiajsam5utrseemzloqzrjludotawszz4gjp77r9u+yccazhptqgylgbenbetdtyjl9ibs2e+bqkvsjg5fzu4qcjfrniw+zctgxbmjv8l/ymha+lrz5udnehkftgok0mydoqnuycwwkru6da6aagp7bgfdf7eqyxkqrauwvhafbxedzzmhccrzgn8usxlnm3ijakwqiqgbbe5uy6w7x2zh2owmkdgokajio6iypne7d7citjmoammlufkar0hbwyblcrhw14iwmfozlookybmyncjn4xcjm9nv/ml5yl4ggiydqomr5lwqfz1awkvllwu0dl+1w6pzov8haia1ndpzlea1ac27jh+s6dvwkamrtq23riet9eo9vu4m1dv6tuew2gpao9bpxdo92chhu89ye9/w4mxjuzt5fr9brdia81ecd9bkn0qhrfkef6cf61e63p+2gha6orz1a8xjtvlb8c9o0lcu=</latexit> <latexit sha1_base64="s+mt69rd+ynfj0e0beqayer/lde=">aaadw3icfvllattafj3efatqi0677gaomu3bgclnmnrrmksflrpiaz0ebgngoyt58ggkzq5icaevazftr/vvovijxhbpgobw7j33peonuhh03t87u4179x883hvkph7y9nl+8+d5pukyzahpe5noa58zkejbhwvkue41snixcovpz+v41q1oixl1hysurjgllagfz2ipcxn/ki/dzjbi0htysrqnmy23684f3qbeerti8l2md3z/wjxpyldijtnm4lkpjkqmuxajltneyhemapx8ens9prhkgwygusanlikbhyrfyeblfjekti0t0ddr9lni5+xdrcliy4ryt5kxw4nzjnxkv2idjuwozitqvt2gz6nsqdrduhzrpcwkxytw16kb0mbrfhywrovdifij04yjvanjtnv020wgn9schoymvis0sllxgmiucbxvavut4ksydttzm3y+ywp8baqsmgn6jq6c9l02z5tgsqcbtmqcnatsyqmym6hqq5xneyanfsj0uc0dtlmdofwoiohmzx8yvlhnqi2eaelrr/m/kh2zqvxqyk9kt3s8t0ph7z4twmogg5ocpexms9uq5za5s6qzoyo0glptts06cb3377x6d7awl+ovyufaw8qxfvy23bsnlo+6ntv1vh63er2ls/fis/kkhbkpnjie+uwusj9wkpef5bf53fjumdz0axepuztlzquy9hrvx9ffmsq=</latexit> <latexit sha1_base64="co7aa/+exzftk12krnkx2h11xji=">aaaduxicfvllbtnafj02pip5tbbkmykykfiv2ddsilqpulmwyfeeasolutqex9tdxjpwzlij5foj2ai/xt8wzqnqhmrilo7ovee+fikmm20878/wduvo3xv3dx44dx89fvj0d+/zhza5otcjkkt1grannanogwy4xgyksbpw6aetszrevwklmrtftjhbkcwxybgjxfiqfz0bs+ttf7zb9jre/ofn4c9bgy3f+xhv+/cwldrpqrjkidyd38vmqctkmmqhcoygzmbkqpocvu0chzhhdhmngaetespaqkfs0knyvkgfxcueojlkfslgoxtbuzju6yinbgzktkkbszr8v2xaob+vs6jab2+ik1hjrjybehtrpco5nhlxn8ihu0anlywgvdg7eqyjuyqae0nhcv38dcomtwrbdoymmew4kpkrbtiwtmr1wnbejmhadz21aeczzkdxrioh56cu0spxb7ozxdaqq2js3mymiputrmgkhin6auvzqvgkkesf1tjgo9wr/y8szka//k/gz+sh0ugiibkumv+lmua5vkwkg6r0oodzoxx4nzmfwbmkosmaczldqly5n8khqzonvawaxe2rtdgr579/59e7gzv2ua9qdtcavo71s9907ya4enpxvy7/5bdd7s6dvyneojdoh/noghxrj3soeoiicfqbfqjfrq8t0kpa3xep21tlzxo09lr6l5uql3c=</latexit> Algebra vs topology n-dimensional projective space over C line bundle whose local sections are homogeneous rational functions of degree d

<latexit sha1_base64="b69ezvvggxswl97bgvy4yacjfr0=">aaad/3icfvnnbxmxehubpsrylccri0uu0uol2owwlgnsphlggjqi6ifajsqvd7kx4rvxtrfjytodp4qrvsgu/bek/g3ezfs1kwkklz7mvefxzi6jjdntfp/pymrj1u07d9fuefcfphz0unl6cqhlrigcummloo6ibs4ehbhmobxnckgactikxnsvf3qosjmpvpgig0fkesggjbljumfnvthfdzzcmffco/gy2dhrtv2upwt8ewq1akm69s9aq7/dwni8bweoj1qfbn5mbpyowyih0gsntm2exwb07nv3z5sjl8w1zisosqkndgqsgh7ywtcl7rhmjidsuu8ypmted1isal2kkvomxiz0mlcl/8wdes4hdlqui+xnchdgmchya4loqw9zjo3e1bxwzbrqwwshcfxmtytpichcjzuq53u6+poegtqqdfnwnwi2xixmxyjaiwqiqqh3jjyjpjsdb+g2sztmqbeuzchnom7t0utcz05zwaimytnnzdqourqdnziumffnze6ncb9hkqi4ralxqwlw37oegb3xh8vhtxtisrdd0g3y7f/yiodqwpvepfw7w7n12ps7u3nwusblngi4l5padam5em9enrpkshsaucp107ttb2/fbfxv4ja8qfqw4ulbilmgyejlmhir27bf2rasusjx39w7zp3uxbthk9jzlyfy3vub4pbvn/c7waetdq9xv4k19aw9r+soqduohz6gfxsakjqgb+g7umh8bvw0fjr+zqwrk7xnkvqixq+/cf5kaq==</latexit> <latexit sha1_base64="omcdemhm8udv3uzjmnrs3w+m1rm=">aaaev3icfvpbbhmxehwbumpya+erhiyqieqq0s60tdxuqtqi9qguiuhf7uav1zvzteq1v7a3swttb/a1vmkn9gvam0tpuoslvy7mnjnxogeindntfp96ybfwv7d0f/mb9/dr4ydpv1afhwtzkaphvhkptioigtmbr4yzdqe5apjfhe6iy72kp7kcpzku38wwh25gesf6jbljqhcra2eqs2byaqatuoa80a6+cvrrepzbwjt4z6mctj86+ab47y3zybqanmol1drlmja0yeayyonw54gfm64lyjdkofrcawptz7fjd961tzaz8mjcq07ojung3efbmtbdo5qvxa0xixfpkvcjg0fr2xmwzfops8gpm2jspc9vwx9x54tzrh0my9n2prfdtuzkhqfbx917bcdg4uofccwuumohdhcqmbsj05qoqo17z89rnpdxpjm0rrig4cbfriehsnitacesiaqixe1suqybdw/mtqm75kbnrmsh4kcustjr3i4ocsgojge+zm3akfk6whpmrpioxs3upyrfrpkoujwqrlpfnpdzwoxu/ufxyblfzali6dnpjf4lg/ecsqusqlrtx6z77e0xmbpklmcinmv+jguqurgvt+vmzsukqny0upu06qcf3gfv7obsp6xgsofmq1dwh5wrfxx2zcchryxjq+fi0o6mat866gqkbpspzdiiylvtyzq/cpao33fs1y4sjjuovc2dtbgowmel5/bj/7tg82a6zphbduc3gy8ba7u7k81ari/qk9readpcu+gahaijrnf39ap9rl9q17xf9ax68li6uddjey5mtn31d2a1abm=</latexit> <latexit sha1_base64="w+fwl4wh2jlqo/txb+yslmhuzhy=">aaaeuxicfvndb9mwfpxwaipjy4nhqlkykjppvalsbdxmmrqh7qhuidihwkrjcw4ta44d2c7aymotv4zx+ck88vn4w+nasxyis5go7jn3xl/n3cjntbvf/zu332jeun1n4a63eo/+g4dly4+otcwuhumquvqnedhamybdwwyhk1wbysiox9h5bs0fx4dstirppsyhl5fesd6jxljq2dkzmjvzo+ygmuefxmf3zx3tl8hqkt7g/tnsstdxrwdfab+zph1zqenzclbcebrgkhyzcem50fo08hpts0qzrjluxmhgaaysnun2687mbhnewgjict0nczw6keggumdhk1w45six7kvlpmhwkho9w5jm6zklndijjtwzxb38f3dkoo/zyvlntzf9rz5lii8mchrzvv9wbcsu3w7htae1vhsaumxcsjimrbfq3at7xqufpw2yowmdmaq3kwz9xmrihqkcscasmna1sumzbrw8qduo7pgdnbqshykdusgqr3u9oiweozkg2ta3q6ni5qprmblhon41u5ssfh5joujqtlhondpeywkzevu/ivfoj2jgeepfuw30l2zec6issqlktnyx5ne2lsheidm5jxaub+osiezkvdapm5ovkabx1epm0oyfvh0t1lodm3xzj2ddqyau4b44vyr44mhudooyx4bokzudgdo+c9djfagyujllrms23pajv+/gdb7r2lodjrx3hxud+zlmogh/qty3t/7fnzofk2goxnucvxn8xf/z2rlv1gj6gp6jngrqjtpb++gahskkvqjv6dv60fjz+n1ezfll6fzcoocxmjrnxt/sowht</latexit> <latexit sha1_base64="iyzfj2i+9q9gcf+3+1zwzxtkmvy=">aaad93icfvplattafj3yfatqk2mx3qw1pikei6vjky4kgxtrrceprzmqy4tr6foemporm6pyytbndnvssrf9mul/pinhdn6uxhbc7jnnvnqnyjjtxvf/rdwad+7eu7/+whv46pgtpxubz060zbwfhpvcqroiaobmqm8ww+esu0dsimnpdhlu4adxodst4qspmhikjbfsycgxltqpu6hmek5x2l3yapkdf2p41qlqp4vqo77ybpwoy0nzfishngjdd/zmdcxrhleoprcamjgxi83o/zvo/h4txphryai9jan0nsticnpgp1ouuo0imr5k5t5h8dq6r7ak1bpii8dmirnpzawk/gvre84hdlkui+xn8gbgmchya4levb/mhbujqz3hmcmghhfoivqxnxkmi6iinw6bntdu4y9jzuioekzatyrzebcyf6uaj5kjpajctmxgtlfb3kk30x4zoastwcg5qku09nrz0ukugjuxlie5mrhfspdyg0kje9xw7ngi8mtiehwxneaqvcjwb5ywo1//h/hj3yryisqwdjc1/rc24jmuvivraf3o7vqctv3owy0zo5altqgcy3gtmnfuyduzpeuqragi21kroj0/epc2qgyhd9xfnyinfwpwmaibyyrtlijyht3shhwreo67rt48dl5juytps8+9hgd57ledk51o4hecz7utw8p6tayjf+gl2kib2keh6cm6rj1ekutf0hd03sya180fzz831mzarxmofqz56y+ookid</latexit> Algebra vs topology On P 1 the vector bundles and are not isomorphic:

<latexit sha1_base64="3uue0pf4b8sekw6+yiiphaso71g=">aaaetxicfvppt9rafb5yfky/qi9ejpjfsgdtkggetejw4mfkmyoq6kaztt+2e6yzzcyubdp0z/pszcs/wavcjhg6dam7gcdp+uv93/s1816ycaan6/6ym+8s3lm7uhtpuf/g4aphyytpvmizkwphvhkptkkigtmbr4yzdiezapkghi7d84ogp74apzkun02zwsalswbdromxpma58pvrw96glzoea4u9dewxiswjiurjuewhednrhskxihv1ebh4dw+vgyd9h+pc/tdwgbg+iohavgo/pwkylk+6pxd88g3gtwavtecwwjn/7kes5ikiqznr+sxzmzooidkmcqgd30bhriwyydtxvd0djhw/15arek5iolnqkbt0obrfty271hlhovt2ewaprtc9kpjqxaahvdryez3lncz/cwee80fvlpv0ejpcg1rmzlkbqa+yd3oojctn7eoikacglxyqqphtcdoekeknfsph6xbxpxezngkccrcdyjbepcxfkmcxzcjucbstm4tpbtezqnzcywz0qqqkcg7qiq2d7k1rkqtgzqszzm4ko0hta2swkwgiubxqich8pjrerxvl2ewns/6oxczojf8opthjezocciz2xsdvuyu8h7pscvhxbm97pa6bbm/vckwgzmanbm7lqpwaak7fm5m4m16xahdxqw477bjem9de0zvylsmbfip/kmhdkrawojjnir15v19xfiokhoo+zxeto225mmsntwm3wzud+9vgy8ue5/a8j9ur+/vttiyhz+g5wkce2kx76d06reeioq/oj/qfljvfoped350/v9l5udbnkzo6c4t/acdlaes=</latexit> <latexit sha1_base64="87tuacskhosc1eezuryysewiz+e=">aaaea3icfvnbaxqxfe67xup46vbxyzdgwaxylhltbx0olnqhh4rwtbe6uyyzznnz0ewyjjnudgee/sg+2jfx1b8h+g/mbkdll2ig8hg+7zsnjzkju8608f0/s8unw7fv3f25591/8pdranpt8bgwmajwrcwx6jqkgjgtcgsy4xcakibjyoekpn+v+jmlujpj8cuukfqtegs2zjqyfxo0n+ydhxduv8l5ihaowhs4gdtx/by/wxgrbdvyr/u6hkwt/+5fkmyjcem50bob+knpw6imoxxkr2cgn2mwmdhem/bonhnel9oqenpoyug6kegcum8nhzw45sirhkrltjb4ep12wjjoxsshuybejpq8vwx/xxuj532bf+vsetpc7vsm0syaoffvhxnhrulqzndeffddcwcivcy1homikeknu1npa7xw5zezdfqzcncdyjbehcxekmcxzckucjctmxhtrzy3c9rjgvogm0eykhfqf0nptaajesyylrhmh7njjskls6zbjisj6tbs/ojw81asfzu14spvzmz7fjojx/5h8dhnh5gtrdb0uzz5cxvydeqr4rc0fntrmg6bfnv3clwpyjynam7luhzda27em9d55lyxaha3przn237w7m1q9q5u0iuqbdubkvhxcgsmquwsiilboyhtrxjswvgbqzfnndvcgokz0nm/izif+0vw/lod+o3g09z6p1p/irx0dd1hgyhao6idpqbddiqosugb+o4ug18bl40fjz9x0uwl2vmezazgr78vz0qm</latexit> Algebra vs topology However they have the same first Chern class, so topologically they are isomorphic. If we add variables y 0 and y 1 of degree -1 satisfying then there is an isomorphism

<latexit sha1_base64="548abhuwdadmp3bfgcttuvqiek4=">aaad9hicfvnba9rafj52vdr4a/xrl8gyqfcwrftbh4rcffbbal30qpu1tczns0mnm2hmplthyj/w1b6jr/4cwx/jzjuw7ly8edic7/volwesqgqlyfhnbr5z4+at2wt3grv37j94ulj0am/q0ndy5vpqc5awc1io2ewbeg4kayxpjownj1snvn8kxgqtvmbvqd9nmridwrn60mgnr+o4zhapf5fdxjgxet2jwmeztlzzvdt/o041l3nqycwz9igkc+w7zlbwcxuqi4xxjficvn3vw18tkohlcwxjjyydi+8qloptu8kine36seoh2vhpiz1eryocy62t8sqzc4zdo4s1wx9hr0zkvhtx9xr5hgz0nvbfiad4efvbkslq2iyjpsiar1l5h3ej/eiud5lhhp0qg6dbpz9havmweyzbt0rfgfa6fgaazlqoraf8topdybvdykrbsy8f8kmwhjqszgleb92r0xgpbncpziyljtgw2ie2gdktqtma2xoyezjoztk6bxylbnn+tmqc7yv/md74g1azhbqg/qwm/8ilsotamsypxdhbnzzdstjbohcudmrgu4guetsqljix5jwlpdoqzacoy1lxrwth9oz11mwo/rkrzgqxtxvsmamkrlznovopi7drfzdezitd9vwuyoctlit0sa78s4hm7/66s/eyf4w96opq8uzm+yywybpyldwnevknm+q92sg7hbnjvphv5kxz2jnr/oj8pkfoz7wax2tkor/+auifr4e=</latexit> <latexit sha1_base64="4exlul0es9lsjt2z3ujpivcbqki=">aaad73icfvnbaxnbfj4mxup6a/xrl8eqrfdcbm1tfrac9ufeakwmlu1imz092qyznvlnzpssw/4ex+2b+oofevw3zqbbkot4yofwvu87tz0tppxp4/t/vmr1w7fv3f29591/8pdr47x1j8dazopch0ou1wlinhamogoy4xcakibjyoekho2x+mkfkm2k+gzyfpojiqubmeqmcx19+clo1xp+y58axnacymmgyg7p12u/e5gkwqlcue607gz+avqwkmmoh8lrgziymyvm8o2r1u4oe14v05asoiixdj0rsak6b6fdf7jpiheesou+yfa0oquwjne6t0lhtigz6kwsdp4l6xlo+3asf/plzwcvb5limwocxlufzbwbicv94igpoibnzifumtcspkoicdvui57xbokjmtn0waom4cbfbibzmb1qggpjrfwclic2q6abtw+u22mpkdc5lixkhnrfunjn2egke4zkcbbd3eymiovlrmekhilya3z/spgolerfrqw4siwy8y7fzoix/2f8dlcgfggrdnxftf+fdxkghvvxwfi/tt09h02/txflxb/igiyhzuw4ul1zbsib13kwvlecedellku7fvdmdvdodu6o83ie25srwgikbiyptbiiits7kgyvjflc8ygrn4udvvgy4rpccy8hwlz7zed4qxx4redtdqpdrt7eknqgnqmnfkbd1ebv0shqiipi9a19r5f1r/xl+o/6zytqbaxspevzvv/1f+mkruq=</latexit> <latexit sha1_base64="4exlul0es9lsjt2z3ujpivcbqki=">aaad73icfvnbaxnbfj4mxup6a/xrl8eqrfdcbm1tfrac9ufeakwmlu1imz092qyznvlnzpssw/4ex+2b+oofevw3zqbbkot4yofwvu87tz0tppxp4/t/vmr1w7fv3f29591/8pdr47x1j8dazopch0ou1wlinhamogoy4xcakibjyoekho2x+mkfkm2k+gzyfpojiqubmeqmcx19+clo1xp+y58axnacymmgyg7p12u/e5gkwqlcue607gz+avqwkmmoh8lrgziymyvm8o2r1u4oe14v05asoiixdj0rsak6b6fdf7jpiheesou+yfa0oquwjne6t0lhtigz6kwsdp4l6xlo+3asf/plzwcvb5limwocxlufzbwbicv94igpoibnzifumtcspkoicdvui57xbokjmtn0waom4cbfbibzmb1qggpjrfwclic2q6abtw+u22mpkdc5lixkhnrfunjn2egke4zkcbbd3eymiovlrmekhilya3z/spgolerfrqw4siwy8y7fzoix/2f8dlcgfggrdnxftf+fdxkghvvxwfi/tt09h02/txflxb/igiyhzuw4ul1zbsib13kwvlecedellku7fvdmdvdodu6o83ie25srwgikbiyptbiiits7kgyvjflc8ygrn4udvvgy4rpccy8hwlz7zed4qxx4redtdqpdrt7eknqgnqmnfkbd1ebv0shqiipi9a19r5f1r/xl+o/6zytqbaxspevzvv/1f+mkruq=</latexit> <latexit sha1_base64="dwdlvlkknx3pp42u2oddk44ftzg=">aaaemxicfvplbtqwfhu7pep4twhjxqia0yrrkebly6jspwhbaqlf0ic6gy0c507gqmnhttnjfowdwpmh7bddibb8be4mrtpthkvix/ecc6+vcx0kngnjuhdly61bt+/cxbnn3h/w8nhj9uqtiy1tregqsi7vsua0ccbg0ddd4srrqokaw3fw1q/443nqmknxxeqjdgmsctzmlbgbgrx7/ue2crs+daxr3wwkuji3e+zxe4vf8nw6vvrr/blpdbzyzuxixextjnprbs+tf74jvaasowydjfaxf9j8ni1bgmqj1gpptcywimowyqf0faozmblqthbf9la3mhd8venc6bmjygchidhoyvh3x+kojyr4ljx9hmf19lqjilhwerxyzuzmrc9yvfbf3ibwpiyyvjwvb8y7w4kjjdug6kz6ooxysfzdma6zamp4bgghitmwmj0qraix/8fxoh38ecomnvsgdgynmi1xltmxcnakmygqwubezsj0p+pmnby+ywj07kgfpbzuevw6nevrlbwmyhaww9xkrphsjtzgysjedwtff0l4wscjcsugsjuqzv09i5jrg/9rflttjbyeiyzttnb/ogh4cmwhoqas3n5mpq5dt7cza5cdsudjgxm5bvyxmitx9zlpgitsaokq1e3tluu9e+tvvyn9fnnvquhpfaw4bqkmvmyxewhh75efxwkp4xjf1rvontzceodt0revwvuc+5vg6hxpc3vep821vb3mtaygz+g5wkce2kz76am6qieioq/oo/qjllrfwhetx63fm+nyuun5iuzw689fnhlblg==</latexit> <latexit sha1_base64="hysgfqeugyyuia4nfv89gip+e9o=">aaad9xicfvnba9rafj52vdr4a/xrl8flsujzktra+lbyqa8+ck1ol7a7lmnkbdj0mhnmjt0n0/wkx+2b+oq/efw3trlz0t2kbwkh833fuevmmhgmje//wvhs3bl77/7sa+/ho8dpni6vpdvumlcudqjkuh2hrannag4mmxyomwukdtkchee7fx50auozkb6yionbsmlbhows40jfl8dn7blv4obsue13/drwbsdondzqbp9szff3p5i0t0eyyonwp4gfmyelyjdkoft6bszmxckt7lzpbm0y4fvzdrmh5ysgu+ckkoie2hqgendcjmjdqdwndk6jnxwwpfoxaeiyktgjnseq4l+wu8l5wi6lcra8gw4plbnzbkdqsfvhzrgrunosjpgcanjhheivcynhmhbfqhg79lxob38emuotsjagnylmq1zi/juchesm4gpwobfjmo50vjlu6x4zodmtwcg5qiu09do3o+ncmcojma9zmzaklc6xbpmsjqqt2d2e8pnqehwvdeaqvcjqexyzo1//h/hrxysyi0qwdhdv/wsb8hxkq+kwth53oz6hnb+7pxgmbzknkybzowpuu841ew2az04vkwbxxeq2anmp3r0nqtnbnxzrjwd7mwurtigaezvpskrk+3ul7vdesjjec/vuyicnfob4pptcswjm7/62c7jedfxu8gmj3es1b2ijvuav0sok0bbqoq9ohx0gill0dx1hv61r66r1o/vzql1cadtp0yy1fv0fqv9hua==</latexit> <latexit sha1_base64="aighdljjz4keqnxdf/in5emwfti=">aaad9nicfvplbtnafj0mpip5tiulmxfrrjfkzenly6jspbjggdqisfvlowg8vnfggc9ym+mm1tr/wzbuefu+bom/yzy6vzmgrmtp6p5z7st3wpqzbxz/z0qtfufuvfurd7yhjx4/wvvfehqizayotknkup2frannatqggq5nqqkshbxow/fhiz+eg9jmiq8mt6gfkfiwiapeufdnih+wc7ypxwed9ybf8megl52gchqosupbru13l5i0s0ayyonw3cbptd8szrjluhg9a1mzyzez7b9t7e4w4fuydsmhyxjd17mcjkd7djzegzsueughvo4tbs+itxwwjfrnseiyctejvyivwx9hxcj5307zyr68ge71lrnpzkdqq+rdjgmjcbkmhdef1pdcoyqq5kbcdequocyt0/oatfxlwgwdlyipuekxg+jczi8v4fgyezeay4nniolm05vrdtzjcnsujqszb3weff7zdnsacuzlbithbqzgkcil1maswks5nxs4inwcsqkiogjcprlz/mbizvsr/za+uzmqc4qihu6wzv/chjydwqo4lkzf2p6dw5bf2rtyrg9kqzmd53jsqa45n+st6zwlqlgbijtsy6idp3j/lihnb3fbetmc7c0vldefaizujgkrke0dfbzxeinh+mjvu411kiwmcafw3esifu9+2tl50wr8vvb5u3fwul2jvfqcvucbkec76ab9rmeojsgs6bv6ji7r0/pl/uf95xw1tljpnqe5q//6cw+pr4g=</latexit> <latexit sha1_base64="afbbfurkkvevd16zghhuq/g7b04=">aaad8xicfvplattafj3efatqk2mx3qw1oikei6vjky4kgxtrrshpw0mi7ybr6eoemporm6pyyta3dnvssrf9n0l/pinbcbfdekfwueec+9kdkodmmyd4s7tcunx7zt2ve979bw8fpv5de3kkzaeodknkup1erannarqggq4nuqksrryoo/p9gj++akwzff9mmcmgi6lgcapeufd301dxfpyttonomdg86isn00anhz6tlf/ux5iwgqhdodg6fwa5gviidkmckq9vygxgldbdt686o9tmep1cq07ooumh51xbmtado+m/wr6lxdiryn3c4en0pskstosyixwzi2ao57e6+c+srzgf2hfzzzy3ye7ampexbgsdvk8kjo3e9yzwzbrqw0vnekqygwntivgegrdhz/n9/hnedb3wgjg4stflccmlfwpwkplia8dlxgbito97m91oesybzrrkoecglrlk829gx4vgvmywh+zmbbspxginjinm1fuz+0pczynjvfw1gktui+vvwmqmfvkfxgd3dwkoeepibmryl2zec6issqpkbp2tytlsbj3dqxn1ihoaejixo0z1xbkmb1zlmvolckbcl1oubqfhm9dhptu4sy7rewx/pmcnkrawojlliiht/6cy/zpiccchrt5n7ltbogifvp57ceh83s86r5udmoieh7fae3vnm1hbz9bzti5ctip20ht0ilqiioa+oe/osqvbl60frz9t6vjso3mkzqz16y9jp0xv</latexit> Jouanoulou s Device Spec is the space of rank 1 projection operators on <latexit sha1_base64="kopu9eign8mm90vext7c+yoervs=">aaaduxicfvjdb9mwfpvapkb42aapvfhufunmvqibg0jilcoddzwmqddjbzkc5yyxdezidtzgux4er8af49/gpnm0tghlky7oved+5fgpz9q47p+tvvvw7tt3t+859x88flszu/f4tmtmurhsyau694kgzgqmdtmczlmfjpe5jpzzoiqplkfpjsvxk6cwtugkwmgomzyadb4v4qvxxux23j5bp7wjvaz0upnol/zavyebpfkcwlbotb57bmqmbvgguq6lmzgwmhmwmpj9697xerpojnoqejojeywtfcqbps3qdurctuyaq6nsjwyu2zukgira54lvmxniyr0eq8h/xcae82mxymvv9iy8mrzmpjkbqzfdw4xji3f1ixwwbdtw3ajcfbmryrotraixl3scbhd/mtnd40qwalspzihozfzcay4ke1evsdwxiznudp2vaeszu6arixwqcvcxsel0b7kltdaqa1inuvkyrupbwinjcbpv1ypbtpjml0qfzrownari/gcwmanf/cfjk/wdwesiilsuqv9f4fmmykjfflm4vcpadgdu72qjrgyypsmbczlvvfc518khv3xwvjecenetnkvhrvf2jvftdtbyebvcmvlpwdrwz966ezfb2aue5/a8z4edfr9x9jz6ip6hfeshy9rhh9epgikkzugh+ol+td+1sttuf1+mtryazro08tr6l7vnlzq=</latexit> The map <latexit sha1_base64="nx5gct1+blxtjknq//zh9xzjolo=">aaadvxicfvllbtnafj3gpip5tbbkmykkkfjl2awlzygivbyisqictjwstbqpb+xrxjpwzlijzfkz2ch4lv6gcr5v4ybgsnr07j335rnmngnj+3+2ws6du/fubz9whz56/otpzu6zmy1zrafpjzfqiiqaobpqn8xwumgukdtkcb5otuv4+tuozat4boomrimjbrszsoylbp8vbr4aixux4mqn7xv+/ofnecxbgy1f72q39xmyszqniazlrotb4gdmvbjlgovquumdmznlkunev/goj5hwh7mgjnajiwfgosap6fe536lchcteecyv/ytbc/a2oisp1kua2syumeq3yzx5r9iacd4qz0w13t6mt0yle1luqnbf93host1gfsccmqxu8micqhwzk2gaeewosdd03u4hf5syq5namao7kwzjxmj8lqicsybiombrypmw3em4a9poz8yaro1uqs5bxaev27nnznlbqiygsxmzm4putragkxim6quvpwnhk1asfvxlgo1ur/y+spgz/fo/gv+sj0qjiykxddb8x5qhz6eqvrxwpe8dzu2w73snc7aysentaodyulstcm6s91d1gqpyayibvpuiiz949zaodwdr7qjeoryunaxc6+eg6d5nchbgbb4xfd1sd7tlz2+jf+gl2kmbokzd9an1ub9rjnep9av9dj444hbhlfjbw0vnc7t2nolfrj8wqg==</latexit> sending a projection operator to its image is an (algebraic) homotopy equivalence.

<latexit sha1_base64="b69ezvvggxswl97bgvy4yacjfr0=">aaad/3icfvnnbxmxehubpsrylccri0uu0uol2owwlgnsphlggjqi6ifajsqvd7kx4rvxtrfjytodp4qrvsgu/bek/g3ezfs1kwkklz7mvefxzi6jjdntfp/pymrj1u07d9fuefcfphz0unl6cqhlrigcummloo6ibs4ehbhmobxnckgactikxnsvf3qosjmpvpgig0fkesggjbljumfnvthfdzzcmffco/gy2dhrtv2upwt8ewq1akm69s9aq7/dwni8bweoj1qfbn5mbpyowyih0gsntm2exwb07nv3z5sjl8w1zisosqkndgqsgh7ywtcl7rhmjidsuu8ypmted1isal2kkvomxiz0mlcl/8wdes4hdlqui+xnchdgmchya4loqw9zjo3e1bxwzbrqwwshcfxmtytpichcjzuq53u6+poegtqqdfnwnwi2xixmxyjaiwqiqqh3jjyjpjsdb+g2sztmqbeuzchnom7t0utcz05zwaimytnnzdqourqdnziumffnze6ncb9hkqi4ralxqwlw37oegb3xh8vhtxtisrdd0g3y7f/yiodqwpvepfw7w7n12ps7u3nwusblngi4l5padam5em9enrpkshsaucp107ttb2/fbfxv4ja8qfqw4ulbilmgyejlmhir27bf2rasusjx39w7zp3uxbthk9jzlyfy3vub4pbvn/c7waetdq9xv4k19aw9r+soqduohz6gfxsakjqgb+g7umh8bvw0fjr+zqwrk7xnkvqixq+/cf5kaq==</latexit> <latexit sha1_base64="iyzfj2i+9q9gcf+3+1zwzxtkmvy=">aaad93icfvplattafj3yfatqk2mx3qw1pikei6vjky4kgxtrrceprzmqy4tr6foemporm6pyytbndnvssrf9mul/pinhdn6uxhbc7jnnvnqnyjjtxvf/rdwad+7eu7/+whv46pgtpxubz060zbwfhpvcqroiaobmqm8ww+esu0dsimnpdhlu4adxodst4qspmhikjbfsycgxltqpu6hmek5x2l3yapkdf2p41qlqp4vqo77ybpwoy0nzfishngjdd/zmdcxrhleoprcamjgxi83o/zvo/h4txphryai9jan0nsticnpgp1ouuo0imr5k5t5h8dq6r7ak1bpii8dmirnpzawk/gvre84hdlkui+xn8gbgmchya4levb/mhbujqz3hmcmghhfoivqxnxkmi6iinw6bntdu4y9jzuioekzatyrzebcyf6uaj5kjpajctmxgtlfb3kk30x4zoastwcg5qku09nrz0ukugjuxlie5mrhfspdyg0kje9xw7ngi8mtiehwxneaqvcjwb5ywo1//h/hj3yryisqwdjc1/rc24jmuvivraf3o7vqctv3owy0zo5altqgcy3gtmnfuyduzpeuqragi21kroj0/epc2qgyhd9xfnyinfwpwmaibyyrtlijyht3shhwreo67rt48dl5juytps8+9hgd57ledk51o4hecz7utw8p6tayjf+gl2kib2keh6cm6rj1ekutf0hd03sya180fzz831mzarxmofqz56y+ookid</latexit> Algebra vs topology The pullbacks of and to J 2 are isomorphic, so the classification of algebraic vector bundles is not a problem in homotopy theory. But maybe it has to do with splitting exact sequences of projective modules, and it is homotopy theoretic when restricted to affine varieties.

<latexit sha1_base64="mr2nyoksowjcj9aex6cvtcky12u=">aaaegnicfvplbtnafj02pip5tiulmxfvrcpvkv1awhavkrviiifsbh1idyjg4xtn1pgmntnuyo285sv4blbwaewqwzzs+rlgblkagbjj0tw559yx740yzrtx/z9z841r12/cxljl3b5z997i0vl9iy1zregqsi7vsuq0ccbg0ddd4srtqnkiw3f0tlf5j89basbfo1nk0e1jilifuwic1fvcoygrstfly94edp39pmifndb66trlvbydg97sstd264cvdb+9my2sope76c3p/wpjsfmuhkgcah0a+jnpwqimoxxkr844zlez7dxpb20y4yw5hozqm5laqtmfsuf3bd1cizsoixffkvcjg2v0qsksvosijrwzjwagz30v+c/fkeg8a0dfoz3e9le7loksnydorfz+zrgrubofjpkcanjhdeivcy1hoickuoog7hnnjn47ziyokseixkey9xeh88ckcckzscqhi4nngolm05uqtq4xazpvkowcgzpps695fr3lglezwyzmzcgourragkxkmkimzvcghj9fkqi4hdtcpsrt2mcjm3r1p4xxblxedcggvlu4+l/yiodqwpvepz3sxzrf3r4wjgsyoymaczkcqyacs/lajm6mklea4jlv36jnp3j2nkh6b7fzrdwcdacsuoakbayptfmiyht2shtwpeo47jjvpridvfdaqz0mfdfow12fo9wh8tyzlog7cv/pmcwak5ko1tub3w7ebkzs7o7vywe9ri9qcwvoc+2if+gahskkpqbp6dp60vjy+nr41vh+qz2fg2seoknx+pebeqdvgq==</latexit> <latexit sha1_base64="buvfpsbxdbtqlkrjl1rjoemkez4=">aaad/hicfvllbtnafj02pip5tiulmxfrritkzenlywipulmahnqi6eoqo2o8vnfghc9ym+mm1sh8ax/bdrhtgg38bn/d2hwqjkgm5ojonnvukyfkonpg9/8sllzu3lx1e+mod/fe/qflk6spd7xmfyudkrluxxhrwjmaa8mmh+nmaukjdkfr2w7fh52d0kykz6bioj+srlabo8s40onkmz80eod7a8e6rtbh/fs+lialocviecp4pyttv+vxd8+doaft1lz909xfn2esaz6cmjqtru8cpzn9s5rhlepphqbgzsrim3zzsru9xyqx5hoyqs9iaicocukg6nt6zrj3xctga6ncjwyuo9cvlqraf2nkmlnihnqwq4l/4k4i5307lsrp9maw07dmzlkbqs+7d3ko3smqq+kykacgfw4qqphbcdmhuyqad27p63twpxezdfgjxua2xwyac5k/vyatyursea4mnkomox1vatp6xgzo1egwcg7qpc29zvxoobemyhhmw9ymjsklk6zbpisj6mp2d0j4wssjisugcj0qzu0ts5jr6//j+obmi2ysyhg469x/hy14dqvvsvrav7tz22hd7+5cgolbzjqfcc5hjwqsc5w8makzo0ouglhqns/a8opxr4jqd3dul6ovbdjv0bvuigbezzosedtwr7rhlucjx3ul59wezhp7hhy+6az+n/i42e71gt8vocfocvpdadpgpfqo7amdrnfxdif+od+tl61vre+th5epiwun5hgaeq2lv7eqryk=</latexit> <latexit sha1_base64="miyqx/s1onwsw6pztscnlhly9fm=">aaad1nicfvllbtnafj0mpip5niulm1gjifskiru0tcwqrqolkfguqdpisrsnxzfokooxntnubflmh2djb/anbofx+bvgivm1cejki12de899zxejzps27t87leqdu/fu7z6whj56/gsvtv/0uowxpncjiq9l3yukobpq00xz6ecssobyuhjn3sj+dq1ssvb80mkeo4d4gk0yjdpa49rbu/nmmrzbydg5xemvuwo07g5kylyj0bhwt9v2wvc245rohzv2md6v/bh6iy0dejpyottassm9yojujhliraggrm+zp6fnl9unj0xyw1hbroim+dawriabqfg2wc/hdyn4ebjk84tgc/q2iyobumngmsya6knajbxgv2idwvkos9j8vb2eni0yjqjyg6dl7poyyx3i4odyyxko5qlxcjxmritplehcttmzztua+oocatotcamyttgb4dsmx0jafsiexwrmtayntdua1tq0ixkjogsjzrbzkndbbjvuo0ksga092is5trqkusls/jigtbrxy7ptwmdusksxlwhtqyg03zcfaxx4n4z3rixii8gdizhc4i8yl8eqz9j388xuhy/k0llbz0tnjzantgqch/ostcq5sw6t6mywfakgblptk05s5/urp9gdjortyovsunywt4yenu31bjuxr23hbjsfjuudtqnsxfqchaamctap6qc36al1eexf0e/0c/2u9qufq1+qx5eplz2s8wytwfx7x5p7ol8=</latexit> <latexit sha1_base64="wydzt2vqmvbrebtfckfp1sou0hi=">aaad3nicfvllbtnafj0mpip5tiulmxfrrjgiyc4tlquksgxbaqlb0icup2u8vnfggc9ym+mm1shbdohtt/az/al/wzipqkkri1m6ovec+/kjms608f0/a7x6nbv37q8/8b4+evxky3pr6ymwuajwtcwx6iwigjgtcgyy4xcwksbpxoe0gh1w+dnlujpj8cuugfrtkgg2yjqyb533/jbfcvohe7h7vnox2fdb/vth20ewdxpo/roxw7xfysxpnoiwlbote4gfmb4lyjdkofrcaxmzzrezvnvd3t9jwgtzdrmhi5jaz4wcpkd7drpiizsoiffakvcjg6fotyulqdzfgjlmssxqr+yq8f+5hug8bydfudzeda76loksnydorpsg59hixj0kx0wbnbxwaagkuzuwhrjfqheh9bxme38em0ohlwacblpmbriq+usfojfmjfxc1crmyhsz6s1no50xa7o0kowcg7pms695e53kglezwyrmzcqourrcgkxkmkiuzg+hhi8isvrczhouu5xzfs8szvsr/za+oluifuima2eu6b+wec+htcqjsuu3d6d2apntg1mwmmikpgdo5xiuwncuya1fnrvvogdedavboj0/epsmqhyh5++iwsggsw1dqqucxlsmkrgxdy9kg1y8sjg+kj3n9mdv27edk5124ledt7untmfu+3x0hl1a2yha+6idpqauokyukxsffqjf9a/1b/xv9r8zam1trnmgll796i9vot1f</latexit> Algebra vs topology (dimension 2) Let I be the ideal sheaf of Since there is a unique non-trivial extension defining a rank 2 vector bundle V on P 2.

<latexit sha1_base64="xzchq9hskvvjisq+o+vlfnvxvl8=">aaaechicfvnnbxmxehubpsry0rruclgiilkpinzls8uhuqry6aeprdaptrsqr3eyseq1v7a3ycpaitm/hcu9ia78cct+dd40ku1awfpp9n68etpeczrxpo3v/1pyrn26fefu0j3v/oohj5brk48ptcwvhqmquvthedhamyadwwyh40wbssmor9h5bsufxydstioppsigl5jesd6jxdjorp40ndaydk+mzsvstolvtbd7cx0v72d/rn4i2v744ovab2/mig00oftnk4s/w1jspavhkcdanwz+znqwkmmoh9ibew1zbay7l9tbm0x4ya4hi/scjhdqqkfs0d07hqvetyfeuc+v+4tby/smwpju6yknxgzkzedpcxx4l+6ucn6zo6kcttf97z5lissnchrl3s85nhjxf4djpoaaxriaumxcsjgoicluuov1vgytvx8yqwevyaruusz6ujd5cwu4kuwkfefqyjngutn0zrod95gbnwnjqs5bxasl17yjjnlbqixhhuzmzbqpxwenjivmvldmdween0esqlicem6pylpvwmkmxv1pxlu3jgiuiya+w7xxv7arz6g0kolko92lnb+9frvmf2rouwdncjhrtxouk9emdezuiqiq11z/izb94pwrojod3lyx1qg2ndgsoauchlsmkrgxdbuldatesjjuor+b3mmeiyj8unrujfh/hsb8mg3jcl0d+o3g3uaj05m8isx0dd1hlrsgldrbe2gfhsckpqev6cu6rh2uxda+1b5fps4utdrp0myp/fgnzypnfw==</latexit> Algebra vs topology V is non-trivial: V is topologically trivial: (c 1 (V) = c 2 (V) = 0) Question: Is V trivial on J 2?

<latexit sha1_base64="i5grr7ulumt3f1mfhofvnnsaj94=">aaaeehicfvndb9mwfpw2ain8bfaidxzttu0qxviygw9ikzakpya2bpvqmqpynnvemmnhjrmmsvkh+dw8jp/ce07xjrzdwlj0fc699/ja9wypz5l23eufxaxgvfsplh86jx4/efpszfx5aszzregesi7veuay4ezaiwaaw3mqgcqbh7pgcr/mz65azuyk77pmozeqslabo0rbql9ysn8t+m6r6hstxpq7lvzau1mfyr7pvl2tdeznigrvc+dcp6hu00ij33ib/zu1r+2ofr413pa7wwqnjddxf3xplr9kmicgnouky7qem+qeiuozyqfyfa2fhrjqxx/ftne2mxd8piou0essqdeagisq9czoasrcteiib1lzltqeodmrhirzviab9uyijrn5rgb/xxuj5z1tlnwsvb7s9gwtaa5b0bv1qc6xlrh+yhwybvtz0hqekmzlwjqmilbtp8jxmk38bcg0jeuaamylma1wkfn1btisteq1yxnihbos2xrmbju6ywp05kogcg7qkqmc5jra5ijrgci8zhwhfals4gx0qpiox83sx4rfbpkosbotvqlmng5yxhs2+r+pz7adxjxdcapbiao/mahpotiqcioz6yuw2969msynmhdtaudyoi6a+nw6tyz55qiibsbupe4gbbveh/dextvyusjreow/i2gthodtsgvflhmugilasr7tymqmgtn8sqz1uybgsgwsebeap5bjhd+05h3+ylk1hcuch1l2mrsyc0galyrhzpp7d4zmjukxp52257a9r+7a3t54spbrs/qabsap7aa9diio0qmi6af6ia7rr6xfddxyb2zeuc4ujgneojnv6pwbvtd2qa==</latexit> <latexit sha1_base64="4hkhfzaejlabaopsw++y7ssm2ti=">aaaeqhicfvntb9mwee5zgs28bfarplhmhrvaqmqwnj5mqrqhdqnuidglq7pkca6jncejhgdnzewhwq/bydqydoitil2e57k7n33np5xlynf+ne4tno8/eli4zd96/otps+wv56dzkkskjzthitz3sqaccthrthe4tywq2odw5l8dvpzzncimjekhgqxgxsqubmaouqbqlytcjgkijcs6b/s7egt7dz0itgqv8bdgnu5ebte/ufqunszpkpoirbhp9bc09ifkqvs3oupe0brymyhgcpug+ywtxwlichd9y90o+8urbtupdu0dp/1+flm1xnbcx1l4hyoe5jeirtnjsp7rpmrtrcpgozq2vlcoiqtutp+uvbvdhi3zdfjcr0gipemkysp7ur6werumeqbbis0nfkrr2xgaxfk2in2jnf1e2txxgf/ieorztxejcra8gux5mok0vydotfvbzpfkupukkgasqoij4xaqmwkj0yhiqpv5ontutdd3ivm0qgikmj0inkcjjh8jayuje2ffmjxirsxrteyz09zntihoheldzkfex6xduo0wuwa0cwae5qpqkpqmcqyqjkxut6ypiskv/itiobwtpllfrb+ykkls4z+kl2b8xjwggiez4vottm9zklum/vjp5mltae/dojmbmyszaefjcbw10uzfm5m8c1ghbbdtuneddhz34we36h3mhlw7emk8u9akpaqzlrk+grkbgitksnhmzknrwdsfjgtkegqmarlhxowhjpj4wh8z9w7fnwxvjhkouoa9zv2mod9hf6vt9sn5u0bzzqsz0+2267tdb85qpzperexrpfxawrdca9fqwefwsxviuet3w2osnezm2+zx86z580z6rzgoewhnwnp/a05gh4g=</latexit> <latexit sha1_base64="7yyty62u5gcz6ojiay+haikg8xa=">aaad2xicfvllatwwffxipll3lbtlbktd0atcykdjky4ka+mii0js2jzkzddi8rvhjcwzsc7ycc+6k91m2/5i/6r/u3nihmykvgc4nhvoffleowfabmgfpwxvzt1791ce+a8fpx7ydhxt2ymwhajwtcwx6iwigjgtcgyy4xcwkybzxoe0mhw0+dnzujpj8cvuoqwzkgqwmeqmg75ulkngqxyfm6pv9aabzb6+hyrtsi7adzraw/49icutmhcgcqj1pwxym7reguy51p7aqgmmldbjd6+7e7tm+incq07ohktqd6eggeihne1q445dypxi5t5h8ay9qbak07rkisfmibnrxvwd/ivxj5wpbvnv8+1nsj+0tosfauevuycfx0bi5ko4zgqo4zulcfxmrytpmchcjbul73c6+pougtpubcw4ttflccwlvwpwkplim4sric2y6u7hn5t2nmmodg4kcwuhdz7vfucmwhacurndisxnarspxwenjinmnfezb2pcj5ekkq7bhovuzdbes5qzvfkfxkfnclfaicfxvpr9cxvxamqr0qi2qxdnzoetolt/gvwzzeftaedy2qquonfkras6c6puayjrvrdfu0h49k3y7a7o2lwzgh3mnxqffqiyupllrmr2cfjbqcojhopd2ndudxe9fts42e6gqtf8tlpe67w+x0ev0eu0guk0h3roazpcx4iidf2gn+ix1/e+ed+9h5fu5avw8xznpe/ilyj1o8s=</latexit> Algebra vs topology Observation: In the ring the ideal can be generated by two elements a and b of degree -1.

<latexit sha1_base64="ild6wcikazltolv4xtdx6/kstao=">aaaei3icfvplatwwffuyfatui0m77ez0mdafmnht0qslqcbddffiqpohxmmgy3c8irjkjdlji/w5/yzcf6g70k0x2ba/uxkeieoucgyxc8+5d+k4yjjtxvd/lsy27ty9d3/pgffw0emnyyurt0+0zbwfyyq5vgcr0cczggpddieztafjiw6n0cvent+9bkwzfj9nmuevjylga0ajcvb/5tcmighcrikxihuvws9xfikirxg8gxucou87vtep5nkhjaxbr/2vtt/1xwffdojp0ebtc9bfxfwwxplmkqhdodh6ppaz07neguy5vf5oodajfpvhztvu1iytxphryai9iamcu1cqfhtpjm+jwh2hxhgglfuewwp0psksvosyjrztjt7uzvwn/it3tjjv2aks5tubwxbpmphlbgsddb/khbuj6/vgmvnads9dqkhibivmh0qratyref6ng49gznbhlsjabyrzajcyf6uaj5kjpe64mtgmme50vllpxznmqodgspbzujdp5xvuokuugjuxngfucqni5qprmclhor41uzck/cksrmxvnoe61zm1dyxhrr/+d+ot85zoegiyoieo38jgpifkqisqrn/dgnth3e9ut4kzqrqaejixo6lqxrkmr8/qnfsjahdxrw6lnv3g/bug3h3ct1lwk9hwrqerqedaimo0jc7t4x5lw5phccf7lefchjs9fts4edmn/g5wunhe3z36fgk9ry/qggrqftpfh9ebokyufuvx6df60/rs+t760fo5os4utdxp0nxpxf0f4stama==</latexit> <latexit sha1_base64="lcsb2pf/ym7oung4yrghkhunyka=">aaaeuxicfvplbtnafj2kayrlo+wxyjoichs1rda0tcwqvsolfkgtkn1idvsnxzfoqomza+a6swrz/be/wyop4cpymu7t0jgvi1m6ovec+5g5jjiplpr+r0zzrnxn7r35+97cg4ephi8uptmyojccdrmw2pxeziiucg5roistzabliwnh0flult++agofvt9wlee3zykspcezouhs8fsb3azhbilqrzqyngjyukpdknoqvpwpc3ms8rbmqzpxdybkoxjwjd+ii/wp+tnist/xx4fobsekwcats3+21pwrxprnksjkkll7gvgzdgtmuhajprcidhegyuxvv+9sbgjlhbmfjpfzlscpcxvlwxal8d2vto2qmpa0cz9cokzvkgqwwjtki8d0i/dtpvebt+vomztdyjgqp9tjb6tbcjxlcipfdu/lkqkm1evqwbjgkecuynwitxllfwyyr/egntdu04obqn6vbenwm1lroyodvzzaey1uuivctyp9ydttb2ra8ywz8kmrcsglmiu09no30wgubncx1ggjqzssdiutymqeqm6t2o0zer5pzujykncdqszkj5eitg/+w/jinkhqhbh6zs/jtygimunzmcqqc7+zprbdmt/zugyudfltjebkpziorjjx5lwrojvvygdudatz0yyffpwqvlud+6vg1qpfonxqftsgymb1mjln8ncvlmkkx5mke6xn3b7uvt0bhl3rbh4n+lq+vlmz8f08eufekhuske2yqz6tfxjiopndwgg8azyf+zn3p0vazutqszhrpcvtp7xwf4yzzco=</latexit> <latexit sha1_base64="j6ofjcnjmherzqklckq7l6vffag=">aaad43icfvllbtnafj02pip5tbbkm6kkkfiu2awlzyfuqsxyilu8+pdqei3hn86o4xlr5rqjnfixsensu4v/4e/4g8zpwjupyirlv+eec18+ssgfxtd8s7dyunx7zt2le8h9bw8fpv5eexjodwk4hhatttlomaupfbygqanhhqgwjxkoktpdjn90bsykrb5gvuavz5ksa8ezeqi/vgi6tooxupttv9wpmcx+8mrydsep3gyiabbkpm+/v7l4o041l3nqycwz9iqkc+w5zlbwcxuqi4xxjficvn3v3doukohlcwxjpyydex8qloptuck2nw17jkudbfynke7q6wrhcmurpphmnohqzuca8f+5eyzlz42rery9drz7tqiirfd8ovuglbq1be5fu2gao6x8wlgrfixkh8wwjv6qqdbu088jgxzycmbgn6viqctdvjbamy1u1ir8typdydvtygbayywf8jmrhjqszfleb+3r6lhugusu5mgjyzss9outym6eaq7mdodmniaambsejnynjrp2tmqc7cv/md54b6g5qgod77djv3cjlkf2jktqf3y3jnbohn3ti+dsihoacqtuo6nqknnf7lzwmvnlbkbdtbop2gyjn6+jznfwjq+afvw809axnkbgxhwem5w6ek92ccpjtnk9ovbuj+a9ftm4xo9gytf6ulg6szp1/rj5rp6tnrkrlbjd3pn9cka4gzfz8pp8akhrw+t768cfdxfhqnlkzl7r/c+e8d/l</latexit> <latexit sha1_base64="fxihtyfrcxzytpui1cyetb3mqjm=">aaad8nicfvllbtnafj02pip5tbbkm6kkkkkk7nlssqhuqsxyilui+pdqei3hn86o4xlr5rqjzxnlr7bdblufbx/c3zb2kqpjesnzorr3npvyitiplpr+n4xf1q3bd+4u3fpup3j46phyypnjq3pd4yhrqc1pxcxioeaibuo4zqywnjjwep3v1/mtczbwapuziwy6kuuu6avo0iv6y9se63tu8+krahsuoiqn2viyqxed3vkq3/gbr2+cyajwyeqd9lywf4ex5nkkcrlk1p4ffobdkhkuxellhqgjhioyb7uvo9tbqnlhbifj/jwlcoagyinybtksv9g2i8s0r437fnimel1rsttaio0cm2u4spo5oviv3bmtsluoimq2pfz3uqvqwy6g+lh7p5cuna3pr2nhgkmshgdcclcs5qnmged3zm9rt+mnoua+qaujcjts0aefzl8yoikwkqktribfgbdttjczbtnjbnxmpbjyceyirbz29egov4lrgobdekdowoukw8cucvvfrdwfmhkeawbiapjwnerm2jurclqv/8p44kyi5ggx9j3hmn9rrjkhqjrjvjv+z7oxw7rf2rmdquhmnaviqyct1zrzrv6f1pltjqzaxbw6kdryg7dvgnp3cj4v6hxkckahk2hawzdrnguqlsodqgxrhmeshlsec3sw7+2b4hije/id4opm6t7expdl5bl5ttziqlbjhnlpdskr4eqrusq/ya8wtr61vrd+jkmlcxpnuzlzwpd/aceeqrm=</latexit> <latexit sha1_base64="l61kahy76sqkpbeoli8s8n5uw34=">aaaecnicfvplbtnafj02pip5pbbkm6ikffeiu7q0lcpvkgswsc2cpqq6rcbjg2fu8yw1c93esvwhfamfwq7ydgt7/ozxmkznihjj8vw959yxz0szfbz9/8/cfopgzvu3f+54d+/df/cwufho3+rccnjjwmpzgdeluijyq4esdjmdli0khesn23x84aymfvp9xikdbsosjxqcm3suk2ahbtiwgksomkozgjgsqdlepc+oss+rhqf7v0l3ay9xq1dxbhxsxplb/ujq60ywnpbi+oyelm7/cgpn8xqucsmspqr8dlslmyi4hmoleyy4edh2n1+3n9af8slcqsb4kuvgyjmkpwc75wjoiracj6y9bdyjki68vxkls60t0sghxct9oxurnf+khtepu+wwqkbly6/tlyxkcgtfl6r3cklr03qtnbygomrcgywb4uaivm8m4+iw73mtfv00emj7nweibliqertq+xmdnnfcjxxa5atyf7bv8qa6hfwyaz9qqyrcgjllk6911tvmlea6hlm3xceavrnefjblqtvbk7f7tj5gmpm4ggdcptqy/e4kau2l/ya+oampguampsfe0b8oi5ldvzokqkq/vtasw4rf7lwylwkz4rqgpr6mwzeycxjlms8mkzeaallqomndd96+cerzwd2foh6hdkckuoqgfay4tlpmvb7uvgvy4zitdkfynnqdww1fn/zx24hfdj6ulw1tjxw/qj6qp2szbgsdbjh3zjfseu6+knpyi/xufgl8a3xv/lyazs+noy/j1gmc/wu/ok6i</latexit> <latexit sha1_base64="cgpanmkf+fueyjmqixrzw+tdhms=">aaad2nicfvllbtnafj3wpip5tbbkm6kkkfkjbghpwuskvbyskfoefyg6qsbjg2fu8yw1m25itbxhh9h2cx/cn/a3jj2kallesjauzj3nvnzindntgudp0rj36/aduyv3/psphj56vlr25ejlqle4pjjldritdzwjodtmcdjjfzas5nacn+/v+emlujpj8cwuofqykgrwz5qyb30dq3fnrmedv+hz6nrqdpqhbwbhnfhh03dwtrb8o0okltiqhnki9wky5kznitkmcqj8ymdidflibp037z1tjvyo0jatek5sohwhibnonm2wqhdliqnus+u+yxcdxldykmldzrfjzsqm9gkubv+voywc9+yorobbm/5uzzkrfwyenxtvfxwbiesz4yqpoiaxlibumbcspgoicdxuml7fauhpq2boobamwg2kwr+xsnihakesibroujrydjhutfy5azszc6bzi1kookilrpjb19fririvcszc3iymipurrmfkhin6anzvqph5lilkqmncdaozg+9zyox++r/gr2cjsubioo+m1fwlg/mckqvsuljbe6uxw2bq3p0em4msaergxa6nqhnnirw5q7ogshwaugp1u7qdho/ehvxu4lxd1ivyak6hk6hawjdklcmisdf+zaoarwnh+5xv3b4uevtmcps6hqbt8npwerc79f0keoaeow0uoh3urr/qatpefal0ix6ix17kffo+ez8m1owlqeypmnve5v8v8zz2</latexit> <latexit sha1_base64="gs4xnlxqp5dgdc6wcqbzkkbk1ji=">aaad1nicfvllbtnafj02pip5tiulmxfvrjfkzjewlkwlsgxbaqlf0ifurnv4fommhc9ym9dnrknzibbdwqfwj/wn4zspmhqxkqwrc8+5l584l8jigp6zm2/cuxvv/skd4ogjx08wl5afhlpdga4hxettjmnmqqofbyhqwnfuggwxhkp4blfoh52dsukrl1jm0m1yqkrpciyeorzai53x66dlk2erhd16o4jgwqozv/3t5fnfnutzigofxdjrt6iwx65jbgwxuaudhceoril9ntetru2hgk5hiwf8jkvw4kpfmrbdn1qgok2pjlsnjf8u0hf6u+fyzm2zxz6zmezb2vwn/it3wqtsumfztbfh3nbxczuxcipfde8vkqkm9yloigxwlkupgdfcr0r5nxng0r8ycjpn+nkgkpdrwrd8plt0akmllwzoqovk64svsbevblmzte07mjehpjwsg0kcoc+qohkthrzkcj3alcxxiizvvrafzjhq9dxcbp/js1gzk1tjho9uz1bfi1sgffufxkdvbzvdskdnttx6fy6wbvtophhlwtbgya5rywv7kpgyzeztgpr6mfznonfktumdgvvqanr1q9uiztb69zaqdwfv67jewxwmgvqcbhqmum4yphlx2atcp+zxjulefxi3r7pevh0crreisbv92lhpt8e+xydpyquysikyrdrka9knb4str+ss/cs/gsenb43vjr9x1pm5seyzmxqny7/ljzsp</latexit> Algebra vs topology Choose satisfying set and One can check that a and b generate (x 0, x 1 ) and have degree -1.

<latexit sha1_base64="zhb+/mr9dezvegvmrtz8dnzagpg=">aaaem3icfvpnbhmxehybfsryl8kri0uv0upvtastlqdepfaaekhf0b+pm0ze72rjxwuvbg+tlbwpwypwffzhgoceupioeddp1sqis5zg33zfjgc8e2wcaep73xcwg9eu37i5dmu7fefuvfvn5qdhwuakwigvxkqtigjgtmchyybdsaaapbgh42iww/mpz0fpjsvhu2tqsukiwi9ryhzubb4kdyympqjqyroxtxhsdgerb87egg6nxpmmi7okceay3eak3/brg+enygksomk56c4v/gxjsfmuhkgcah0a+jnpwkimoxxkr04xzlhpv3zw3tpkwgtzdrmha5laqtmfsuf3bf17ivsoixfpknefwtv6vwfjqnwrro6zetpxs74k/jfvlhdesaoine5vetsdy0swgxb0nl2xc+zavhuxx0y5pvhcgyqq5krcte8uocb9gee1wvjdkbnarwqjcjvi1sofzj8owilkiqkcliy2fazblw/qtfubm6btt7kqc1dnaem1rqkjxdaqy5ifurkzruoxwinjcrnv1+xun/bbjimky4ndzao8q3ssyuav/yfx1k2smche0hpzwp+fjxgopvvjvfq/vvgpw7rf3h4bfwmyoymaczmcqc44l+t1izgzqkqbimtu86jnp3jxpkhqb7csrvwcdacsuoakbayptfmiyhvulzasejrwvo+8e+bmvse7b+1noihx2vc8wo3xgnhuh4lz6z83jp62a78dvn9y2dmzbmyseoqeo1uuoc20g16ja3sikpqevqcv6fvjc+nh41fj95i6uddrpertp/hnl8nsyoy=</latexit> Question: Is every topologically trivial vector bundle on J n trivial? Question: Is the map a bijection?

Homotopy invariance of bundle theory in algebraic geometry

Serre (1955) Faisceaux algébriques cohérents Vector bundles on X projective modules over O X Note that when X=K r (so that O X =K[x 1,,x r ]) it is unknown if there exist finitely generated projective modules which are not free. Serre s problem

Serre (1955) Faisceaux algébriques cohérents Serre s problem was solved independently by Quillen and Suslin Theorem (Quillen, Suslin 1977): If k is a field then every finitely generated projective module over is free. k[x 1,,x n ]

Bass-Quillen conjecture Bass-Quillen Conjecture: If A is a commutative regular ring of finite Krull dimension, then every finitely generated projective module over A[x 1,,x n ] is extended from A, ie where

Bass-Quillen conjecture Theorem (Lindel, 1981): The Bass-Quillen conjecture is true when A is a finitely generated (commutative regular) algebra over a field. (the geometric case) Lam, T. Y. Serre's problem on projective modules

Algebraic and motivic homotopy Theory

Classical homotopy theory C W the category of topological spaces the class of (weak) homotopy equivalences C top Classical homotopy theory

Algebraic homotopy theory Ken Brown ( 73), Abstract homotopy theory and generalized sheaf cohomology Sm C the category of (simplicial) presheaves on Sm

Algebraic homotopy theory Ken Brown ( 73), Abstract homotopy theory and generalized sheaf cohomology Sm C W the category of (simplicial) presheaves on Sm the class of Nisnevich (hyper-)coverings. C alg Algebraic homotopy theory

Motivic Homotopy Theory (Morel-Voevodsky 2001) Sm C W the category of (simplicial) presheaves on Sm the class of Nisnevich (hyper-)coverings together with the maps C mot Motivic homotopy theory

Abstract homotopy theory realization functors

Algebraic and Motivic Vector Bundles

Classifying spaces Classifying space for principal G-bundles: BG Bundle theory Adams was referring to Topology

Classifying spaces For X a smooth variety, there is an isomorphism (local description of vector bundles in terms of charts and transition functions)

Algebraic and motivic vector bundles motivic vector bundles Realization maps

Vector bundles on affine varieties Fabien Morel (2012) M. Schlichting (2015) Aravand Asok, Marc Hoyois, Matthias Wendt (2015) Theorem: For smooth affine X, the map is an isomorphism. affine homotopy invariance of algebraic bundle theory

Obstruction Theory

Cell decompositions

Obstruction theory Algebraic Homotopy Theory:

Obstruction theory Motivic Homotopy Theory: go to town here mention our example (rational chern classes) relation with griffiths, Interesting obstruction theory Morel and Asok-Fasel have investigated splitting free summands off of projective modules over regular rings and classification of projective modules over smooth algebras of Krull dimension less than or equal to 3.

The Rees Bundles

The Rees bundles Obstruction theory one needs to understand odd homotopy groups of S 3

The Rees bundles The first non-zero odd homotopy group of S 3 (localized at p) is Rees considers the bundle ξ p corresponding to Theorem (Rees): The bundle ξ p is non-trivial for all p. Note: The bundle ξ p has no Chern classes.

The Rees bundles Question: Do the Rees bundles exist over J 2p-1?

The Rees bundles Answer (Asok, Fasel, H.): Yes.

<latexit sha1_base64="kcwy+qdntjv/jkytpikv8phmrp0=">aaaehxicfznbb9mwfme9rbarbhs8wopfvdgkrirjnx4mjm1iewbte+yinvxloketnceobgdnzovz8vl44bw+bk7xjrygleu6+v/oxcc5j0o508b3v8/nl9tu3v9ceua9fpt4ydpllwfnwmakwhmvxkrligjgtmczyybdzaqajbghi+j6ooixn6a0k+krkvjoj6qnwjdrypzuwt49aoudvxhswbrdwhnhbqtrqdnahvpxwc5gcvstdjmrg6rk4xyij5uc7wwd5dwg6q8pvjp85ua0sopg56szsvayjcxnehcgcqj1k/bt07zeguy5lf5oidcdfpv+3rvmzhytxphpsam9jj1oovoqbhtbdl+jxhwnxlgrlfuewun1msksrosiizxnqkxfz7jk/bdrec7bni/k6fkmu9u2tkszaufvq3czjo3e1xvjmcmghhfoifqx1xkmfaiine6vef69jr8mmkh9kiah1ylmxvzi7luc3jnm9crgcmltz7pe96zuo7xjcntqshyyduomkb36pjpnglezw6zmtw4ukv1idsyhtfsvzg/6hf9hkqi4hafxqsjrh6zhjh7zh49pbrbejemmxtcgw39hi55bavuvku14lhp+c/fwga/itewbnmvbkgrsc+fcgoezieopahfx6u+glt94vx1uvynbkqjqwyztbv3cq3btqeczg8cpkgicdd1elny4mpajm52bagedkpoeinigfzmm+zez/+lhjlblkoh42nfjdjviuysvss/tk/9njwanctpng83abwan/ur+/mizltal9aqtoqdtoh10he7qgalog/qbfqjftcxaem2ztn3roj83inmopk7tw29rp3t/</latexit> <latexit sha1_base64="lqg7czpm3p14udj1p12p67pd9nw=">aaaeu3icfvnnb9naen02ayqh0mirjfzueuvekq2ulgnsprapb1clob9qe1xr9credb22dtdnrjwp/bqu8fm48fu4me6t0qsilrw9zxszszn5g+zsgov7v+bmg80bn28t3pbu3f28d39p+cgbyqrnyz9nmtnhitmghyj9k6yeo1wds0mjh+hzvs0fnom2ilnfbjldl2wxen3bmcxq6dktvdo27ei57aysnzajjbr6gobu4i+nxensstdxr4dear/zejqyqszn73s58bgbzbxiqvkumtengz/bnmpaci6h8rowhnygipu8e9vzxxpk6xygcsbpwawncbvlwftcalaktjas0x6m8vowjqjxmxxljsntejups4mz5ergv7gtjmxpdctqur3tb/scuhlhqfgl7v1culxmvt0acq3cyhib41rgsjqntdnuccee12rrzwnhevindaenpajpy6x4pohgmvbxtwbnahnhwi1v6rajo+bap67kojcgz9pka12ndgslebbbbfjaodwswsigbmqeqrfmthimz8km6agae9ipzla3rsysef4fxqd0iporrnbhv43+cxfkaiqn47bye1+0/c7gbzgyzcanbcmzwthrorkutyd1zrjidaauw11pwvodt2+cenzay5f1ck471ralbgo6usnhjhdz0mwi20vhvm5ktpceico0kbjwle2zilw3ydijv4pwgr+lbn2om0l3kb3khy+5mkthlyfvyf/7jgbbzjidl53a7wsf/jxnzfhlwicpyfoysgkytjbjdtkj+4str+qb+u5+nh42fjfnm80l6fzcoochmtrnxt+vpwkh</latexit> <latexit sha1_base64="8emd/kornqdfhzjrba81ddep3n8=">aaaeq3icfvplbtqwfhujjxiebwejc4tqrctvo4rswhzilvqklkatjz7uzhg5zp3eqmnhttozymqxsivp4sp4bnailrlodkz0pghlky7ouq/fm+o44eybipg+c827fupmrdnb/p279+7pzs88oncyvbt2qershcvea2cc9g0zhi4kbssporzgp1unfnggsjmpppqqge5ousf6jbljqo783nl7brd8arvhrmihu/olytsyhnwbgvbzswyrjc5ed8f7hcwsljkiqznr+iqmctoxrblgodr+zgbg+iwx2avv9voae35uaigipsupndgosa66y4ez1ljlmat3phkfmhjixs6wjne6ymmxmrot6wmtif+lnrdoo3zq1zpttw+jy5kosgocnnfvlry7zttbwgltqa2vhcbumtcsphlrhbq3u99vtfchpjm0axig4cbfricrwt5vgfpjrnoiriy2gdotlj9x2+edc6atv7jqclbnee23lrodujaqe5imurkyrwpxwipjcrpn1uxwrvhplilk6phgojxk0jzlmdhl/4l445whpgis6dl/df+fjxkjtvvpxnuxl1ac9sy5gbtkkqcczmv/ldwouqhegdezykovglhodtvplqhfvgib2cfzvgpgsnfeq1dwg5wrfbx14m4bihinrs6rtr0a07520iupencnms+jsgyuyxys7zh4rd91atooeo53nxpzox5pcyypa9+9p+dvm5og42eonrxdob2+cxy3n0cvaxy9qk/qegrrotpeo2gp7soksvqzfuffvw/ed++n9+s89nrmkochmjje7z/nlgaa</latexit> Motivic Rees bundles The motivic Rees bundle corresponds to a rank 2 projective module over the degree zero part, R 0, of the ring Homotopy theory implies that it arises as the kernel of a map for some unimodular row [a,b,c] in R 0.

Construction of the motivic Rees bundles

Do you have 15 min left? yes go for it! no pretend the construction is waaay too hard to explain and skip it requires years of training in meditation and the martial arts at secret remote himalayan dojos

Construction of ζ p Key step leads to a map which may be composed with its suspension to give

Motivic spheres dimension S p,q (p q) Hodge weight S 1,1 = A 1 -{0} S 1,0 = A 1 /{0,1} S p,q = Other examples

Motivic homotopy groups π a,b (X) = [S a,b,x] mot topological realization

Movitic α p and ζ p We need a diagram

Suslin s n! theorem (unimodular rows) Theorem (Suslin): Let R be a commutative ring, and elements of R, satisfying and If is a sequence of positive integers whose product is divisible by (n-1)!, then there exists a unimodular matrix whose first row is

Movitic α p and ζ p (requires (-1) to be a sum of squares) Suslin s theorem gives a diagram Leads, as in topology, to a map (the case n=p+1) which when composed with its suspension gives (having order p)

Rank 2 vector bundles on P n the motivic Rees bundle should arise as from a map But we produced The Hodge weight is wrong.

Motivic ρ There is a map in motivic homotopy theory which changes weight, and realizes to the identity

Motivic Rees bundles The motivic map ζ p is killed by p, so it can be multiplied by ρ, and we can form and lift the Rees bundles to motivic vector bundles.

<latexit sha1_base64="kcwy+qdntjv/jkytpikv8phmrp0=">aaaehxicfznbb9mwfme9rbarbhs8wopfvdgkrirjnx4mjm1iewbte+yinvxloketnceobgdnzovz8vl44bw+bk7xjrygleu6+v/oxcc5j0o508b3v8/nl9tu3v9ceua9fpt4ydpllwfnwmakwhmvxkrligjgtmczyybdzaqajbghi+j6ooixn6a0k+krkvjoj6qnwjdrypzuwt49aoudvxhswbrdwhnhbqtrqdnahvpxwc5gcvstdjmrg6rk4xyij5uc7wwd5dwg6q8pvjp85ua0sopg56szsvayjcxnehcgcqj1k/bt07zeguy5lf5oidcdfpv+3rvmzhytxphpsam9jj1oovoqbhtbdl+jxhwnxlgrlfuewun1msksrosiizxnqkxfz7jk/bdrec7bni/k6fkmu9u2tkszaufvq3czjo3e1xvjmcmghhfoifqx1xkmfaiine6vef69jr8mmkh9kiah1ylmxvzi7luc3jnm9crgcmltz7pe96zuo7xjcntqshyyduomkb36pjpnglezw6zmtw4ukv1idsyhtfsvzg/6hf9hkqi4hafxqsjrh6zhjh7zh49pbrbejemmxtcgw39hi55bavuvku14lhp+c/fwga/itewbnmvbkgrsc+fcgoezieopahfx6u+glt94vx1uvynbkqjqwyztbv3cq3btqeczg8cpkgicdd1elny4mpajm52bagedkpoeinigfzmm+zez/+lhjlblkoh42nfjdjviuysvss/tk/9njwanctpng83abwan/ur+/mizltal9aqtoqdtoh10he7qgalog/qbfqjftcxaem2ztn3roj83inmopk7tw29rp3t/</latexit> <latexit sha1_base64="lqg7czpm3p14udj1p12p67pd9nw=">aaaeu3icfvnnb9naen02ayqh0mirjfzueuvekq2ulgnsprapb1clob9qe1xr9credb22dtdnrjwp/bqu8fm48fu4me6t0qsilrw9zxszszn5g+zsgov7v+bmg80bn28t3pbu3f28d39p+cgbyqrnyz9nmtnhitmghyj9k6yeo1wds0mjh+hzvs0fnom2ilnfbjldl2wxen3bmcxq6dktvdo27ei57aysnzajjbr6gobu4i+nxensstdxr4dear/zejqyqszn73s58bgbzbxiqvkumtengz/bnmpaci6h8rowhnygipu8e9vzxxpk6xygcsbpwawncbvlwftcalaktjas0x6m8vowjqjxmxxljsntejups4mz5ergv7gtjmxpdctqur3tb/scuhlhqfgl7v1culxmvt0acq3cyhib41rgsjqntdnuccee12rrzwnhevindaenpajpy6x4pohgmvbxtwbnahnhwi1v6rajo+bap67kojcgz9pka12ndgslebbbbfjaodwswsigbmqeqrfmthimz8km6agae9ipzla3rsysef4fxqd0iporrnbhv43+cxfkaiqn47bye1+0/c7gbzgyzcanbcmzwthrorkutyd1zrjidaauw11pwvodt2+cenzay5f1ck471ralbgo6usnhjhdz0mwi20vhvm5ktpceico0kbjwle2zilw3ydijv4pwgr+lbn2om0l3kb3khy+5mkthlyfvyf/7jgbbzjidl53a7wsf/jxnzfhlwicpyfoysgkytjbjdtkj+4str+qb+u5+nh42fjfnm80l6fzcoochmtrnxt+vpwkh</latexit> <latexit sha1_base64="8emd/kornqdfhzjrba81ddep3n8=">aaaeq3icfvplbtqwfhujjxiebwejc4tqrctvo4rswhzilvqklkatjz7uzhg5zp3eqmnhttozymqxsivp4sp4bnailrlodkz0pghlky7ouq/fm+o44eybipg+c827fupmrdnb/p279+7pzs88oncyvbt2qershcvea2cc9g0zhi4kbssporzgp1unfnggsjmpppqqge5ousf6jbljqo783nl7brd8arvhrmihu/olytsyhnwbgvbzswyrjc5ed8f7hcwsljkiqznr+iqmctoxrblgodr+zgbg+iwx2avv9voae35uaigipsupndgosa66y4ez1ljlmat3phkfmhjixs6wjne6ymmxmrot6wmtif+lnrdoo3zq1zpttw+jy5kosgocnnfvlry7zttbwgltqa2vhcbumtcsphlrhbq3u99vtfchpjm0axig4cbfricrwt5vgfpjrnoiriy2gdotlj9x2+edc6atv7jqclbnee23lrodujaqe5imurkyrwpxwipjcrpn1uxwrvhplilk6phgojxk0jzlmdhl/4l445whpgis6dl/df+fjxkjtvvpxnuxl1ac9sy5gbtkkqcczmv/ldwouqhegdezykovglhodtvplqhfvgib2cfzvgpgsnfeq1dwg5wrfbx14m4bihinrs6rtr0a07520iupencnms+jsgyuyxys7zh4rd91atooeo53nxpzox5pcyypa9+9p+dvm5og42eonrxdob2+cxy3n0cvaxy9qk/qegrrotpeo2gp7soksvqzfuffvw/ed++n9+s89nrmkochmjje7z/nlgaa</latexit> Motivic Rees bundles The motivic Rees bundle corresponds to a rank 2 projective module over the degree zero part, R 0, of the ring Homotopy theory implies that it arises as the kernel of a map for some unimodular row [a,b,c] in R 0.

<latexit sha1_base64="zhb+/mr9dezvegvmrtz8dnzagpg=">aaaem3icfvpnbhmxehybfsryl8kri0uv0upvtastlqdepfaaekhf0b+pm0ze72rjxwuvbg+tlbwpwypwffzhgoceupioeddp1sqis5zg33zfjgc8e2wcaep73xcwg9eu37i5dmu7fefuvfvn5qdhwuakwigvxkqtigjgtmchyybdsaaapbgh42iww/mpz0fpjsvhu2tqsukiwi9ryhzubb4kdyympqjqyroxtxhsdgerb87egg6nxpmmi7okceay3eak3/brg+enygksomk56c4v/gxjsfmuhkgcah0a+jnpwkimoxxkr04xzlhpv3zw3tpkwgtzdrmha5laqtmfsuf3bf17ivsoixfpknefwtv6vwfjqnwrro6zetpxs74k/jfvlhdesaoine5vetsdy0swgxb0nl2xc+zavhuxx0y5pvhcgyqq5krcte8uocb9gee1wvjdkbnarwqjcjvi1sofzj8owilkiqkcliy2fazblw/qtfubm6btt7kqc1dnaem1rqkjxdaqy5ifurkzruoxwinjcrnv1+xun/bbjimky4ndzao8q3ssyuav/yfx1k2smche0hpzwp+fjxgopvvjvfq/vvgpw7rf3h4bfwmyoymaczmcqc44l+t1izgzqkqbimtu86jnp3jxpkhqb7csrvwcdacsuoakbayptfmiyhvulzasejrwvo+8e+bmvse7b+1noihx2vc8wo3xgnhuh4lz6z83jp62a78dvn9y2dmzbmyseoqeo1uuoc20g16ja3sikpqevqcv6fvjc+nh41fj95i6uddrpertp/hnl8nsyoy=</latexit> Question: Is the map a bijection?

Unstable Adams-Novikov resolution <latexit sha1_base64="t7dun9tnyfncq7chfc788vm5nns=">aaaewnicfvnlbxmxehbtag3kowvuxcyqifsk0s5qwg5ilckba4gisbupm1ze72rjxwuvbg+tlbv/jn+bxblxhv+ad5tutxhysjsab755t5hypo3nfv2prdzv3ly1tt7yuh3n7r3nrfvhwmakqo9kllu/jbo4e9azzhdopwpieni4ccfdej+5akwzfj9nnsigibfgq0ajcarzzacpaynx8cgbmjwftaxnjt/3gglemwah0kgaxdm0/mhucjsxzmfnzczp/ql3k38v7xxz2+u88mqhvc7bpeb3vevhg83e0flw7xsqszoliazlrott30vnwbjlgovqnaiduznhkrm9ft7z32oiewqauklhjiztjwqsgb7yqjefbjpnhidsus8mrrtxgzykwudj6cwtykz6gsuvf8nocecdo82lxfbmedcwtkszauevow8zjl0/ytbjicmghudoifqxvxkmi6iinw5ajuazit9nmkgjkjafvylmq5zl7ikchesm4hjwprezmd1snhayrxjmgs6kzchjoc6sotg8rp1mglezwbkam6lrphconzieudm7rtnuipbxkimkihngipvi6w2lmde7/7f459zmlblemhtlws3chjydwqo4lox8u9rztwnpf2sjkwpncjjjzw2ujntzp0uswagiq1b/kvy8/9vlv6wd3l3kzqk2wajohfaztwnm0l3nw3fcjjxwwitkjceiskg3sehjdupcxylkk3foezdof9vlepplwbbmar0/6/hex//obr8ezm5kdt1cj1el+wgfhak36aj1eevf0a/0e/1a/vav1dfrg5emtzuz5wfaepwhvwff/wsl</latexit>

The Wilson Space Hypothesis

Homologically even spaces Many naturally occurring spaces have cell decompositions with only even dimensional cells: homologically even spaces For such a space X i) H 2n-1 X = 0 ii) H 2n (X) is a free abelian group.

<latexit sha1_base64="a+tcebdptnnz2sqjirmu2z+ovpm=">aaaecxicfvplbtqwfhu7pep4tiulg4tqrjgmuviolytklyyfcxzf0ifujcrhuzoxxrgd7xqmsviffabb+ar2ic1fwq/whtjtsdujictzujrnnvuwr+ocm22c4nfscufgzvu3v+54d+/df7c6tv7wwmtcutiikkt1ghmnnak4msxwom0vkczmcbkp+zv/cgfkmyk+mdkhquzswyameuogqzszc7sttslqdd84x9si/bdbbtjw9y6d0a8wnq00t8pz9exfusjpkyewlbotz8ignwnllgguq+vfbqzmwhiz2n/u7+4w4uwfhpzqmunhzlmczkahdjzhhbsosfbqkneewtp0uskstosyi11krsxit7ka/bd3rjgf2glzlzy3w72bzsivdah6wx1ycgwkrm8kj0wbnbx0dqgkuzewhrffqhh36xndln4/yyaoaseu3ksydxepi6ckccqzsgvc5crmxhs36y10o+sxb7rqkowcg7rikq97hz0wglgzqbvmzmouqvxidsyjtns3zvsjwsexjcqp5osrvdobr1nkjh72n4i3bitekycbodut2vvymbdqwzxglw02pddssq9zkjambm7lzk5qyq6ce02elipvaokq1n+insb89tkszwe33mu9go0wcrqes7e1y2bylzdb++6nhcpgqmwwezhyqf/zqnbgme63km2lcwxvk+pvs58rnd+j7trthw/7yech78kng4p5h1lbj9ettilctiso0bt0ii4qrr/rz/qffe186nzrfo/8uaxdxpprhqef6/z8a04vt84=</latexit> <latexit sha1_base64="jt53nyvmvqwgokoav9kolxmylss=">aaaei3icfvplbhmxfhubhiw8wliyswgjipsozgklzyfuksxyscicpqrofhk8dyzwppbi9jqzwfmffacfwby+gr1iw4it34entapmqfzj0tu599yhfr3lngnj+z9xvlvxrt+4uxarffvo3xv31zcehgtzkaphvhkptioigtmbr4yzdqe5apjfhe6icb/mt85basbfb1pmmmhikljckdeogq53tskcdw1pvph0czoncu4uacars0ketpuscm+4vul7z/3aso/txzib5y87m2huh8on1d9hlgmrgtcue63paj83a0uuyzrd1q4ntm2exwb06pm3t8teoyw05isosqpnzhukaz2wswkr3hfijbop3begz9crcksyrcsscpezmspd5grwx9wz4xxgp2w1xn4k+wplrf4yepsieljwbcsu7xdhtae1vhqooyq5ktadeuwoctfdbnc6+p2egtqqbvnwk2kw4fiwtxtgvdkr1otlic2i6u6nvdttrmcc6fjlfgoo6jyr2p2r6lqqjmoymja3u6ni5rjrmblhor412x8rpo4kuxe1j1ylmtl+zvjm9np/rlx1+yiaatekbutmb2ejxkblvrpvdrep3cwmdbcl0tcuwlmczfwlmmvg7ijpq5w69rsxpf4w7frbyxdbptu4xs/rewy4vnalnl2thtot77jc2nnv5fabeyqzjijyhv3khru2inc/qwkujwo7o2g3mv0mf/ezms6ireoef/he8k63exaw/ynr6bf6jlzrgpbqaxqddterougj+oy+ok+tt61vre+thxehqytzzuo0zk1ffwavifkz</latexit> Homotopically even spaces Definition: A space X is homotopically even if i) ii)

Wilson spaces (even spaces) Definition: An even space is a space which is both homologically and homotopically even. Examples: CP BU BSU

<latexit sha1_base64="1m7nznjz2r2sy4fcfm11v7qbj7s=">aaaeaxicfvpdatrafj52/anxp61eijc4lfaoianw1gthyb3wqrfsty002zkzngshnuzczks7ychvn6z3ui99bv/at3gy3ztukg4edt853/n9euacke15v5eww7du37m7cs+5/+dho9w19cchkiskht7necapqqkamwf9ztsho1wcsumoh+gov/spz0aqlolvusxhkjjesjhroi10uvys+jjcqk4cjmjd4v0tsywqyaxravhz/3st7blvvpphz929mnzxmzfaapb2ttexfwvrrosuhkackhxse7kegci1oxwqj9aw0wmw6eh71+7onhnoucjicr2rbi6tkugkamcmk1w4y5eix5m0n9b4it5kgjiqvaahjuyjhqpfxw3+y3dmob+ysvnnl9fx7sawkrcabl2qhhcc6wzxu8mrk0a1l61bqgr2jeyhrbkq7yydp9pb+2om6bamtmboilmmy6x4iqengrnj7ba5sr4y1ek4c91oe8ybzrvkooagz9lk6dxej4vgnitgeez6oiwpbgifoix2pnzrpjckfbrmrebvzger1z6ndyxhwr38t8qnqxoxebbbbnu2vyujeqgvkulymuypm41snhublhbk4dwbz1hnzhxwzpnngzviahfd6m/stue/e+vxs4mvffmpyik5gjbh9lzmxht+yuzwrr2rrqwmazamreqm6fumqllhihvvvp9eo/9foyl+sox6nut/9drd7uxpwefp0xo0gxy0g7roi9pdfutrobpal+hh67x10freurwkxv6acz6gudf6+qdavkyv</latexit> <latexit sha1_base64="zqdjz2ay5bzvnpmiwkqxoqeajx0=">aaaef3icfvplbtqwfhu7pep4tiuvymnrjsjsneqa0rjaqjqswiaogmkrnuplodczaxwnsp3orfbed/abboet2cg2lpkbvgnnoqk6awhj0tu599yh73wyc6a05/1awu5cunzl6so15/qnm7dw19zvh6iskbqgnoozpaqjas4eddtthi5ycsqnoryg437nh56cvcwt73wzwzaliwaxo0rb6gttbvamhyr8cjiidylfd4ijrangi3yytug5t7z6ym/dptn811s0ntd87j+sl/8ooowwkqhnovhq2pdyptreaky5ve6gyaonlnkj54/dnw0mnkbqkbm6jgkcw1oqfntqzlqqcnciey4zaa/qeizevbisklwmofvmir6pnled/+koceddmy2rxfq63h0ajvjcg6bn2eocy53h+t1wxcrqzutrecqzbqntezgeavu6jtpt4nctpumofkzbdopzjmusecabjxktsu3ymfipmop2nyvqzzxmqbdkmlbwkkdp5xqvotncmjpf0ia5nmpjkhtygu6jnad9ndmfet4omykjak7ytdwz+yiltkuh//f4zxdetbwiio2mzwzhql5azwqsvqbzlf6zkb1mqvqaejjpjnnv43pu3gvitfsjbbdnqf4wbxv+s6d+3tvyzs/rfkywknagnm3wjjnot2xs5dozwvtahgzpskrkgn5lglobhrjfohtptgv7w0gvmv0mr/kzbamp6+cr63uu/9bb2nub/5evda/dr5virztod71e+2iakpqipqmv6gvnu+db53vnx5nr8tjccwctnm7pp8dmvri=</latexit> Wilson s Theorem Theorem (Steve Wilson): The classifying spaces for complex cobordism are even spaces. Consequence. If X is homologically even then is even.

<latexit sha1_base64="t7dun9tnyfncq7chfc788vm5nns=">aaaewnicfvnlbxmxehbtag3kowvuxcyqifsk0s5qwg5ilckba4gisbupm1ze72rjxwuvbg+tlbv/jn+bxblxhv+ad5tutxhysjsab755t5hypo3nfv2prdzv3ly1tt7yuh3n7r3nrfvhwmakqo9kllu/jbo4e9azzhdopwpieni4ccfdej+5akwzfj9nnsigibfgq0ajcarzzacpaynx8cgbmjwftaxnjt/3gglemwah0kgaxdm0/mhucjsxzmfnzczp/ql3k38v7xxz2+u88mqhvc7bpeb3vevhg83e0flw7xsqszoliazlrott30vnwbjlgovqnaiduznhkrm9ft7z32oiewqauklhjiztjwqsgb7yqjefbjpnhidsus8mrrtxgzykwudj6cwtykz6gsuvf8nocecdo82lxfbmedcwtkszauevow8zjl0/ytbjicmghudoifqxvxkmi6iinw5ajuazit9nmkgjkjafvylmq5zl7ikchesm4hjwprezmd1snhayrxjmgs6kzchjoc6sotg8rp1mglezwbkam6lrphconzieudm7rtnuipbxkimkihngipvi6w2lmde7/7f459zmlblemhtlws3chjydwqo4lox8u9rztwnpf2sjkwpncjjjzw2ujntzp0uswagiq1b/kvy8/9vlv6wd3l3kzqk2wajohfaztwnm0l3nw3fcjjxwwitkjceiskg3sehjdupcxylkk3foezdof9vlepplwbbmar0/6/hex//obr8ezm5kdt1cj1el+wgfhak36aj1eevf0a/0e/1a/vav1dfrg5emtzuz5wfaepwhvwff/wsl</latexit> Unstable Adams-Novikov resolution Start with X homologically even even Leads to a resolution of X by K(Z,2n)

<latexit sha1_base64="gbjycvaxqndckbbotc/yciug0bu=">aaaejxicfvplbhmxfhubhmv4tiulg4s2aphs0uyhtcyqkoufcxzf0ifuiskp52zixwopbe+tyjpp4dv4albwcewqeit2faeenfm1a+jklq7ouec+7os450ybipi5tny6cfpw7zu73t179x+srq0/pngyubsoqersncvea2ccjg0zhm5ybsslozzgo27fn16a0kykd2aaqy8jqwadrolxuh9tazpkwd/uio4o8dkmzhotpfaammqukre4vbli/f7arua/dyrdgx9w6yr+sohsolkd9dexf0ejpeugwlbotd4pg9z0lfgguq6lfxmymdflzpdvm39/jwkvkjtkhi5icufofsqd3bozguvcdkicb1k5iwyeodcvlmrat7pyrwbedhwtq8b/ceee856dtmvf8mzw0lnm5iubqs+rdwqojctvlekekacgt51dqgjujeyhrbfq3f17xrun34+zocnkmae3kwydpjxflgkcsibsina5srky3w57c93oesyblrrkoecglrlsa19hj4vgvcbqhlmzgevkl1idyqgt1a3z7pdwusyjsso54spvzpzrljkjn/4n4q3bgneisgdg9m72fjbmbzrwpxfp603p1jvsqrekozkc53i8v9uxv8gdok9dlbr1ffel/hbtbehlf2e1o7jvn1yj2gihoes4e1s7yibfcbm1797ioqlgvgyzeymnuqwnkm0c426d0lwax3z2ok45+xlb/toatt3wya4fbn74bnfj8hd+r1bqy/qebamq7and9aydowne0uf0gx1bx1ufwt9a31s/lkoxl+aar2jbwr/+al9owee=</latexit> <latexit sha1_base64="bcmjolbmrwwqsfadypvtoiqw9sw=">aaaekxicfvplbhmxfhubhmv4tbbky1fffbfgm4xsskcqfbzdscgqfyhoqdyem4kvjz2ypu1g1nwe38ehsivpyadskfgopemmaglispauzrnnpuzroodmmyd4sbtcunl12vwvg97nw7fv3f1du3ekzaeohfljptqjiqbobbwazjic5apifnm4jofdmj8+b6wzfo9mmumvi6lgfuajcddz6po999eikhtwsutyxmkxjmkwngpgc+bgg90uhvgdra4h/vognhz4o1mn9in5zx3nbp9sbfl3lehazcam5utr0zditc8szrjluhmrgbezscqmxj3zt7ey8kjcq07okkrw6lxbmta9o5mzwm2hjlgvltvc4al6wwfjpnwzxs4yi2agf7ka/bd3sjjv2xfzzzc3/z2ezsivdag6rd4vodys1zeje6aagl46h1df3eiydogi1lj79rx2gx+mmkgdwjagnylmfvzk4pecneom0ppwobezmn1ue3pdtnrmgc61zkhgom6zymtfrsefyfqmsahzmzakvc6xbpmrjupbs90b4cnyepvum8jvqpmn1yxlrj/+t8qbtzviiscbvtu9yvvymbdqwzxglw02pdnssqdzkavnczzl0uzvxfwed5o8c6puayilun+ltolw5yuwnh3c+pf1cdaak+gstt7wdpnjn7rc2ndv5fabiyqzjijert3krru2jnf3gdjcgsd2nkad6c8imp+x6drthw36yechb8p13d3zh1lbd9bdtifcti120r7ar4eioo/om/qcvry+tb61vrd+tkoxl2aa+2jowr/+afjyxg8=</latexit> <latexit sha1_base64="rjkikovfum5nys61q68hpswdgmu=">aaaedxicfvplbtqwfhu7pep4tiulg4tqrjgmuviolytklyyfcxzf0fkpgy0c507ggseobkczkzvv4apywiewq2z5bn6a78cztqpoqfzj0tu599yhfr3nngktbl9wvjs3bt66vxbhu3vv/op1jc2hp1owisijlvyqs5ho4ezaiwggw1muggqxh4/xpf/zhy9aasbfb1pmmmhiktiiuwicnnxyj3i2tltij+yj6uwwgg5sbf6lodyc+aextughy84wwtjxchp1d5riwmqgdove6/mwym3aemuy5vb5kygzmbleja+f+/t7thhrosendejsoheuibnogz3puuguqxi8ksodyfacva6wjno6zgixmrez1m2ubv/fnrpob3zwvsvlzehgyjnicwocxlyffrwbievbwgltqa0vnuooym4ktmdeewrcnxpet4vft5mh41owazcpzincyukpapxkjtkacdmxgtpd7xpl3c57zieutwsh4kaussrrxkdnhwbujtcguzkzrsqxwipjcbp1rdn+mpbjlilkqgxhktxm9muwmqof/sfirdsm0qpiyot2a/4wnuyfvfalcwwbtek1m9jrfqslkyfzov2ompir4f6tp6vkfyc4kvw3ac8ix70m69nbrxhzj2cjpyiu4fxt7yszfmfl1r57i4ckmfkzzuqknupxnqq1cyz7lupzarzb24l61fxnbm3padtnw6e7fhj44btw6+ho8ufw0gp0bg2jeo2ji/qghamtrfgbpqmv6gvnu+db53vnx2xo6spc8wgtwefnh4d4uk0=</latexit> Motivic spaces Notation: S 2n,n = A n /A n -{0} S 2n-1,n = A n -{0} Definition: A motivic space X is homologically even if Definition: A motivic space X is homotopically even if

<latexit sha1_base64="l6kqibeavmqvjoshwbhde27fwua=">aaaehnicfvplbtqwfhu7pep4tbbky1gnkni0sgqlzyfuazbguurr6unqhspxbjlwoe5ko52jrgz5dj6alxwco8qwfodvwjloqk5awlj0dc499+f7heacke15vxywo1euxru+dmo5eev2nbvlk/covvzicgc045k8dokczgqcaky5hocssbpyoaph/zo/ogopwcbe6zkhquoswwjgibbq6tio3qaqka8be7eu8f4hsyf6ogrgecwa37zapv1e9dynxn2w526fg77rzrurahb2tlcwfwdrrosuhkackhxie7kegci1oxwqj9aw0wmw6eglj+7wjhnoucjicr2rbe6skugkamcmzvw4a5eix5m0v2g8rs8rdemvktpqeqzed1wbq8f/csee84gzlnv8eh1vdwwteafb0ppsccgxznd9fdhieqjmptuilcy2homqsek1fwth6xbx/phpoqwfe7cdyhbjmisescbjxkrsezym1komul1nrtppjtnquzimfbzkwvo53cvopbcmzhg0ya4nwplkblagu2lhal/n9ieej8kmykiaetztzay9zant6vf/phbtqoiwqwsxxbjplezic6imtmlknjvsazal1yxis1mc59l4pmp8lpx7tzywkpea4ilv36jnz3/+zk97b7vzzd2cceys2odt2zor0/m6ja1coyolchjtle2jiezqr0xqa8mq91uu4pm2bg896fxtn+e1p6ntngudbri+5/rv/nwdndkfwuip0eo0hny0hxbqa7shdhbfh9fn9av97xzqfot87/w4d11cmgnuo7nt+fkhtgtyag==</latexit> Motivic spaces Definition: A motivic space X is even if it is both homologically and homtopically even. Wilson space hypothesis: For every n, the motivic space is even.

<latexit sha1_base64="1e7pn0kgwihzgcgjwrcejv4dzfc=">aaaeihicfvplbhmxfhubhiw8wliysvpffcmnzodsskcqfbysqbrk2kqdnpj47kyseoyr7wkysmbpd/abboet2cgw8af8b540qzobycns1tn33ifvdzhxpo3n/vxably5eu36yo3mzvu379xdxbt3qgwukpso5fidh0qdzwj6hhkox5kckoycjsjrt+kpzkbpjsuhu2tqt0kiwmwomq4ark4hb1niygnargwkfhbqracgsgzgecwa3/qg7werg17nqvcd7hv2zw2/4y0ag2h29gdry7+dsni8bweoj1qf+f5m+pyowyihshkymjgxi8zwxzpozjytzsdxkbe6igmcofoqfhtfttsrccshey6lclcypeuvkyxjts7s0hmmxax1navaf3enhpo+nrtlynot7/yte1luqndz7hhoszg4ekacmqxu8mizhcrmwsj0sbshxj1zs9lq4ymxm3rycsbgosusxoxmhyraiwqiqqgxe5sh061wc6haay0z0iwsloqc1flanlux0ukugjur1gfujkar0gxwyflibutezxahhi9csvruzgixqwi2x7kegf3opx6v3bkimkmesvu56sxsyhmorurc0s43pt3flpz8qwqaajix45lq7nph3j7hqaksbsauuv0t2vb858/8qndww19uldhgiaeloj2thtgtbbnyuunm5fabyyrtlijibt3sbpu2dhg3rmkujwpbw0g7np4mb/4z6sa8rmphhd/r+o/8jb292r9zqq/qotpeptpbe+gv2kc9rnfh9bl9qv8bnxrfgt8bp85dl5dmmvto4tr+/qhotlli</latexit> Equivariant Wilson spaces Theorem (Hill, H.): For every integer n, the real space is an even real space. complex cobordism with complex conjugation A friend sent me this yesterday. I know it s not possible but I take some comfort in imagining it to be a sighting.