Phosphorus Recovery from Sewage Sludge via Pyrolysis



Podobne dokumenty
TYRE PYROLYSIS. REDUXCO GENERAL DISTRIBUTOR :: ::

GLOBAL METHANE INITIATIVE PARTNERSHIP-WIDE MEETING Kraków, Poland

Exposure assessment of mercury emissions

EGARA Adam Małyszko FORS. POLAND - KRAKÓW r

Analiza porównawcza zmian w rozbiorach wody z uwzględnieniem sposobu jej dostarczania do odbiorców

Działania w dziedzinie klimatu, środowisko, efektywna gospodarka zasobami i surowce

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

shale gas do economics and regulation change at the German-Polish border Pawe Poprawa Polish Geological Institute BSEC, Berlin,

Equipment for ultrasound disintegration of sewage sludge disseminated within the Record Biomap project (Horizon 2020)


WYKAZ DOROBKU NAUKOWEGO

Unit of Social Gerontology, Institute of Labour and Social Studies ageing and its consequences for society

Sargent Opens Sonairte Farmers' Market

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

Akademia Morska w Szczecinie. Wydział Mechaniczny

Odnawialne źródła energii. Renewable Energy Resources. Energetics 1 st degree (1st degree / 2nd degree) General (general / practical)

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ

Conception of reuse of the waste from onshore and offshore in the aspect of

Tychy, plan miasta: Skala 1: (Polish Edition)

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

DOI: / /32/37

TECHNOLOGIE OCHRONY ŚRODOWISKA (studia I stopnia) Mogilniki oraz problemy związane z ich likwidacją prof. dr hab. inż.

Krytyczne czynniki sukcesu w zarządzaniu projektami

Revenue Maximization. Sept. 25, 2018

Country fact sheet. Noise in Europe overview of policy-related data. Poland

PL-DE data test case. Kamil Rybka. Helsinki, November 2017

Wojciech Budzianowski Consulting Services

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.

Cracow University of Economics Poland

Investment expenditures of self-governement units in percentage of their total expenditure

Ocena potrzeb pacjentów z zaburzeniami psychicznymi

Streszczenie rozprawy doktorskiej

EPS. Erasmus Policy Statement


Institutional Determinants of IncomeLevel Convergence in the European. Union: Are Institutions Responsible for Divergence Tendencies of Some

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

Patients price acceptance SELECTED FINDINGS

Renewable Energy Sources

Wytwarzanie energii elektrycznej i ciepła z odpadów Wartość dodana

Biogasplant in Poldanor

European Crime Prevention Award (ECPA) Annex I - new version 2014

No matter how much you have, it matters how much you need


GOSPODARKA ODPADAMI W OCZYSZCZALNI ŚCIEKÓW TYPU SBR

Latest Development of Composite Indicators in the Czech Republic

Helena Boguta, klasa 8W, rok szkolny 2018/2019

SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like

Evaluation of the main goal and specific objectives of the Human Capital Operational Programme

PRZEGLĄD ZAGADNIEŃ ZWIĄZANYCH Z ŚLĄSKU OVERVIEW OF WASTE-TO-ENERGY ISSUES IN LOWER SILESIA ODZYSKIEM ENERGII Z ODPADÓW NA DOLNYM

PRODUCTION HALL OFFER

PRZYRODNICZE UWARUNKOWANIA ROZWOJU MONGOLII

Fig 5 Spectrograms of the original signal (top) extracted shaft-related GAD components (middle) and

The average number of people in a household receiving social benefits in relation to the average number of persons per household

Has the heat wave frequency or intensity changed in Poland since 1950?

TECHNOLOGIE OCHRONY ŚRODOWISKA (studia I stopnia) Derywatyzacja w analizie środowiskowej zanieczyszczeń typu jony metali i jony metaloorganiczne

ANNA IŻEWSKA *, CZESŁAW WOŁOSZYK **, STANISŁAW SIENKIEWICZ ***

OPTYMALIZACJA PUBLICZNEGO TRANSPORTU ZBIOROWEGO W GMINIE ŚRODA WIELKOPOLSKA

PhD Łukasz Gawor Silesian University of Technology, Gliwice Akademicka Street 2, Gliwice, PL, phone , fax

Zarządzanie sieciami telekomunikacyjnymi

ABOUT NEW EASTERN EUROPE BESTmQUARTERLYmJOURNAL

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Gdański Uniwersytet Medyczny Wydział Nauk o Zdrowiu z Oddziałem Pielęgniarstwa i Instytutem Medycyny Morskiej i Tropikalnej. Beata Wieczorek-Wójcik

DELTA 600 corner left with TÜV certi ed

Ekonomiczne i społeczno-demograficzne czynniki zgonów osób w wieku produkcyjnym w Polsce w latach

Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019

DELTA 600 corner right with TÜV certi ed

Międzynarodowa Konferencja Naukowa

BARIERA ANTYKONDENSACYJNA

Uniwersytet Medyczny w Łodzi. Wydział Lekarski. Jarosław Woźniak. Rozprawa doktorska

Few-fermion thermometry

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Rynek odpadów z papieru i tektury w Polsce na tle krajów europejskich

Organic plant breeding: EU legal framework and legislative challenges Ekologiczna hodowla roślin: ramy prawne UE i wyzwania legislacyjne

Ankiety Nowe funkcje! Pomoc Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

THEORETICAL STUDIES ON CHEMICAL SHIFTS OF 3,6 DIIODO 9 ETHYL 9H CARBAZOLE

Profil Czasopisma / The Scope of a Journal

ENERGY IN POLAND AND IN NORWAY THE CHALLENGES, PRIORITIES, AND FIELDS OF COOPERATION LIDIA PUKA- KJØDE, BERGEN

Tytuł pracy w języku angielskim: Physical properties of liquid crystal mixtures of chiral and achiral compounds for use in LCDs

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Economical utilization of coal bed methane emitted during exploitation of coal seams energetic and environmental aspects

System optymalizacji produkcji energii

PARLAMENT EUROPEJSKI

BILANS ENERGETYCZNY. Wykorzystanie energii. Przepływ energii. Barbara Pietrzak, Ekologia 2018, Wydział Biologii UW

Dnia 6 września udaliśmy się do oczyszczalni ścieków Kapuściska znajdującej się w Łęgnowie w Bydgoszczy

PAKIET KLIMATYCZNO ENERGETYCZNY UE

WULS Plant Health-Warsaw Plant Health Initiative Regpot (EU FP7)

Forested areas in Cracow ( ) evaluation of changes based on satellite images 1 / 31 O

Tytuł pracy w języku angielskim: Microstructural characterization of Ag/X/Ag (X = Sn, In) joints obtained as the effect of diffusion soledering.

Length of expressways and highways per 100 km 2

METODA OGÓLNEJ OCENY STANU ŚRODO- WISKA OBSZARÓW WIEJSKICH NA PODSTAWIE INFORMACJI Z BANKU DANYCH REGIONALNYCH GUS I OSZACOWAŃ PROGRAMU EMEP

Development of a species index and optimization of production technology for selected energy crops

Improving Energy Efficiency of Hot Water Storage Tank by Use of Obstacles

KATOWICE SPECIAL ECONOMIC ZONE GLIWICE SUBZONE and its influence on local economy KATOWICE SPECIAL ECONOMIC ZONE - GLIWICE SUBZONE

Environment Protection Engineering BCR METHOD IN ASSESSING ALTERATIONS OF COPPER FORMS IN SLUDGE COMPOSTED ACCORDING TO DIFFERENT METHODS

Ankiety Nowe funkcje! Pomoc Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to teachers

Transkrypt:

MIDDLE POMERANIAN SCIENTIFIC SOCIETY OF THE ENVIRONMENT PROTECTION ŚRODKOWO-POMORSKIE TOWARZYSTWO NAUKOWE OCHRONY ŚRODOWISKA Annual Set The Environment Protection Rocznik Ochrona Środowiska Volume/Tom 15. Year/Rok 2013 ISSN 1506-218X 361 370 Phosphorus Recovery from Sewage Sludge via Pyrolysis 1. Introduction Aleksandra Szaja Lublin University of Technology The Brundtland Report (WCED, 1987) draws attention to the rapidly depleting the Earth's resources, particularly food and energy. In case of energy, there are two major problems. First, the rapid depletion of non-renewable natural resources. Second, global climate change caused by excessive emission of carbon dioxide (Pawłowski, 2009; Udo i in., 2011; Duran i in, 2013).The intensification of negative changes favor the socio-political system which is liberal capitalism (Pawłowski, 2012). Availability of phosphorus (P) sources has been largely ignored in research and policy debates. In recent years, the supply of phosphorus resources has become a concern because the raw material in phosphate reserves is being depleted around the world (Abelson, 1999; Vaccari, 2009). Phosphorus is an essential element for food production and nearly 90% of mined phosphate rock is used for production fertilizers. There is no substitute for phosphorus in the food supply (Cordell, 2009). However, it can be recovered and reuse from different waste streams. One of the sources of this raw material may be sewage sludge (Montusiewicz i in., 2008; Pawłowski, 2008) Sludge pyrolysis is an innovative process that can convert both raw and digested sludge into useful bioenergy (oil and gas) and biochar (Cao and Pawłowski, 2012a; 2012b). The aim of this study is to determine the amount of phosphorus that can be recovered through pyrolysis of sewage sludge generated in the Lublin province.

362 Aleksandra Szaja 2. Global phosphorus scarcity Phosphorus (P) is an essential element for all living organism that cannot be substituted. More than 90% of the mined P is used for agricultural purposes, mostly for the P fertilizers (Cordell et. al, 2009; Dery and Anderson, 2009). The increase in world population, as well as the cultivation of energy crops significantly contributed to the decrease of the phosphate rock reserves (Matsubae et. al, 2011). It is predicted that P demand will increase from 1,5 to 3,6% each year (Cordell and White, 2011). Estimates are that the resource could be exhausted in 100 250 years (Steen, 1998; Smil, 2000). Furthermore, Cordell et al. (2009) predict phosphorus peak in 2033, after this moment production will decline. Another issue is that the global production of agricultural products depends on a small number of countries, mainly Morocco, Iraq and China. Fig. 1. Global phosphate rock reserves (USGS, 2012) Rys. 1. Światowe zasoby fosforytów (USGS, 2012) Morocco and Western Sahara Iraq China Algeria Syria Jordan South Africa United States Russia Other countries Approximately 191 Mt of phosphate rock were mined in the world in 2011 (USGS, 2012). Of this, 72 Mt was explored in China, 28,4 Mt in the USA, and 27 Mt in Morocco. Moreover, there are no essential deposits of phosphate in the EU. At the moment extraction of those reserves are not possible for economic and technical reasons.

Phosphorus Recovery from Sewage Sludge via Pyrolysis 363 3. Phosphorus recovery Currently, several innovative phosphorus recovery technologies have been proposed (Hermann, 2009; Mavinic et al., 2009). Generally, phosphorus recovery is possible from the liquid phase such a side streams, as well as from the sewage sludge and the sludge ash. In the literature, two main categories of P-recovery technologies have been presented: wet chemical approaches and thermochemical approaches. Thermochemical technology separate P and heavy metals at temperatures of 1000 2000 C and transform P into a plant-available form. Whereas, in wet chemical technology sewage sludge is dissolved by adding acid or base, in combination with temperature. After the insoluble compounds have been removed, phosphates could be separated from the phosphorusrich liquid phase by precipitation, ion exchange, nanofiltration (Cornel and Schaum, 2009). The comparison of available P recovery technologies is shown in Table 1. Nowadays, there is limited experience in industrial-scale implementation. Thus the total cost of phosphorus recovery technologies is difficult. According to Balmer (2003) the cost of phosphorus recovery from sewage sludge was estimated about 8,800/(Mg P). Whereas, the price of phosphate rock from Morocco was 127/(Mg P) (February 2013). Presently, the total expense for recovered phosphate exceed the costs for phosphate from rock phosphate by several times. 3.1. Pyrolysis Thermal process such a pyrolysis has usually been applied for energy recovery. Additionally, recovery of phosphorus could be achieved via this method. Pyrolysis is a process to convert biomass directly into solid, liquid and gaseous products by thermal decomposition in absence of oxygen (Vamvuka, 2011). The gas fraction contains carbon dioxide, carbon monoxide, methane, hydrogen, ethane, ethylene and other compounds, the calorific value of this phase ranges from 15 to 30MJ/Nm 3. The liquid phase encloses water (15 35%) and organic chemicals, such as acids, alcohols, aldehydes, ketones, esters, phenols and nitrogen compounds The solid fraction, also known as a biochar contains mostly ashes, inert substances and heavy metals (Bień, 2007). The proportion of these phas-

364 Aleksandra Szaja es depends on the operational conditions of the process, such a temperature, pressure and retention time, as well as type of the feedstock (Werle and Wilk, 2009). Table 1. Examples of phosphorus recovery systems (Bridle and Pritchard, 2004; Cornel and Schaum, 2009; Cordell et al., 2011) Tabela 1. Przykłady systemów odzyskiwania fosforu (Bridle and Pritchard, 2004; Cornel and Schaum, 2009; Cordell et al., 2011) process input output recovery rate characteristic OSTARA CRYSTA- LACTOR SEPHOS fluidized-bed reactor, requires constant addition of Mg, effluent waste stream still needs treatment and proper disposal (contains heavy metal) cylindrical fluidized-bed reactor with sand as seed material the elution of the sewage sludge ash with sulphuric acid, removing undissolved residuals, the ph-value in the filtrate is increased stepwise, at ph 3.5 aluminium phosphates precipitate pyrolysis of dry sludge at 450 o C and a pressure 1 5 kpa in the absence of oxygen ENER- SLUDGE mixed wastewater wastewater sewage sludge ash sewage sludge Crystal Green struvite (5 28 0 + 10% Mg) slow release fertilizer high purity phosphate crystal pellets aluminium phosphate > 85 % 70 80 % 90 % char 100 % Pyrolysis could be classified as slow and fast. Slow pyrolysis is characterized by slow heating rate and long residence time. This type of pyrolysis has usually been used for the production of biochar, which could be used as a soil amendment. Fast pyrolysis involves rapid heating rates (around 100 C/min) (Cao and Pawłowski, 2012a, b). It has mostly been applied to produce gas and liquid fractions, which allows recovery of energy. Furthermore, pyrolysis can be carried out in two temperature ranges: 470 700 C (low-temperature pyrolysis) and 900-1100 C (high-tempe-

Phosphorus Recovery from Sewage Sludge via Pyrolysis 365 rature pyrolysis) (Bień 2007; Piecuch et al., 2011; Vamvuka, 2011). Pyrolysis presents certain advantages over the other methods of sewage sludge utilization. The volume of solid residue is significantly reduced. Moreover, the heavy metals present in the solid phase are relatively resistant to natural lixiviation. The liquid and gas phase could be used as potential fuels. The liquid phase could be easily stored and transported, may also be used as a substrate in a petrochemical industry. Additionally, phosphorus and heavy metals could be recovered from the solid fraction. In comparison with other methods of thermal utilization of sewage sludge pyrolysis is characterized by low gas emission (Piecuch, 2000). 4. Materials and methods Sewage sludge for an analysis was obtained from two municipal mechanical-biological wastewater treatment plants located in Lublin Province (WWTPs Lublin and Puławy). The average capacity of WWTP in Puławy is 13 500 m 3 /d. In this plant, sewage sludge disposal system consists following major unit process: thickening, anaerobic sludge digestion, dewatering. The second of them, MWWTP in Lublin has a capacity of 65 000 m 3 /d. The sewage sludge disposal system includes additionally heat drying (fluidized-bed dryer). For the experiments the following types of sludge have been sampled: raw sludge mixed at a volume ratio of 60:40 (primary:waste sludge), dewatered sludge from filter presses, dried sludge sampled only from WWTP Lublin from fluidized-bed dryer. The analyses of total phosphorus were performed with ICP-OES (Inductively Coupled Plasma Optical Emission Spectrometry). Dry mass content, was determined according to PN-EN 12880 standard. The presented results are the average of three replicates. According to the Central Statistical Office, in 2011 in Poland produced over 519,2 thousand tons dry masses of municipal sewage sludge. However, in Lublin Province worked 268 MWWTP with a total capacity of 350,005 m 3 /d, which generated 21,8 thousand tons dry masses of municipal sewage sludge.

366 Aleksandra Szaja In studies conducted by Bridle and Pritchard (2004) and Wang et al. (2012) full recovery of P from sewage sludge after pyrolysis at 450 C was achieved. 5. Results and discussion The results of the study are shown in Table 1 (average data are reported). Analyzed sewage sludge was characterized by a low content of phosphorus, from 0,24 to 0,77% P of dry matter (DM). According to EU report Disposal and recycling routes for sewage sludge total phosphorus concentration in sewage sludge produced in European MWWTPs was between 0,9 to 5,2% of DM (2001). Table 2. Content of phosphorus in different types of sewage sludge, % P of DM Tabela 2. Zawartość fosforu w różnych typach osadów ściekowych, % P w sm types of sludge MWWTP Lublin Puławy raw 0.26 0.29 dewatered 0.24 0.26 dried 0.77 The concentration of phosphorus in raw and digested sludge was lower than in studies conducted by Bień (2007) (Table 2). Moreover, total phosphorus content in the raw sewage (mixture of primary and waste sludge) was lower than in the case of dewatered sludge, which could be due to the release of phosphorus into liquid phase. There are no essential differences between total phosphorus concentration of sewage sludge samples from the MWWTP in Lublin and sludge from MWWTP in Puławy. Table 3. Content of phosphorus in different types of sewage sludge, % P of DM (Bień, 2007) Tabela 2. Zawartość fosforu w różnych typach osadów ściekowych, % P w sm (Bień, 2007) types of sludge P t raw (primary) 0.4 3.0 raw (waste) 0.0 1.5 digested sludge 0.3 0.8

Phosphorus Recovery from Sewage Sludge via Pyrolysis 367 It has been observed that both raw and digested sludge can be used for pyrolisis. However, preferred solution is a two-stage process (the combination of anaerobic digestion and pyrolysis) by Cao and Pawłowski (2012). Estimated that as a result of pyrolysis of dried sludge can be recovered approximately 1670t of phosphorus per year in the Lublin province. This is relatively small amount, but with recovered energy allowed to maximize the potential of sewage sludge. 6. Conclusions Accessibility of phosphorus sources is critical to our future. It is one of the most abundant element in the earth s crust. However, its deposits are geographically located only in a few countries; mainly in Morocco, Western Sahara and Iraq. The uneven distribution of one of the world s most important resources presents significant risk of potential conflicts. Furthermore, the European Union is dependent on import of this raw material. In the literature several innovative phosphorus recovery technologies was described, however this practice is not common. Pyrolysis of sewage sludge is not a new solution. So far, this method has mainly been used for energy recovery. In recent years, more attention has been paid to the possibility of recovery phosphorus and heavy metals present in the solid phase. Moreover, in comparison with other technologies, pyrolysis of sewage sludge has a very high recovery rate (approximately 100%). In this study, it was estimated that as a result of pyrolysis of dried sludge can be recovered approximately 1670t of phosphorus per year in the Lublin province. The concentration of phosphorus in sludge samples was in the range of 0,24 to 0,77% P of dry matter and it was significantly lower than the level of this compound given in literature. References 1. Abelson P.H.: A potential phosphate crisis. Science 283, 1999. 2. Balmer P.: Phosphorus recovery, an overview of potential and possibilities. IWA Specialist conference. Wastewater Sludge as a Resource, Trondheim, Norway, 23 25 June, 2003. 3. Bień J: Osady ściekowe. Teoria i praktyka. Wydawnictwo Politechniki Częstochowskiej. Częstochowa, 2007.

368 Aleksandra Szaja 4. Booker N.A., Priestley A.J., Fraser I.H.: Struvite formation in wastewater treatment plants: opportunities for nutrient recovery. Environmental Technology. Vol. 20, 777 782 (1999). 5. Bridle T.R, Pritchard D.: Energy and nutrient recovery from sewage sludge via pyrolysis. Water Science & Technology. Vol 50, No 9, 169 175 (2004). 6. Cao Y., Pawłowski A.: Energy sustainability of two parallel sewage sludge-toenergy pathways: Effect of sludge volatile solids content on net energy efficiency. Environment Protection Engineering, 2012, No. 2. vol. 38, 77 87 (2012a). 7. Cao Y., Pawłowski A.: Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment. Renewable & Sustainable Energy Reviews, 16, 1657 1665 (2012b). 8. Cordell D., White S.: Peak Phosphorus: Clarifying the Key Issues of a Vigorous Debate about Long-Term Phosphorus Security. http://www.mdpi.com/2071-1050/3/10/2027 (02.10.12) 9. Cordell D., Drangert J.O., White, S.: The story of phosphorus: global food security and food for thought. Global Environ. Change, Vol. 19, 292 305 (2009). 10. Cornel P., Schaum C.: Phosphorus recovery from wastewater: needs, technologies and costs. Water Science and Technology. Vol. 59, 1069 1076 (2009). 11. Cordell D., Rosemarin A., Schröder J.J., Smit A.L.: Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere 84, 747 758 (2011). 12. Dery P. Anderson B.: Peak Phosphorus. Energy Bulletin: Santa Rosa, CA, USA, 2007. 13. Disposal and recycling routes for sewage sludge Part 3 Scientific and technical report, 2001. http://ec.europa.eu/environment/waste/sludge/pdf/sludge_disposal3.pdf (02.12.12). 14. Duran J., Golušin M., Ivanovic O., M., Jovanowić L., Andrejević A.: Renewable Energy and Socio-economic Development in the European Union. Problemy Ekorozwoju. Vol. 8, no 1,. 105 114 (2013). 15. Malej J.: Właściwości osadów ściekowych oraz wybrane sposoby ich unieszkodliwiania i utylizacji. Rocznik Ochrona Środowiska (Annual Set the Environment Protection), 2, 2000. 16. Matsubae K., Kajiyama J., Hiraki T., T. Nagasaka: Virtual phosphorus ore requirement of Japanese economy. Chemosphere. Vol. 84, 767 772 (2011).

Phosphorus Recovery from Sewage Sludge via Pyrolysis 369 17. Montusiewicz A., Pawłowski L., Ozonek J., Pawłowska M. Lebiocka M.: Method and device for intensification of biomass production from communal sewage sludge. Patent nr EP08173043.4 z dnia 2008.12.29. 18. Pawłowski A.: Sustainable Energy as a sine qua non Condition for the Achievement of Sustainable Development. Problemy Ekorozwoju. Vol. 4, no 2, 9 12 (2009). 19. Pawłowski L., Pawłowska M.: Method for utilisation of sewage sludge integrated with energy recovery. Patent nr EP08173045.9 z dnia 2008.12.29. 20. Pawłowski L.: Do the liberal capitalism and globalization enable the implementation of sustainable development strategy? Problemy Ekorozwoju,. Vol. 7, no 2, 7 13 (2012). 21. Piecuch T., Dąbrowski J., Dąbrowski T.: Laboratory Investigations on Possibility of Thermal Utilisation of Post-production Easte Polyster. Rocznik Ochrona Środowiska (Annual Set the Environment Protection), 11, 2011. 22. Piecuch T.: Termiczna utylizacja odpadów. Rocznik Ochrona Środowiska (Annual Set the Environment Protection), 2 (2000). 23. Smil V.: Phosphorus in the environment: natural flows and human interferences. Ann. Rev. Energy Environ. 25, 53 88 (2000). 24. Steen, I.: Phosphorus availability in the 21st Century: management of a nonrenewable resource. Phosphorus and Potassium 217, 25 31 (1998). 25. Udo V., Pawłowski A.: Human Progress Towards Equitaible Sustainable Development: A Philosophical Exploration. Problemy Ekorozwoju.Vol. 5, no 2, 23 44 (2011). 26. US Geological Survey, (USGS) http://mi nerals.usgs.gov/minerals/pubs/co mmodity/phosphate_rock/> (02.12.12). 27. Vaccari D.A.: Phosphorus: A Looming Crisis. Scientific American 300(6), 54 59 (2009). 28. Vamvuka D.: Bio-oil, Solid and Gaseous Biofuels from Biomass Pyrolysis Processes An Overview. International Journal of Energy Research. Int. J. Energy Res. 2011; 35:835 862 (2011). 29. Wall G.,: Exergy, Life and Sustainable Development. Problemy Ekorozwoju. Vol. 8, no 1, 27 41 (2013). 30. Wang T., Camps-Arbestain M., Hedley M., Bishop P.: Predicting phosphorus bioavailability from high-ash biochars. Plant Soil, 357, 173 187 (2012). 31. WCED: Our Common Future, Oxford University Press, New York, 1987. 32. Werle S., Wilk R.: Energetyczne wykorzystanie osadów ściekowych. Polska Inżynieria Środowiska pięć lat po wstąpieniu do Unii Europejskiej. T. 1, 339 346 (2009).

370 Aleksandra Szaja Streszczenie Odzysk fosforu z osadów ściekowych z wykorzystaniem procesu pirolizy Wyczerpywanie się złóż fosforytów, stanowi obecnie jeden z najpoważniejszych światowych problemów, który może doprowadzić do kryzysu produkcji żywności. Blisko 90% światowego wydobycia tego surowca stanowi surowiec do produkcji nawozów. Szacuje się, że przy obecnym poziomie zużycia tych złóż w ciągu 50 100 lat ulegną one wyczerpaniu. Natomiast już w 2033 nastąpi tzw. szczyt wydobycia fosforu Peak phosphorus. Po osiągnięciu tego momentu światowe wydobycie będzie już tylko malało, aż do chwili całkowitego wyczerpania złóż. W związku ze wzrastającą liczbą ludności, zapotrzebowanie na fosforyty będzie stale rosło. Zasoby tych złóż są nieodnawialne, dlatego też pojawia się konieczność odzysku tego pierwiastka. W chwili obecnej recykling i ponowne wykorzystanie fosforu nie jest praktyką powszechnie stosowaną, pomimo wielu badań opisujących te zagadnienie. Obecna sytuacja wymaga podjęcia szybkich i skutecznych działań mających na celu zapobiegnięcie wyczerpywaniu się złóż fosforytów. Problem deficytu tego surowca mogą odczuć w szczególności państwa należące do Unii Europejskiej, ponieważ na terenie państw członkowskich znajdują się tylko niewielkie pokłady tych złóż. Ponadto, w chwili obecnej ich wydobycie nie jest możliwe głównie ze względów ekonomicznych oraz technologicznych. Oczyszczalnie ścieków komunalnych posiadają największy potencjał odzysku fosforu, wykazano że ponad 90% fosforu dopływającego do oczyszczalni ścieków odprowadzanych jest w osadach ściekowych. Piroliza osadów ściekowych nie jest nowym rozwiązaniem, do tej pory ta technologia była kojarzona głównie z odzyskiem energetycznym. W ostatnich latach zwrócono uwagę na możliwość odzysku zarówno fosforu jak i metali ciężkich zawartych w fazie stałej. Dodatkowo piroliza osadów ściekowych charakteryzuje się bardzo wysokim stopniem odzysku tego pierwiastka sięgającym 100%. Na podstawie przeprowadzonych badań można stwierdzić, że największą ilość P można odzyskać w wyniku pirolizy osadów po procesie suszenia, z terenu województwa lubelskiego może to stanowić około 1670 ton rocznie.