THE MEASUREMENT OF THE ECONOMIC DISTANCE ON THE BASIS OF SYMBOLIC DATA

Podobne dokumenty
Cracow University of Economics Poland

Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions

strona 1 / 11 Autor: Walesiak Marek Subdyscyplina: Klasyfikacja i analiza danych Publikacje:

strona 1 / 12 Autor: Walesiak Marek Publikacje:

Evaluation of the main goal and specific objectives of the Human Capital Operational Programme

Investment expenditures of self-governement units in percentage of their total expenditure

The average number of people in a household receiving social benefits in relation to the average number of persons per household

WYKAZ PUBLIKACJI I. Artykuły Ia. Opublikowane przed obroną doktorską

Length of expressways and highways per 100 km 2

Structure of councilors in the legislative organs of local government units

Latent Dirichlet Allocation Models and their Evaluation IT for Practice 2016

Sustainable mobility: strategic challenge for Polish cities on the example of city of Gdynia

MORTGAGE COVER POOL REPORT Issuer

PRACE NAUKOWE UNIWERSYTETU EKONOMICZNEGO WE WROCŁAWIU RESEARCH PAPERS OF WROCŁAW UNIVERSITY OF ECONOMICS

Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów

Ekonomiczne i społeczno-demograficzne czynniki zgonów osób w wieku produkcyjnym w Polsce w latach

Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards

deep learning for NLP (5 lectures)

PROJECT. Syllabus for course Global Marketing. on the study program: Management

Patients price acceptance SELECTED FINDINGS

Revenue to gminas budgets from service charges in division 756 per capita

Institutional Determinants of IncomeLevel Convergence in the European. Union: Are Institutions Responsible for Divergence Tendencies of Some

Health Resorts Pearls of Eastern Europe Innovative Cluster Health and Tourism

ZMIANY W PRZESTRZENNYM ZRÓŻNICOWANIU ŹRÓDEŁ UTRZYMANIA GOSPODARSTW DOMOWYCH W POLSCE W LATACH

POLITECHNIKA WARSZAWSKA. Wydział Zarządzania ROZPRAWA DOKTORSKA. mgr Marcin Chrząścik

OPTYMALIZACJA PUBLICZNEGO TRANSPORTU ZBIOROWEGO W GMINIE ŚRODA WIELKOPOLSKA

Zarządzanie sieciami telekomunikacyjnymi


Podejścia w skalowaniu wielowymiarowym obiektów symbolicznych

The data reporting such indexes for a number of years (about twelve years of such data are were fitted to a logistic curve:

Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis

WYDZIAŁ NAUK EKONOMICZNYCH

Prof. Peter Nijkamp (Tinbergen Institute, Jheronimus Academy of Data Science, 's-hertogenbosch, The Netherlands )

WYDZIAŁ NAUK EKONOMICZNYCH

Model for Youth Monitoring in the Regional Labour Markets: Practical Results of Soft Modelling (Polish regions example)

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU

XXIII OGÓLNOPOLSKA OLIMPIADA MŁODZIEŻY - Lubuskie 2017 w piłce siatkowej

Hard-Margin Support Vector Machines

SEKTOR USŁUG W POLSCE W UJĘCIU REGIONALNYM

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering

Estimated data of three ICT indexes available from GUSM

DOI: / /32/37

Krytyczne czynniki sukcesu w zarządzaniu projektami

Unit of Social Gerontology, Institute of Labour and Social Studies ageing and its consequences for society

WYDZIAŁ NAUK EKONOMICZNYCH. Studia II stopnia niestacjonarne Kierunek Międzynarodowe Stosunki Gospodarcze Specjalność INERNATIONAL LOGISTICS

ANALIZA PORÓWNAWCZA KONIUNKTURY WOJEWÓDZTW POLSKI W LATACH

Journal of Agribusiness and Rural Development

Tychy, plan miasta: Skala 1: (Polish Edition)

Domy inaczej pomyślane A different type of housing CEZARY SANKOWSKI

Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)

Ewa Pancer-Cybulska, tukasz Olipra, Leszek Cybulski, Agata Suröwka TRANSPORT LOTNICZY A REGIONALNE RYNKI PRACY W POLSCE THE IMPACT OF AIR TRANSPORT

METODY SKALOWANIA WIELOWYMIAROWEGO OBIEKTÓW SYMBOLICZNYCH

Demand Analysis L E C T U R E R : E W A K U S I D E Ł, PH. D.,

MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller

MaPlan Sp. z O.O. Click here if your download doesn"t start automatically

PRODUCTION HALL OFFER

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

INSPECTION METHODS FOR QUALITY CONTROL OF FIBRE METAL LAMINATES IN AEROSPACE COMPONENTS


ANALIZA RYNKU USŁUG W WOJEWÓDZTWIE ZACHODNIOPOMORSKIM

Economic Survey 2018 Poland in the eyes of foreign investors

Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)

Economic Survey 2018 Poland in the eyes of foreign investors

Zofia Jacukowicz ANALIZA MINIMALNEGO WYNAGRODZENIA ZA PRACĘ

Rejestracja ciągników rolniczych w Polsce w ujęciu regionalnym

Financial support for start-uppres. Where to get money? - Equity. - Credit. - Local Labor Office - Six times the national average wage (22000 zł)

PŁOCK W LICZBACH PŁOCK IN NUMBERS


An employer s statement on the posting of a worker to the territory of the Republic of Poland

Przedsiębiorstwo zwinne. Projektowanie systemów i strategii zarządzania

PODZIAŁ POLSKI WEDŁUG NOMENKLATURY JEDNOSTEK TERYTORIALNYCH DO CELÓW STATYSTYCZNYCH (NTS)

Forested areas in Cracow ( ) evaluation of changes based on satellite images 1 / 31 O

Country fact sheet. Noise in Europe overview of policy-related data. Poland

Ankiety Nowe funkcje! Pomoc Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students

WYKAZ PRAC PUBLIKOWANYCH

No matter how much you have, it matters how much you need

Barbara Adamczyk. Dzieci ulicy. w Polsce i na świecie. Definicja. typologia etiologia

PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ

Wioletta Wierzbicka Economic Effectiveness of Private Enterprises in Poland Regional Approach. Olsztyn Economic Journal 5/1,

TRANSPORT W RODZINNYCH GOSPODARSTWACH ROLNYCH

PEX PharmaSequence monthly report - January 2018 Total open market (sell-out report)

I webinarium

ETICS: Few words about the Polish market Dr. Jacek Michalak Stowarzyszenie na Rzecz Systemów Ociepleń (SSO), Warsaw, Poland

GOZDOWSKI Dariusz 1 *, ROSZKOWSKA-MĄDRA Barbara 2 ORIGINAL PAPER

ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL

Zastosowanie Internetu w małych i średnich przedsiębiorstwach

POLISH ELEVATOR MARKET ONE YEAR AFTER JOINING EU

Liczba godzin Number of hours 210 Liczba godzi w roku akademickim Number of hours in academic year 474

Ewa ROSZKOWSKA Marzena FILIPOWICZ-CHOMKO

Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2

Ontology-based system of job offers analysis

BAZIE KWALIFIKACJI ZAGRANICZNYCH

Linear Classification and Logistic Regression. Pascal Fua IC-CVLab

COMPARATIVE ANALYSIS OF THE INFORMATION SOCIETY DEVELOPMENT LEVEL IN THE POVIATS OF THE PODKARPACKIE VOIVODSHIP

Ankiety Nowe funkcje! Pomoc Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to teachers

TRZYDZIEŚCI KONFERENCJI TAKSONOMICZNYCH KILKA FAKTÓW I REFLEKSJI 1 THIRTY TAXONOMIC CONFERENCES SOME FACTS AND REFLECTIONS

Ocena potrzeb pacjentów z zaburzeniami psychicznymi

Transkrypt:

ACTA UNIVERSITATIS LODZIENSIS FOLIA OECONOMICA 3(302), 2014 * THE MEASUREMENT OF THE ECONOMIC DISTANCE ON THE BASIS OF SYMBOLIC DATA Abstract. The economic distance defines a dissimilarity level between objects functioning in the economic space. It is one of the most important issues of spatial econometrics. However, its measurement is difficult due to the definition, description and estimation problems. The objective of the paper is to indicate the role of symbolic data in describing the economic distance and also the way of its measurement using symbolic data analysis methods. A significance of the economic distance, measurement problems, symbolic data concept and dissimilarity measures, and also an empirical example were presented in the paper. Keywords: economic distance, dissimilarity measure, symbolic data, regional research I. INTRODUCTION A distance is very often referred to the physical distance. In statistical meaning, the distance determines the level of dissimilarity between patterns, objects or units. Therefore we can distinguish the cultural, social, political, economic and time distances. A significant role in modeling socio-economic phenomena (carrying out comparative studies, discovering regularities etc.) is played by the economic distance. The measurement of the economic distance is difficult due to occurring of a few methodological problems such as relevant definition, complete description and terms of calculation. These decisions result from the research objective but also from the data availability, quality and selection and also assumptions and restrictions of statistical methods. The objective of the paper is to indicate the role of symbolic data in describing of the economic distance and also the way of its measurement on the basis of symbolic data analysis methods. A significance of the economic distance, measurement problems, symbolic data concept and dissimilarity measures, and an empirical example were presented in the paper. * Ph.D., Department of Econometrics and Computer Science, Wrocław University of Economics. [175]

176 II. SIGNIFICANCE OF THE ECONOMIC DISTANCE In general, the economic distance identifies a dissimilarity level between managing entities (e.g. companies, households, self-government units), offered products or services (e.g. cars, computer programs, credits) and the other objects (e.g. market segments, portfolios, social classes). For example, countries are classified as undeveloped (pre-industrial, almost entirely agrarian), developing (underdeveloped industrial base, low living standard) and developed (postindustrial) economies. The development of spatial statistics and econometrics makes the economic distance one of the most important issues in examining the relations between territorial units, e.g. regions, cities, metropolises, countries (see Cliff and Ord (1981), Anselin (1988), Zeliaś (1991) and Suchecki et al. (2010)). In the era of globalization, technological progress and other socio-economic changes, the economic distance affects relations between territorial units much more than geographical distance. For example, international trade is considerably more determined by transport costs and economic dissimilarities between countries than by the physical distance between them. Migration decisions are made by comparing the socio-economic situation (e.g. economic situations of enterprises, labour demand and supply, the costs of living, offered services etc.) of a destination region against an origin residence (see Matusik, Pietrzak and Wilk (2012)). III. MEASUREMENT OF THE ECONOMIC DISTANCE In many empirical studies the economic distance between territorial units is identified on the basis of Gross Domestic Product (GDP). However, the measurement of the economic distance is much more complicated. Thus, many social, economic, political and cultural issues should be considered to determine relations between territorial units. For example, socio-economic situations of regions are affected by the service sector development, investment size, labour market situation, inflow of foreign capital, access to services (see Bal-Domańska and Wilk (2011)). Therefore, the measurement of the economic distance is a research problem in the field of multivariate data analysis (see Everitt and Dunn (2001), Hair et al. (2006)). Another problem concerns the complex nature of compared units. These units are usually not internally homogeneous. For example, regions are composed of sub-regions which may differ in labour market situation, economic profile etc. That is why a comparative study regarding regions situations should be based on their sub-regions situations. Additional problem is to describe phenom-

The Measurement of the Economic Distance on the Basis of Symbolic Data 177 ena in a natural way, e.g. expected period of investment performance (e.g. from 15 to 18 months), the structure of household s expenditures (e.g. food 20%, rent 10%, clothes 5%, services 35%, other 30%), business profile (e.g. industrial and service company). These problems may be solved with the use of symbolic data analysis (see Gatnar (1998), Bock, Diday et al. (2000), Billard and Diday (2006); Diday, Noirhomme-Fraiture et al. (2008), Wilk (2010), Gatnar, Walesiak et al. (2011)). IV. SYMBOLIC DATA ANALYSIS In symbolic data analysis, variables implementations take the form of intervals of values (interval-valued variables), sets of categories or values (multivalued variables), sets of categories with weights, frequencies, probabilities (modal variables) and also logical structures, e.g. taxonomical or hierarchical dependences (dependent variables) (see Bock, Diday et al. (2000), Billard and Diday (2006), Diday, Noirhomme-Fraiture et al. (2008)). Therefore, symbolic data analysis offers the possibility of characterizing a situation of higher-level units (e.g. NTS-2 regions) based on the situations of lower-level units (e.g. NTS-4 regions). For example the Dolnośląskie region is composed of the Jeleniogórski, Legnicko-głogowski, Wałbrzyski, Wrocławski subregions and the city of Wrocław. This is applied for disclosing details (e.g. territorial diversity) of higher-level units. Symbolic data results from data aggregation, e.g. determination of quartiles or descriptive statistics (e.g. minimum and maximum, frequencies) on the basis of lower-level units. An approach to the construction of symbolic variables and objects for regional research was presented in Wilk (2011, 2012). The measurement of the economic distance on the basis of symbolic data requires applying dissimilarity measures proposed in the field of symbolic data analysis. Dissimilarity measures for Boolean symbolic objects, i.e. objects described by interval-valued, multivalued and dependent variables, were presented in Bock, Diday et al. (2000), pp. 165 185, Diday, Noirhomme-Fraiture et al. (2008), pp. 126 129, Malerba et al. (2001), Wilk (2006b). Hausdorff s and also Chavent and Lechevallier s distance measures are applied in examining objects described by interval-valued variables. Gowda and Diday, Ichino and Yaguchi and also de Carvalho proposed measures for comparing objects described by interval-valued and multivalued variables. The majority of de Carvalho s measures also cover logical dependences. All these measures are based on Cartesian meet and join.

178 A separate group of dissimilarity measures was proposed for probabilistic symbolic objects, i.e. objects described by modal variables. Majority of them were previously applied in the image segmentation and for probability distributions, e.g. Kullback-Leibler divergence, Chernoff s distance, Bhattacharyya coefficient. They were adapted for symbolic data analysis (see Malerba, Esposito and Monopoli (2002), pp. 33 35, Bock, Diday et al. (2000), pp. 153 165, Wilk (2006a); Diday, Noirhomme-Fraiture et al. (2008), pp. 130 134). V. EMPIRICAL EXAMPLE The objective of the study was to compare the economic situations of 16 Polish regions (NTS-2) in 2010 on the basis of symbolic data. The economic profile, industry condition, investment outlays and economic situation of enterprises were considered in the investigation. Four symbolic interval-valued variables served to determine the economic distances between regions (see Table 1). They were defined on the basis of minimum and maximum values noted by subregions (NTS-3) of each region. Table 1. The set of symbolic variables Abbreviation Variable name Variable implementation Investments Investment outlays in enterprises per capita [PLN] [729.00, 11 798,00] Services and trade The share of people employed in services and trade to the total employed population (%) [26.30, 85.61] Industry Sold industrial production per capita (PLN) [5 052.00, 97 766.00] Wages and salaries Average monthly gross wages and salaries [PLN] [2 746.13, 4 936.36] Source: own elaboration based on data provided by Local Data Bank of the Central Statistical Office of Poland. The highest territorial disparities regarding the economic situation are exhibited by the Mazowieckie region, while internally the most homogeneous but weakly developed is the Świętkorzyskie region (see Figure 1). The Łódzkie region noted 92.6% of national average of GDP per capita (34 063 PLN), while the Dolnośląskie region presented 112.0% (41 194 PLN) in 2010. However GDP only partially shows the economic situations of these regions. Although both regions significantly differ in sold industrial production per capita and average monthly gross wages and salaries, they are very similar in respect of the economic profile (see Figure 2).

The Measurement of the Economic Distance on the Basis of Symbolic Data 179 Normalized Ichino-Yaguchi distance measure was applied to determine economic disparities between Polish regions. The measure takes the values in [0, ], where 0 means identical objects. The shortest economic distance (0.14) is exhibited by two pairs of regions: the Łódzkie and Małopolskie regions and also the Opolskie and Warmińsko-mazurskie; while the Mazowieckie and Świętokrzyskie regions are economically the most distant (see Table 2). a) Industry (the axis of ordinates) and Investments (the axis of abscissa) a) Wages and salaries (the axis of ordinates) and Services and trade (the axis of abscissa) Figure 1. Implementations of symbolic variables defining economic situations of regions Source: own elaboration based on data provided by Local Data Bank of the Central Statistical Office of Poland.

180 Figure 2. The comparison of economic features of the Łódzkie and Dolnośląskie regions Source: own elaboration based on data provided by Local Data Bank of the Central Statistical Office of Poland. VI. CONCLUSIONS Symbolic data analysis offers a possibility to define the economic distance between complex objects, e.g. territorial units. The measurement results serve in determining the dissimilarities between objects (e.g. regional disparities). They may also be applied in multivariate data analysis methods which are based on distance matrix (e.g. cluster analysis, multidimensional scaling). They are also significant in the field of spatial econometrics to examine spatial dependences and construct the adjacency matrix and also to examine the conditions of socioeconomic phenomena as an explanatory variable in gravity model.

The Measurement of the Economic Distance on the Basis of Symbolic Data 181 Table 2. Distance matrix 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2 0.89 3 0.14 0.85 4 0.49 0.60 0.46 5 0.39 1.12 0.42 0.64 6 0.44 1.16 0.45 0.71 0.25 7 0.35 1.09 0.40 0.63 0.21 0.23 8 0.49 1.20 0.59 0.73 0.28 0.25 0.20 9 0.55 1.14 0.57 0.66 0.41 0.34 0.34 0.35 10 0.29 0.67 0.32 0.34 0.64 0.64 0.61 0.73 0.68 11 0.32 0.89 0.20 0.49 0.57 0.60 0.50 0.70 0.47 0.41 12 0.46 0.54 0.42 0.26 0.71 0.75 0.65 0.78 0.72 0.22 0.45 13 0.49 1.11 0.47 0.62 0.26 0.21 0.27 0.32 0.23 0.65 0.41 0.70 14 0.28 1.06 0.31 0.58 0.31 0.29 0.19 0.35 0.29 0.46 0.39 0.60 0.25 15 0.39 0.63 0.31 0.26 0.66 0.70 0.62 0.80 0.63 0.18 0.32 0.17 0.53 0.52 16 0.46 1.17 0.43 0.68 0.29 0.26 0.21 0.34 0.26 0.64 0.41 0.73 0.14 0.21 0.57 Long distance (low similarity) Short distance (high similarity) Explanations: 1 Łódzkie, 2 Mazowieckie, 3 Małopolskie, 4 Śląskie, 5 Lubelskie, 6 Podkarpackie, 7 Podlaskie, 8 Świętokrzyskie, 9 Lubuskie, 10 Wielkopolskie, 11 Zachodniopomorskie, 12 Dolnośląskie, 13 Opolskie, 14 Kujawsko-pomorskie, 15 Pomorskie, 16 Warmińsko-mazurskie. Source: own estimation in symbolicda package (Dudek, Pełka and Wilk 2013) of R-CRAN. REFERENCES Anselin L. (1988), Spatial econometrics: methods and models, Kluwer Academic, Dordrecht. Bal-Domańska B., Wilk J. (2011), Gospodarcze aspekty zrównoważonego rozwoju województw wielowymiarowa analiza porównawcza, Przegląd Statystyczny, Volume 58, Number 3 4, pp. 300 322. Billard L., Diday E. (2006), Symbolic Data Analysis. Conceptual Statistics and Data Mining, Wiley, Chichester. Bock H.H., Diday E. (Eds.) (2000), Analysis of Symbolic Data. Exploratory Methods for Extracting Statistical Information from Complex Data, Springer-Verlag, Berlin-Heidelberg. Cliff A.D., Ord J.K. (1981), Spatial Processes: Models and Applications, Pion, London. Diday E., Noirhomme-Fraiture M. (Eds.) (2008), Symbolic Data Analysis and the SODAS Software, Wiley, Chichester. Everitt B.S., Dunn G. (2001), Applied Multivariate Data Analysis, Arnold, London. Gatnar E. (1998), Symboliczne metody klasyfikacji danych, PWN, Warszawa. Gatnar E., Walesiak M. (red.) (2011), Analiza danych jakościowych i symbolicznych z wykorzystaniem programu R, C.H. Beck, Warszawa. Hair J.F., Black W.C., Babin B.J, Anderson R.E., Tatham R.L. (2006), Multivariate Data Analysis, Pearson Prentice Hall, New Jersey.

182 Malerba D., Esposito F, Giovalle V., Tamma V. (2001), Comparing Dissimilarity Measures for Symbolic Data Analysis, In: P. Nanopoulos (Ed.), New Techniques and Technologies for Statistics and Exchange of Technology and Know-how, pp. 473 481. Malerba D., Esposito F., Monopoli M. (2002), Comparing dissimilarity measures for probabilistic symbolic objects, In: A. Zanasi, C.A. Brebbia, N.F.F. Ebecken, P. Melli (Eds.), Data Mining III, series Management Information Systems, Volume 6, WIT Press, Southampton, pp. 31 40. Matusik S., Pietrzak M., Wilk J. (2012), Ekonomiczne-społeczne uwarunkowania migracji wewnętrznych w Polsce w świetle metody drzew klasyfikacyjnych, Studia Demograficzne, Number 2(162), pp. 3 28. Suchecki B. (Ed.) (2010), Ekonometria przestrzenna. Metody i modele analizy danych przestrzennych, C.H. Beck, Warszawa. Wilk J. (2006a), Miary odległości obiektów opisanych zmiennymi symbolicznymi z wagami, In: K. Jajuga, M. Walesiak (Eds.), Taksonomia 13. Klasyfikacja i analiza danych teoria i zastosowania, Research Papers of University of Economics in Wrocław, Number 1126, Wrocław, pp. 224 236. Wilk J. (2006b), Problemy klasyfikacji obiektów symbolicznych. Symboliczne miary odległości, In: J. Garczarczyk (Ed.), Ilościowe i jakościowe metody badania rynku. Pomiar i jego skuteczność, Research Papers of University of Economics in Poznań, Number 71, University of Economics in Poznań Publishing House, Poznań, pp. 69 83. Wilk J. (2010), Metody analizy danych symbolicznych, In: J. Dziechciarz (Ed.), Ekonometria 29. Zastosowania metod ilościowych, Research Papers of Wrocław University of Economics, Number 141, Wrocław, pp. 29 38. Wilk J. (2011), Taksonomiczna analiza rynku pracy województw Polski podejście symboliczne, In: J. Dziechciarz (Ed.), Ekonometria 34. Zastosowania metod ilościowych, esearch Papers of Wrocław University of Economics, Number 200, Wrocław, pp. 26 37. Wilk J. (2012), Symbolic approach in regional analyses, Statistics in Transition new series, Volume 13, Number 3, pp. 581 600. Zeliaś A. (1991), Ekonometria przestrzenna, PWE, Warszawa. POMIAR ODLEGŁOŚCI EKONOMICZNEJ NA PODSTAWIE DANYCH SYMBOLICZNYCH Odległość ekonomiczna określa poziom niepodobieństwa obiektów funkcjonujących w przestrzeni ekonomicznej. Stanowi jedno z najważniejszych zagadnień ekonometrii przestrzennej. Jej pomiar jest jednak utrudniony ze względu na problemy definiowania, opisu i szacowania. Celem artykułu jest wskazanie roli danych symbolicznych w opisie odległości ekonomicznej oraz sposobu jej pomiaru z wykorzystaniem metod analizy danych symbolicznych. W artykule zaprezentowano znaczenie odległości ekonomicznej, problemy jej pomiaru, koncepcję danych symbolicznych i miary odległości, a także przykład empiryczny.