Badania własności materiałów konstrukcyjnych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Badania własności materiałów konstrukcyjnych"

Transkrypt

1 Badania własności materiałów konstrukcyjnych Materiałami konstrukcyjnymi nazywamy materiały inżynierskie, które są wykorzystywane do budowy maszyn i urządzeń. Do materiałów konstrukcyjnych zaliczamy metale i ich stopy, polimery, ceramikę i kompozyty. Metale są to materiały, które w stanie stałym charakteryzują się następującymi właściwościami: - dobre przewodnictwo ciepła i elektryczności, - połysk, - plastyczność, Właściwości te wynikają z wiązania metalicznego występującego pomiędzy atomami tworzącymi metal i budowy krystalicznej. Dzielimy je na dwie grupy, żelazne i nieżelazne (kolorowe). Polimery są nazywane także tworzywami wielkocząsteczkowymi. Dzielą się na naturalne i sztuczne. Naturalne nazywane biopolimerami otrzymuje się poprzez obróbkę i częściową modyfikacje surowców naturalnych. Sztuczne powstają w wyniku łączenia najczęściej wiązaniami kowalencyjnymi wielu identycznych niewielkich ugrupowań atomów, zwanych monomerami. Ceramika są to nieorganiczne związki metali z tlenem, azotem, węglem, borem i innymi pierwiastkami. Atomy są połączone wiązaniem jonowym i kowalencyjnym. Po zaformowaniu materiały ceramiczne wygrzewane są w wysokich temperaturach. Kompozyty są połączeniem dwóch lub więcej odrębnych nie rozpuszczających się w sobie faz, z których każda odpowiada innemu podstawowemu materiałowi inżynierskiemu zapewniającymi lepszy zespół własności i cech strukturalnych, od właściwych dla każdego z materiałów składowych oddzielnie. Materiały kompozytowe znajdują zastosowanie m. in. w sprzęci kosmicznym, samolotach, samochodach, łodziach, jachtach. Zaprojektowana, a następnie wykonana konstrukcja powinna odpowiadać wymaganiom eksploatacyjnym, ekonomicznym oraz technologicznym. Wymagania eksploatacyjne obejmują przystosowanie konstrukcji do niezawodnej realizacji określonych zadań, wytrzymałość mechaniczną i odporność na zużycie, odporność na korozyjne działanie środowiska, zabezpieczenie przed przeciążeniem itd. Wymagania ekonomiczne sprowadzają się do rentowności osiąganej dzięki niskim kosztom wytwarzania przy wysokiej wydajności urządzenia, oraz małemu zużyciu materiału. Wymagania technologiczne obejmują warunki dotyczące prostoty procesów technologicznych, łatwy montaż i demontaż oraz możliwość dokonywania napraw urządzenia prostymi sposobami. We wszystkich trzech grupach wymagań możemy zauważyć warunki, które bezpośrednio odnoszą się do materiału, z którego ma powstać urządzenie.

2 Konstruktor odpowiedzialny za prawidłowe opracowanie projektu powinien dokonać pełnej analizy materiałów, biorąc pod uwagę ich własności mechaniczne, technologiczne, plastyczne, cieplne, elektryczne, magnetyczne oraz chemiczne. Własności mechaniczne, są to cechy związane z wytrzymałością materiału na działanie różnego rodzaju sił zewnętrznych, są kryterialnymi wielkościami w doborze materiałów. Poznanie własności materiałów nie jest wystarczające do oceny ich przydatności do określonego celu. Niezbędne jest tu jeszcze poznanie wpływu różnych czynników, np. temperatury, czasu, sposobu i wielkości obciążenia, kształtu i wymiarów przedmiotu, na zmiany tych własności. Metody badań własności mechanicznych możemy podzielić na dwie grupy: - własności technologiczne, decydujące o przydatności materiałów do określonej obróbki - własności wytrzymałościowe, do wyznaczania, których niezbędna jest znajomość siły lub momentu sił, jako jednej z wielkości mierzonych podczas badania. Wyniki badań są wykorzystywane przez konstruktorów w procesie projektowania elementów konstrukcyjnych. Własności technologiczne: Cechy materiału charakteryzujące jego zachowanie się w czasie procesów produkcyjnych. W celu zbadania własności technologicznych określonego materiału należy przeprowadzić tylko te próby, których wyniki będą informować o możliwości realizacji przewidywanej obróbki. np. materiały stosowane na odlewy poddaje się próbie lejności, obrabiane zaś przez skrawanie próbie skrawalności, obrabiane plastycznie badaniom własności plastycznych itd. Własności odlewnicze. Podstawowymi własnościami charakteryzującymi przydatność metalu lub stopu do celów odlewniczych jest lejność, czyli zdolność do wypełniania form, następnie skurcz metalu podczas stygnięcia oraz jednorodność- składu chemicznego w całej masie odlewu. L e j n o ś ć zależna jest od płynności materiału w temperaturze zalewania formy i decyduje nie tylko o łatwości wypełniania formy, lecz ma również wpływ na makrostrukturę odlewu. Metale i stopy odznaczające się gęstopłynnością w temperaturze odlewania dają często odlewy porowate, gdyż wydzielające się gazy, nie mogąc znaleźć ujścia, tworzą w nich pęcherze. Miarą lejności jest odległość, na jaką płynie ciekły metal w znormalizowanej formie ustawionej poziomo i mającej kształt pręta lub spirali. S k u r c z m e t a l u podczas odlewania ma wpływ na powstawanie w gotowym przedmiocie naprężeń magących spowodować jego pęknięcia lub odkształcenia. Z tego powodu należy w odlewnictwie stosować stopy wykazujące małe zmiany objętości podczas krzepnięcia i chłodzenia. J e d n o r o d n o ś ć s k ł a d u ma również istotny wpływ na własności odlewu. Z tego powodu do celów odlewniczych nadają się szczególnie stopy o małej różnicy temperatury początku i końca krzepnięcia, gdyż wówczas segregacja składników nie jest zbyt duża. Skrawalność. Podatność materiału do obróbki skrawaniem nazywa się skrawalnością. Dobra skrawalność najczęściej występuje w materiałach, które nie odznaczają się dobrymi własnościami mechanicznymi. Stal wykazująca dobrą skrawalność ma niewielką wytrzymałość na rozciąganie oraz odznacza się kruchością,

3 powodowaną zawartością siarki i fosforu w stali. Skrawalność materiału określają trwałość ostrza, opór skrawania, gładkość powierzchni, obrabianej oraz postać wióra. Za główne kryterium skrawalności przyjmuje się t r w a ł o ś ć o s t r z a narzędzia skrawającego określoną jako funkcję prędkości skrawania przy określonych parametrach skrawania. Ścieralność jest cechą podobną do skrawalności, określa ją podatność materiału do zużywania się wskutek tarcia ślizgowego. Miarą ścieralności jest zmniejszenie masy badanej próbki spowodowane tarciem twardej tarczy o badany materiał. Własności plastyczne. Ocenę technologicznych własności plastycznych przeprowadza się na podstawie prób mających wykazać podatność materiału do odkształceń trwałych, niezbędnych do nadania właściwych kształtów produktom, przy czym głównie wymienić należy: próbę zginania, próbę nawijania drutu, próbę kucia oraz próbę tłoczności. b) Karb c) otwór Rys.1. Próba zginania: a) zwykła, b) obostrzona z karbem, c) obostrzona z otworem Próbę z g i n a n i a przeprowadza się na prętach o przekrojach kołowym, kwadratowym lub prostokątnym. Polega ona na powolnym zginaniu próbki wokół pręta. W niektórych przypadkach przeprowadza się obostrzoną próbę zginania. Poddaje się wówczas zginaniu pręty z naciętym piłką karbem {rys. 1.b) lub płaskowniki z wywierconym w nich otworem o średnicy równej podwójnej grubości próbki (rys. 1.c). W próbie zginania miarą plastyczności jest wartość kąta, o jaki próbkę można zgiąć bez spowodowania pęknięcia. Materiały bardzo plastyczne poddaje się próbie wielokrotnego zginania. Miarą plastyczności jest liczba określonych przegięć wykonanych do chwili pojawienia się pierwszych pęknięć. Rys. 2. Próba nawijania drutu

4 Próba n a w i j a n i a drutu. Próbę nawijania stosuje się do drutów o średnicach mniejszych od 6 mm. Określa ona własności plastyczne drutu oraz pozwala na wykrycie niejednorodności materiału. Ponadto umożliwia w przypadku drutów emaliowanych określenie w warunkach próby trwałości nałożonej powłoki. Próba polega na nawinięciu drutu na trzpień o określonej średnicy (rys. 2.). Sposób nawinięcia, liczbę zwojów oraz średnicę trzpienia określa norma. Rys. 3. Próba rozbijania; 1- trzpień, 2- próbka z otworem bbb b) Rys. 4. Próba spęczania Rys. 5. Próba rozklepywania: a) pozytywna, b) negatywna Próba k u c i a. Próbę kucia można wykonać zależnie od potrzeby jako próbę spęczania, próbę rozklepywania lub próbę rozbijania. Sposób przeprowadzania tych prób ilustrują rysunki 3, 4, 5. Miarą plastyczności jest w próbie kucia stopień odkształcenia uzyskany do chwili pojawienia się pęknięć materiału.

5 Rys. 6. Próba tłoczności metodą Erichsena Próba t ł o c z n o ś c i. Do badania tłoczności cienkich blach i taśm stosuje się metodę Erichsena. Polega ona na powolnym wtłaczaniu kulisto zakończonego tłocznika stalowego lub kulki w próbkę z blachy umocowanej w- odpowiednio ukształtowanej matrycy (rys. 6). Miarą tłoczności w próbie metodą Erichsena jest głębokość wgłębienia do chwili wystąpienia w nim pęknięcia. Próba z g r z e w a l n o ś c i i s p a w a l n o ś c i. Zgrzewanie polega na łączeniu pod naciskiem części metalowych nagrzanych do odpowiedniej temperatury. Podobny wynik można również uzyskać wywierając na łączone ze sobą części nacisk w temperaturze otoczenia. Jednakże w tym wypadku wymagany jest znacznie większy (nacisk oraz staranniejsze oczyszczenie powierzchni. Łączenie metali w temperaturze otoczenia nazywa się spajaniem. Połączenia zgrzewane i spajane poddaje się próbom wytrzymałościowym, a miarą zgrzewalności i. spajalności jest wytrzymałość powstałego złącza. Jeżeli połączenie pracuje w obwodzie elektrycznym, to poprawność jego wykonania określa przewodność złącza. Własności wytrzymałościowe Wytrzymałość na rozciąganie. W statycznej próbie rozciągania znormalizowaną próbkę wykonaną z badanego materiału o stałym przekroju S o poddaje się działaniu sił rozciągających F skierowanych wzdłuż osi pręta. Wówczas w dowolnym przekroju prostopadłym do kierunku działania siły powstaną naprężenia rozciągające o (sigma), których wartość oblicza się wg wzoru δ= F/S o N/mm 2 Naprężenia powodują wydłużenie względne materiału o wielkość ε (epsilon) ε = L / L 0 gdzie: L przyrost długości próbki,

6 L o długość pomiarowa próbki. W początkowym okresie rozciągania przy znacznym wzroście wartości siły obserwuje się nieznaczny przyrost długości próbki. Powstające pod wpływem działania siły rozciągającej odkształcenia mają charakter sprężysty. Jeżeli jednak siła wzrośnie ponad pewną wartość, to pojawią się odkształcenia trwałe. Znaczy to, że została przekroczona granica sprężystości i że w materiale powstały nie tylko odkształcenia sprężyste, lecz również i odkształcenia plastyczne. Granicę s p r ę ż y s t o ś c i R sp określa teoretycznie największa wartość naprężenia, przy której nie występuje jeszcze odkształcenie trwałe R sp = F sp / S o N/mm 2 Wydłużenie AL mm Wydłużenie AL mm Rys. 7. Wykres rozciągania: a) metali wykazujących wyraźną granicę plastyczności, b) metali nie wykazujących granicy plastyczności Wyznaczenie w praktyce granicy sprężystości jest bardzo trudne. Z tego powodu w celu określenia naprężeń powodujących odkształcenia trwałe można posługiwać się tzw. umowną granicą plastyczności, wyznaczoną przy odkształceniu trwałym wynoszącym 0,2% z wzoru (rys. 7.) R 0,2 = F 0.2 / S 0 N/mm 3 Poczynając od wartości siły F e przyrostowi długości próbki ze stali miękkiej nie towarzyszy dalszy wzrost siły. Przeciwnie, czasem obserwuje się jej zmniejszenie. Tylko niektóre materiały dają na wykresach rozciągania gwałtowne załamanie krzywej. Wiele materiałów daje wykresy, na których zmiany nachylenia krzywej następują łagodnie, bez ostrych załamań (rys. 7b). Dla wyznaczenia umownej granicy plastyczności dla tych materiałów przyjmuje się taką wartość siły F, przy której osiąga się odkształcenie trwałe określonej wartości. Zwykle przyjmuje się do tego celu wartość wydłużenia trwałego wynoszącą 0,2%, obliczoną z zależności L / L 0 100%

7 gdzie: L przyrost długości próbki, L o długość pomiarowa próbki. Po przekroczeniu naprężeń odpowiadających granicy plastyczności wydłużenie próbki wzrasta znacznie, mimo że przyrosty siły są niewielkie. W pewnej chwili siła osiąga największą wartość F m. Od tej chwili jej wartość maleje do F u, kiedy to następuje zerwanie próbki. Początkowo próbka wydłuża się równomiernie. Po osiągnięciu największego obciążenia F m w pewnym miejscu próbki zaczyna się tworzyć zwężenie zwane szyjką. Dalsze rozciąganie powoduje szybkie wydłużenie się próbki w miejscu zwężenia. Stosunek siły F m do pierwotnego przekroju próbki S o nazywa się wytrzymałością na rozciąganie i oznacza symbolem R m R m = Fm / So N/mm 2 Na podstawie wyników próby rozciągania można określić nie tylko wytrzymałościowe własności materiału, lecz również i plastyczne (wydłużenie i przewężenie). Względne wydłużenie p r o c e n t o w e próbki po zerwaniu wyraża się stosunkiem przyrostu długości pomiarowej próbki do jej pierwotnej długości. A = LU-LO / L 0 100% P r z e w ę ż e n i e określa stosunek różnicy powierzchni przekroju początkowego próbki S o i powierzchni S u do przekroju początkowego S o Z= S0-SU / S 0 100% Wytrzymałość na ściskanie. Badania wytrzymałości na ściskanie przeprowadza się głównie na materiałach kruchych, np. na żeliwie. Próbka w kształcie walca lub sześcianu poddana jest działaniu sił w kierunku prostopadłym do przekroju poprzecznego. Po przekroczeniu pewnego obciążenia próbka ulega zniszczeniu. Obciążenie to odniesione do jednostki powierzchni,. nazywane wytrzymałością na ściskanie, wyraża się zależnością gdzie; Rc = Fc / So N/mm 2 F c najmniejsza wartość siły powodująca zniszczenie materiału, S O powierzchnia początkowego poprzecznego przekroju próbki.

8 Rys.8. Schemat próby ściskania: a) próbka wysoka, b) próbka niska Kształt próbki wpływa na wartość wytrzymałości i z tego powodu próbę ściskania przeprowadza się na próbkach, których kształt i rozmiary określają normy. Najczęściej do badania wytrzymałości na ściskanie stosuje się próbki walcowe, których wysokość jest dwa i pół raza większa od średnicy próbki. Z badań wynika, że próbki wyższe wykazują mniejszą wytrzymałość na ściskanie niż próbki, niższe. Wiąże się to ze zjawiskiem występowania w pobliżu podstaw próbki, oprócz naprężeń normalnych naprężeń stycznych obejmujących obszary stożkowe (rys. 8) nie odkształcające się jeszcze przy obciążeniach powodujących odkształcenia części, w których występują wyłącznie naprężenia normalne. W niskich próbkach obszary stożkowe wspierają się na sobie i z tego powodu ich działanie jest w pewnym sensie hamowane. Wytrzymałość na pełzanie. Pełzanie wydłużanie materiału w podwyższonej temperaturze pod niezmiennym obciążeniem w miarę upływu czasu. Stosunek wydłużenia do czasu jego powstania nazywamy prędkością pełzania.. Jest umowną granicą wytrzymałości na rozciąganie wyznaczoną w stałej temperaturze przy określonej prędkości pełzania. Wytrzymałość na pełzanie metali i stopów zależy w pewnym stopniu od szybkości narastania obciążenia. Z doświadczeń wynika, że wytrzymałość jest tym mniejsza, im dłuższe jest działanie siły. Zerwanie materiału w podwyższonej temperaturze może. nastąpić nawet wówczas, gdy naprężenia w materiale są mniejsze od naprężeń określonych jako wytrzymałość na rozc i ą g a n i e w takiej samej temperaturze. Podczas długotrwałego działania siły materiał pod jej wpływem bardzo wolno ulega wydłużeniu. Jest to pełzanie prowadzące zazwyczaj do pęknięcia materiału po dłuższym czasie. Przebieg zjawiska pełzania podczas rozciągania można przedstawić w postaci zależności wydłużenia od czasu przy stałym naprężeniu rozciągającym oraz w stałej temperaturze (rys. 9).

9 Rys. 9. Wykres pełzania Czas Odcinek AB odpowiada początkowemu okresowi pełzania, podczas którego następuje stosunkowo znaczne odkształcenie próbki w krótkim czasie. Odcinek BC przedstawia dalszy okres pełzania odznaczający się powolnym i równomiernym odkształceniem trwałym. Odcinek CD odpowiada ostatniemu okresowi pełzania, w którym obserwuje się ciągły, coraz to szybszy przyrost wydłużenia, prowadzący w końcu do zerwania próbki. Zachowanie się w podwyższonej temperaturze materiału pod obciążeniem charakteryzuje wytrzymałość trwała określona jako naprężenie powodujące w danej temperaturze zerwanie próbki po upływie określonego czasu. Wartość tego naprężenia oznacza się symbolem R, a w indeksie podaje się czas, po upływie, którego nastąpiło zerwanie próbki, i temperaturę, w której przeprowadzono badania. Wytrzymałość zmęczeniowa. Jeżeli na materiał działają siły zmieniające swą wartość okresowo w czasie, to mogą w nim powstać pęknięcia, chociaż naprężenia określone w stosunku do początkowego przekroju próbki nie osiągnęły nigdy wartości, które przy stałym obciążeniu mogłyby spowodować zniszczenie materiału. Pęknięcia są zazwyczaj spowodowane w mniejszym lub w większym stopniu działaniem karbu. F Rys. 10. Wykres naprężeń w próbce z karbem Zjawisko karbu powstaje w konstrukcjach, w których występują ostre pęknięcia lub wycięcia. Np. na rys. 10 płaska próbka mająca po bokach wycięcia, poddana próbie rozciągania, wykazuje nierównomierny rozkład naprężeń w najmniejszym przekroju. Największe naprężenie występuje tutaj na dnie wycięcia. Wobec tego jest zrozumiałe, że jakiekolwiek ostre zmiany przekroju, np. rysy lub miejscowe wady materiału, działają podobnie jak wycięcie w opisanej wyżej próbce. Pęknięcia zaczynają się w pewnym punkcie A przekroju (rys. 11), zwykle przy powierzchni, i z wolna postępują w głąb materiału. Skoro przekrój zostanie w ten sposób dostatecznie osłabiony, następuje nagłe pęknięcie obciążonego elementu.

10 Rys. 11. Schemat powstawania przełomu Pęknięcia wywołane naprężeniami zmęczeniowymi mają charakterystyczny przełom. Jedna część przełomu ma wygląd muszlowy gładki (1), a druiga krystaliczny (2). Obciążenia występujące w elementach konstrukcyjnych mogą się zmieniać w pewnych granicach (rys. 12). Określenie wytrzymałości zmęczeniowej odbywa się na znormalizowanych próbkach poddawanych okresowo zmiennym obciążeniom. Rys. 12. Charakter naprężeń przy obciążeniach okresowo zmiennych: a) obciążenie zmienne (jednostronne), b) obciążenie powtarzalne (jednostronne), c) obciążenie przemienne (obustronne) Wohler badając wielokrotnie zginanie obracającej się próbki przy różnych naprężeniach a, doszedł do wniosku, że liczba cykli obciążenia do chwili pęknięcia próbki jest tym mniejsza, im większe zastosowano naprężenia.. Wytrzymałością na zmęczenie będziemy nazywać naprężenie δ, przy którym liczba cykli poprzedzająca pęknięcie próbki przekroczy wartość Nc. Wartość tego naprężenia δ oznaczamy Z 0. Dla stali konstrukcyjnej za normalną granicę wytrzymałości na zmęczenie przyjęto uważać naprężenie, które przy 10 milionach zmian obciążenia nie powoduje jeszcze złamania próbki, lecz niewielki wzrost naprężeń powoduje już zniszczenie próbki przy tej liczbie zmian obciążenia. Twardość. Twardością nazywa się odporność materiału na' odkształcenia trwałe

11 powstające wskutek wciskania weń wgłębnika. Do pomiaru twardości stosuje się najczęściej metody: Brinella, Rockwella, Vickersa. Metoda Brinella. Pomiar twardości metodą Brinella polega na wgniataniu w badany materiał pod obciążeniem F kulki hartowanej o średnicy D. Miarą twardości w tej metodzie jest stosunek siły F do powierzchni odcisku, powstałego w materiale w wyniku działania na kulkę pomiarową siły nacisku F. HB = F / Scz N/mm 2 gdzie: HB twardość wg Brinella w N/mm 2, F siła nacisku w N, Scz powierzchnia czdszy kulistej w mm 2. Podstawiając wzór na powierzchnię czaszy otrzymuje się HB = 2F 0,102 / D (D- D2-d2) gdzie: D, średnica wgniatanej kulki w mm, d średnica odcisku w mm. Udarność. Odporność na uderzenie zależy od rodzaju materiału, temperatury oraz kształtu próbki., którą poddano badaniu, a także od sposobu jej obciążenia. Zależnie od sposobu obciążenia można wyróżnić udarowe rozciąganie, udarowe ściskanie, udarowe skręcanie oraz udarowe zginanie. Wynik badania udarowego zginania nazywa się udarnością. Do badania stosuje się próbkę w postaci pręta o przekroju kwadratowym. Na jednym z jej boków nacięty jest karb ułatwiający pęknięcie próbki podczas badania; wymiary próbki oraz wymiary karbu określa norma. Przyrząd do określania udarności nazywa się młotem udarnościowym. Najczęściej stosuje się-młot typu Charpy przedstawiony na rys. 13.

12 Rys 13. Młot udarnościowy Charpy`ego 1- próbka, 2 wahadło, 3 podziałka, 4- wskaźnik W celu przeprowadzenia pomiaru umieszcza się próbkę na podporach, a wahadło podnosi na wysokość H. Opuszczone z tej wysokości uderza ono w próbkę, a po jej zniszczeniu unosi się jeszcze na wysokość h. Jeżeli ciężar wahadła wynosi G N, to w położeniu górnym energia potencjalna młota wynosi E 1 = G-H Po złamaniu próbki wahadło miało jeszcze energię, dzięki której mogło się wznieść na wysokość h. Energia ta wynosi E 2 = G h Energia zużyta na zniszczenie próbki wynosi E = E 1 E 2 = G {H h) J 'Jeżeli przekrój próbki wynosi So cm 2, to udarność K obliczamy wg wzoru K = Wu / S0 J/cm3 gdzie: Wu wartość pracy odpowiadającej' energii zużytej na złamanie próbki w J, So powierzchnia przekroju poprzecznego próbki w miejscu karbu mierzona przed próbą w cm 2. Własności cieplne Głównymi własnościami cieplnymi materiałów technicznych są: pojemność cieplna, rozszerzalność temperaturowa oraz przewodność cieplna. P o j e m n o ś c i ą c i e p l n ą substancji nazywa się ilość ciepła potrzebną do podniesienia temperatury tej substancji o jeden stopień. Pojemność cieplna przypadająca na jednostkę masy substancji nazywa się ciepłem właściwym i wyraża się w J/ (kg K). Ciepło właściwe nie jest wartością stałą i zależy głównie od temperatury. Ciepło właściwe wielu substancji krystalicznych, bezpostaciowych i szklistych wzrasta wraz ze wzrostem temperatury. R o z s z e r z a l n o ś ć t e m p e r a t u r o w a charakteryzuje zjawisko zmiany wymiarów substancji wraz ze zmianą temperatury. Przyrost długości przypadający na jednostkę długości spowodowany wzrostem temperatury o IK nazywa się współczynnikiem temperaturowej rozszerzalności liniowej. Zjawisko rozszerzalności temperaturowej ciał stałych jest spowodowane drganiami atomów w siatce krystalicznej, w których intensywność wzrasta wraz ze wzrostem temperatury. Podczas ogrzewania pewne materiały wykazują nagłe zmiany współczynnika rozszerzalności temperaturowej. Zmiany te są spowodowane głównie przez przebudowę siatki krystalicznej zachodzącą w niektórych substancjach w określonych temperaturach. Przewodność c i e p l n a jest określona współczynnikiem przewodności cieplnej. Jest to ilość ciepła, która w jednostce czasu przepływa przez jednostkę powierzchni, gdy różnica temperatury w ciele przewodzącym ciepło równa jest K na jednostkę długości. W technice współczynnik przewodności cieplnej wyraża się W/ (m K). Własności elektryczne

13 Stosowane w technice materiały ze względu na zdolność przewodzenia prądu elektrycznego dzieli się na przewodniki, półprzewodniki i izolatory: Umownie przyjęto uważać za przewodniki ciała, których oporność właściwa w temperaturze pokojowej jest mniejsza od Ω cm. Za izolatory uważa się ciała o oporności właściwej przekraczającej Ω cm.. Ciała wykazujące oporność właściwą od l.do Ω cm uważa się za półprzewodniki. Różnice między przewodnikami, izolatorami i półprzewodnikami są bardziej istotne niż to wynika z przedstawionej klasyfikacji. Dotyczą one głównie sposobu przewodzenia prądu oraz wpływu warunków zewnętrznych na przewodność elektryczną materiałów. Własności magnetyczne W zależności od zachowania się materiałów w polu magnetycznym można wszystkie materiały podzielić na diamagnetyczne, paramagnetyczne i ferromagnetyczne Materiały diamagnetyczne ustawiają się w stałym polu magnetycznym prostopadle do kierunku linii sił pola. Materiałami diamagnetycznymi są: bizmut, cynk, miedź. Materiały paramagnetyczne ustawiają się w polu magnetycznym równolegle do kierunku linii sił pola. Własności paramagnetyczne wykazują między innymi: aluminium, chrom i mangan. Materiały ferromagnetyczne umieszczone w polu magnetycznym wraz ze wzrostem natężenia tego pola ulegają namagnesowaniu i po usunięciu pola magnetycznego wykazują samoistne własności magnetyczne. Materiałami ferromagnetycznymi są: żelazo w temperaturze otoczenia, nikiel, kobalt oraz niektóre ich tlenki i węgliki. Własności chemiczne Z punktu widzenia konstruktora i eksploatatora urządzeń własności chemiczne materiałów sprowadzają się do odporności materiału na działanie środowiska, w którym urządzenia te przebywają stale. Metale, z którymi w budownictwie maszyn mamy najczęściej do czynienia, wykazują tendencje do utleniania się (korozja chemiczna) lub ulegają jonizacji w obecności elektrolitu. Jeżeli w elektrolicie występuje różnica potencjałów między sąsiadującymi ze sobą obszarami stopu, wówczas rozpoczyna wędrówka różnoimiennych jonów, co w konsekwencji prowadzi do zniszczenia materiału w pewnych obszarach. Zjawisko niszczenia stopów lub metali przy udziale elektrolitu nazywa się korozją elektrochemiczną. Jest zatem zrozumiałe, że przy doborze materiałów należy liczyć się z możliwością występowania korozji i wobec tego trzeba urządzenia chronić przed jej skutkami. Zasady oszczędnego doboru materiałów Przy doborze materiału ma niewątpliwie istotne znaczenie jego cena jednostkowa. Jednakże rezygnuje się niejednokrotnie ze stosowania tanich tworzyw na korzyść tworzyw droższych, jeżeli ich zastosowanie zapewni dłuższą trwałość urządzenia lub poprawi niezawodność działania. Spełnienie określonych warunków przy doborze materiałów prowadzi do uzyskania pozytywnych skutków ekonomicznych. Jako najważniejsze wymienić należy: 1. Zwiększenie dokładności obliczeń wytrzymałościowych pozwalające na zmniejszenie współczynników bezpieczeństwa. 2. Dokładna znajomość warunków pracy urządzenia, 3. Zastosowanie optymalnych metod wytwarzania. 4. Obniżenie zapotrzebowania na materiały przez stosowanie kształtowników, rur itp. półwyrobów zbliżonych wymiarami do gotowego produktu.

14 5. Przeanalizowanie właściwości materiałów i możliwości ich zmiany przez zastosowanie obróbki cieplnej, powierzchniowej itp. Ilościowe ujęcie wymienionych czynników pozwoliłoby na podjęcie jednoznacznej decyzji w sprawie doboru materiału. Od pewnego czasu czyni się próby podporządkowania wymienionym warunkom określonych parametrów liczbowych uwzględniających sposób obciążenia elementów oraz dopuszczalne naprężenia występujące pod obciążeniem elementu. Parametry te, zwane wskaźnikami materiałowymi, określają porównawczo (w procentach) ciężar, objętość i koszt użytego materiału. Problemy te rozwiązuje konstruktor urządzenia podczas opracowania dokumentacji projektowej.

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła próba rozciągania stali Numer ćwiczenia: 1 Laboratorium z przedmiotu:

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA STATYCZNA PRÓBA ROZCIĄGANIA Próba statyczna rozciągania jest jedną z podstawowych prób stosowanych do określenia jakości materiałów konstrukcyjnych wg kryterium naprężeniowego w warunkach obciążeń statycznych.

Bardziej szczegółowo

BADANIA WŁAŚCIWOŚCI MECHANICZNYCH MATERIAŁÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

BADANIA WŁAŚCIWOŚCI MECHANICZNYCH MATERIAŁÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego BADANIA WŁAŚCIWOŚCI MECHANICZNYCH MATERIAŁÓW Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Właściwości Fizyczne (gęstość, ciepło właściwe, rozszerzalność

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: STATYCZNA PRÓBA ROZCIĄGANIA oprac. dr inż. Jarosław Filipiak Cel ćwiczenia 1. Zapoznanie się ze sposobem przeprowadzania statycznej

Bardziej szczegółowo

Temat 1 (2 godziny): Próba statyczna rozciągania metali

Temat 1 (2 godziny): Próba statyczna rozciągania metali Temat 1 (2 godziny): Próba statyczna rozciągania metali 1.1. Wstęp Próba statyczna rozciągania jest podstawowym rodzajem badania metali, mających zastosowanie w technice i pozwala na określenie własności

Bardziej szczegółowo

Właściwości mechaniczne

Właściwości mechaniczne Właściwości mechaniczne materiałów budowlanych Właściwości mechaniczne 1. Wytrzymałość na ściskanie 2. Wytrzymałość na rozciąganie 3. Wytrzymałość na zginanie 4. Podatność na rozmiękanie 5. Sprężystość

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Badanie udarności metali Numer ćwiczenia: 7 Laboratorium z przedmiotu: wytrzymałość

Bardziej szczegółowo

SPRAWOZDANIE LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW B Badanie własności mechanicznych materiałów konstrukcyjnych

SPRAWOZDANIE LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW B Badanie własności mechanicznych materiałów konstrukcyjnych Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji SPRAWOZDANIE B Badanie własności mechanicznych materiałów konstrukcyjnych Wydział Specjalność.. Nazwisko

Bardziej szczegółowo

BADANIA WŁASNOŚCI MECHANICZNYCH MATERIAŁÓW KONSTRUKCYJNYCH 1. Próba rozciągania metali w temperaturze otoczenia (zg. z PN-EN :2002)

BADANIA WŁASNOŚCI MECHANICZNYCH MATERIAŁÓW KONSTRUKCYJNYCH 1. Próba rozciągania metali w temperaturze otoczenia (zg. z PN-EN :2002) Nazwisko i imię... Akademia Górniczo-Hutnicza Nazwisko i imię... Laboratorium z Wytrzymałości Materiałów Wydział... Katedra Wytrzymałości Materiałów Rok... Grupa... i Konstrukcji Data ćwiczenia... Ocena...

Bardziej szczegółowo

Mechanika i wytrzymałość materiałów instrukcja do ćwiczenia laboratoryjnego

Mechanika i wytrzymałość materiałów instrukcja do ćwiczenia laboratoryjnego Mechanika i wytrzymałość materiałów instrukcja do ćwiczenia laboratoryjnego Cel ćwiczenia STATYCZNA PRÓBA ŚCISKANIA autor: dr inż. Marta Kozuń, dr inż. Ludomir Jankowski 1. Zapoznanie się ze sposobem przeprowadzania

Bardziej szczegółowo

Próby udarowe. Opracował: XXXXXXX studia inŝynierskie zaoczne wydział mechaniczny semestr V. Gdańsk 2002 r.

Próby udarowe. Opracował: XXXXXXX studia inŝynierskie zaoczne wydział mechaniczny semestr V. Gdańsk 2002 r. Próby udarowe Opracował: XXXXXXX studia inŝynierskie zaoczne wydział mechaniczny semestr V Gdańsk 00 r. 1. Cel ćwiczenia. Przeprowadzenie ćwiczenia ma na celu: 1. zapoznanie się z próbą udarności;. zapoznanie

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW PRÓBA UDARNOŚCI METALI Opracował: Dr inż. Grzegorz Nowak Gliwice

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Rozciąganie/ ściskanie prętów prostych Naprężenia i odkształcenia, statyczna próba rozciągania i ściskania, właściwości mechaniczne, projektowanie elementów obciążonych osiowo.

Bardziej szczegółowo

Temat 2 (2 godziny) : Próba statyczna ściskania metali

Temat 2 (2 godziny) : Próba statyczna ściskania metali Temat 2 (2 godziny) : Próba statyczna ściskania metali 2.1. Wstęp Próba statyczna ściskania jest podstawowym sposobem badania materiałów kruchych takich jak żeliwo czy beton, które mają znacznie lepsze

Bardziej szczegółowo

SPRAWOZDANIE: LABORATORIUM Z WYTRZYMAŁOŚCI MATERIAŁÓW B Badanie własności mechanicznych materiałów konstrukcyjnych

SPRAWOZDANIE: LABORATORIUM Z WYTRZYMAŁOŚCI MATERIAŁÓW B Badanie własności mechanicznych materiałów konstrukcyjnych Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji SPRAWOZDANIE: LABORATORIUM Z WYTRZYMAŁOŚCI MATERIAŁÓW B Badanie własności mechanicznych materiałów konstrukcyjnych

Bardziej szczegółowo

Metody badań materiałów konstrukcyjnych

Metody badań materiałów konstrukcyjnych Wyznaczanie stałych materiałowych Nr ćwiczenia: 1 Wyznaczyć stałe materiałowe dla zadanych materiałów. Maszyna wytrzymałościowa INSTRON 3367. Stanowisko do badania wytrzymałości na skręcanie. Skalibrować

Bardziej szczegółowo

1. BADANIE SPIEKÓW 1.1. Oznaczanie gęstości i porowatości spieków

1. BADANIE SPIEKÓW 1.1. Oznaczanie gęstości i porowatości spieków 1. BADANIE SPIEKÓW 1.1. Oznaczanie gęstości i porowatości spieków Gęstością teoretyczną spieku jest stosunek jego masy do jego objętości rzeczywistej, to jest objętości całkowitej pomniejszonej o objętość

Bardziej szczegółowo

metali i stopów

metali i stopów metali i stopów 2013-10-20 1 Układ SI Międzynarodowy Układ Jednostek Miar zatwierdzony w 1960 (później modyfikowany) przez Generalną Konferencję Miar. Jest stworzony w oparciu o metryczny system miar.

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE TWORZYW SZTUCZNYCH OZNACZENIE WŁASNOŚCI MECHANICZNYCH PRZY STATYCZNYM ROZCIĄGANIU

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Zwykła statyczna próba ściskania metali Numer ćwiczenia: 3 Laboratorium z przedmiotu:

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 4

INSTRUKCJA DO CWICZENIA NR 4 INSTRUKCJA DO CWICZENIA NR 4 Temat ćwiczenia: Statyczna próba rozciągania metali Celem ćwiczenia jest wykonanie próby statycznego rozciągania metali, na podstawie której można określić następujące własności

Bardziej szczegółowo

PROCESY PRODUKCYJNE WYTWARZANIA METALI I WYROBÓW METALOWYCH

PROCESY PRODUKCYJNE WYTWARZANIA METALI I WYROBÓW METALOWYCH Wyższa Szkoła Ekonomii i Administracji w Bytomiu Wilhelm Gorecki PROCESY PRODUKCYJNE WYTWARZANIA METALI I WYROBÓW METALOWYCH Podręcznik akademicki Bytom 2011 1. Wstęp...9 2. Cel podręcznika...11 3. Wstęp

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Instrukcja przeznaczona jest dla studentów następujących kierunków: 1. Energetyka - sem.

Bardziej szczegółowo

Pomiar twardości ciał stałych

Pomiar twardości ciał stałych Pomiar twardości ciał stałych Twardość jest istotną cechą materiału z konstrukcyjnego i technologicznego punktu widzenia. Twardość, to właściwość ciał stałych polegająca na stawianiu oporu odkształceniom

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 13, Data wydania: 22 kwietnia 2015 r. Nazwa i adres INSTYTUT

Bardziej szczegółowo

PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH

PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Reologia jest nauką,

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH KATEDRA MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Instrukcja przeznaczona jest dla studentów następujących kierunków: 1. Energetyka - sem. 3

Bardziej szczegółowo

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe

WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ Zmiany makroskopowe Zmiany makroskopowe R e = R 0.2 - umowna granica plastyczności (0.2% odkształcenia trwałego); R m - wytrzymałość na rozciąganie (plastyczne); 1

Bardziej szczegółowo

Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis

Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis Nauka o Materiałach Wykład IX Odkształcenie materiałów właściwości plastyczne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Odkształcenie plastyczne 2. Parametry makroskopowe 3. Granica plastyczności

Bardziej szczegółowo

Badanie twardości metali

Badanie twardości metali Badanie twardości metali Metoda Rockwella (HR) Metoda Brinnella (HB) Metoda Vickersa (HV) Metoda Shore a Metoda Charpy'ego 2013-10-20 1 Twardość to odporność materiału na odkształcenia trwałe, występujące

Bardziej szczegółowo

Wykład IX: Odkształcenie materiałów - właściwości plastyczne

Wykład IX: Odkształcenie materiałów - właściwości plastyczne Wykład IX: Odkształcenie materiałów - właściwości plastyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Odkształcenie

Bardziej szczegółowo

Materiały Reaktorowe. Właściwości mechaniczne

Materiały Reaktorowe. Właściwości mechaniczne Materiały Reaktorowe Właściwości mechaniczne Naprężenie i odkształcenie F A 0 l i l 0 l 0 l l 0 a. naprężenie rozciągające b. naprężenie ściskające c. naprężenie ścinające d. Naprężenie torsyjne Naprężenie

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE ZACHOWANIA SIĘ MATERIAŁÓW PODCZAS ŚCISKANIA Instrukcja przeznaczona jest dla studentów

Bardziej szczegółowo

INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 2

INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 2 INSTYTUT INŻYNIERII MATERIAŁOWEJ PŁ LABORATORIUM TECHNOLOGII POWŁOK OCHRONNYCH ĆWICZENIE 2 BADANIA ODPORNOŚCI NA KOROZJĘ ELEKTROCHEMICZNĄ SYSTEMÓW POWŁOKOWYCH 1. WSTĘP TEORETYCZNY Odporność na korozję

Bardziej szczegółowo

Rodzaje obciążeń, odkształceń i naprężeń

Rodzaje obciążeń, odkształceń i naprężeń Rodzaje obciążeń, odkształceń i naprężeń 1. Podział obciążeń i odkształceń Oddziaływania na konstrukcję, w zależności od sposobu działania sił, mogą być statyczne lun dynamiczne. Obciążenia statyczne występują

Bardziej szczegółowo

ĆWICZENIE NR 9. Zakład Budownictwa Ogólnego. Stal - pomiar twardości metali metodą Brinella

ĆWICZENIE NR 9. Zakład Budownictwa Ogólnego. Stal - pomiar twardości metali metodą Brinella Zakład Budownictwa Ogólnego ĆWICZENIE NR 9 Stal - pomiar twardości metali metodą Brinella Instrukcja z laboratorium: Budownictwo ogólne i materiałoznawstwo Instrukcja do ćwiczenia nr 9 Strona 9.1. Pomiar

Bardziej szczegółowo

Ćwiczenie 5 POMIARY TWARDOŚCI. 1. Cel ćwiczenia. 2. Wprowadzenie

Ćwiczenie 5 POMIARY TWARDOŚCI. 1. Cel ćwiczenia. 2. Wprowadzenie Ćwiczenie 5 POMIARY TWARDOŚCI 1. Cel ćwiczenia Celem ćwiczenia jest zaznajomienie studentów ze metodami pomiarów twardości metali, zakresem ich stosowania, zasadami i warunkami wykonywania pomiarów oraz

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH

POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH POLITECHNIKA WASZAWSKA WYDZIAŁ ELEKTYCZNY INSTYTUT ELEKTOTECHNIKI TEOETYCZNEJ I SYSTEMÓW INOMACYJNO-POMIAOWYCH ZAKŁAD WYSOKICH NAPIĘĆ I KOMPATYBILNOŚCI ELEKTOMAGNETYCZNEJ PACOWNIA MATEIAŁOZNAWSTWA ELEKTOTECHNICZNEGO

Bardziej szczegółowo

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis Nauka o Materiałach Wykład XI Właściwości cieplne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe 3. Przewodnictwo cieplne 4. Rozszerzalność

Bardziej szczegółowo

Naprężenia i odkształcenia spawalnicze

Naprężenia i odkształcenia spawalnicze Naprężenia i odkształcenia spawalnicze Cieplno-mechaniczne właściwości metali i stopów Parametrami, które określają stan mechaniczny metalu w różnych temperaturach, są: - moduł sprężystości podłużnej E,

Bardziej szczegółowo

MATERIAŁY KONSTRUKCYJNE

MATERIAŁY KONSTRUKCYJNE Stal jest to stop żelaza z węglem o zawartości węgla do 2% obrobiona cieplnie i przerobiona plastycznie Stale ze względu na skład chemiczny dzielimy głównie na: Stale węglowe Stalami węglowymi nazywa się

Bardziej szczegółowo

Do najbardziej rozpowszechnionych metod dynamicznych należą:

Do najbardziej rozpowszechnionych metod dynamicznych należą: Twardość metali 6.1. Wstęp Twardość jest jedną z cech mechanicznych materiału równie ważną z konstrukcyjnego i technologicznego punktu widzenia, jak wytrzymałość na rozciąganie, wydłużenie, przewężenie,

Bardziej szczegółowo

Właściwości kryształów

Właściwości kryształów Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne

Bardziej szczegółowo

BADANIE PARAMETRÓW WYTRZYMAŁOŚCIOWYCH DZIANIN LEWO-PRAWYCH WYKONANYCH Z PRZĘDZ DZIANYCH. Wojciech Pawłowski

BADANIE PARAMETRÓW WYTRZYMAŁOŚCIOWYCH DZIANIN LEWO-PRAWYCH WYKONANYCH Z PRZĘDZ DZIANYCH. Wojciech Pawłowski BADANIE PARAMETRÓW WYTRZYMAŁOŚCIOWYCH DZIANIN LEWO-PRAWYCH WYKONANYCH Z PRZĘDZ DZIANYCH 1. Wprowadzenie Wojciech Pawłowski W porównaniu z tkaninami dzianiny charakteryzują się dużą rozciągliwością i sprężystością.

Bardziej szczegółowo

Nauka o Materiałach. Wykład I. Zniszczenie materiałów w warunkach dynamicznych. Jerzy Lis

Nauka o Materiałach. Wykład I. Zniszczenie materiałów w warunkach dynamicznych. Jerzy Lis Wykład I Zniszczenie materiałów w warunkach dynamicznych Jerzy Lis Treść wykładu: 1. Zmęczenie materiałów 2. Tarcie i jego skutki 3. Udar i próby udarności. 4. Zniszczenie balistyczne 5. Erozja cząstkami

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Ścisła próba rozciągania stali Numer ćwiczenia: 2 Laboratorium z przedmiotu:

Bardziej szczegółowo

Badania wytrzymałościowe

Badania wytrzymałościowe WyŜsza Szkoła InŜynierii Dentystycznej im. prof. A.Meissnera w Ustroniu Badania wytrzymałościowe elementów drucianych w aparatach czynnościowych. Pod kierunkiem naukowym prof. V. Bednara Monika Piotrowska

Bardziej szczegółowo

Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć. Dr hab.

Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć. Dr hab. Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i Techniki Wysokich Napięć Dr hab. Paweł Żukowski Materiały magnetyczne Właściwości podstawowych materiałów magnetycznych

Bardziej szczegółowo

LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie 3 PRÓBA UDARNOŚCI METALI Wprowadzenie

LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie 3 PRÓBA UDARNOŚCI METALI Wprowadzenie LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Ćwiczenie 3 PRÓBA UDARNOŚCI METALI 3.1. Wprowadzenie Materiały konstrukcyjne różnie reagują na obciążenia dynamiczne i statyczne, zmieniające się bardzo wolno - od

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE ZACHOWANIA SIĘ MATERIAŁÓW PODCZAS ŚCISKANIA Instrukcja przeznaczona jest dla studentów

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 5

INSTRUKCJA DO CWICZENIA NR 5 INTRUKCJA DO CWICZENIA NR 5 Temat ćwiczenia: tatyczna próba ściskania materiałów kruchych Celem ćwiczenia jest wykonanie próby statycznego ściskania materiałów kruchych, na podstawie której można określić

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 342 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 8, Data wydania: 17 września 2009 r. Nazwa i adres organizacji

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 3 Temat ćwiczenia:

Bardziej szczegółowo

Ćwiczenie 6 STATYCZNA PRÓBA ROZCIĄGANIA *

Ćwiczenie 6 STATYCZNA PRÓBA ROZCIĄGANIA * Ćwiczenie 6 1. CEL ĆWICZENIA TATYCZNA PRÓBA ROZCIĄGANIA * Celem ćwiczenia jest zapoznanie się z przebiegiem próby rozciągania i wielkościami wyznaczanymi podczas tej próby. 2. WIADOMOŚCI PODTAWOWE Próba

Bardziej szczegółowo

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne

Bardziej szczegółowo

Spis treści. Wstęp Część I STATYKA

Spis treści. Wstęp Część I STATYKA Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.

Bardziej szczegółowo

Wprowadzenie do WK1 Stan naprężenia

Wprowadzenie do WK1 Stan naprężenia Wytrzymałość materiałów i konstrukcji 1 Wykład 1 Wprowadzenie do WK1 Stan naprężenia Płaski stan naprężenia Dr inż. Piotr Marek Wytrzymałość Konstrukcji (Wytrzymałość materiałów, Mechanika konstrukcji)

Bardziej szczegółowo

PROJEKT - ODLEWNICTWO

PROJEKT - ODLEWNICTWO W celu wprowadzenia do produkcji nowego wyrobu konieczne jest opracowanie dokumentacji technologicznej, w której skład wchodzą : rysunek konstrukcyjny gotowego wyrobu, rysunek koncepcyjny sposobu odlewania,

Bardziej szczegółowo

Temat: NAROST NA OSTRZU NARZĘDZIA

Temat: NAROST NA OSTRZU NARZĘDZIA AKADEMIA TECHNICZNO-HUMANISTYCZNA w Bielsku-Białej Katedra Technologii Maszyn i Automatyzacji Ćwiczenie wykonano: dnia:... Wykonał:... Wydział:... Kierunek:... Rok akadem.:... Semestr:... Ćwiczenie zaliczono:

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 193

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 193 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 193 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 15, Data wydania: 8 października 2015 r. AB 193 Kod identyfikacji

Bardziej szczegółowo

BADANIA WŁAŚCIWOŚCI MECHANICZNYCH I BADANIA NIENISZCZĄCE

BADANIA WŁAŚCIWOŚCI MECHANICZNYCH I BADANIA NIENISZCZĄCE BADANIA WŁAŚCIWOŚCI MECHANICZNYCH I BADANIA NIENISZCZĄCE Temat ćwiczenia: Wpływ kształtu karbu i temperatury na udarność Miejsce ćwiczeń: sala 15 Czas: 4*45 min Prowadzący: dr inż. Julita Dworecka-Wójcik,

Bardziej szczegółowo

Zespół Szkół Samochodowych

Zespół Szkół Samochodowych Zespół Szkół Samochodowych Podstawy Konstrukcji Maszyn Materiały Konstrukcyjne i Eksploatacyjne Temat: OTRZYMYWANIE STOPÓW ŻELAZA Z WĘGLEM. 2016-01-24 1 1. Stopy metali. 2. Odmiany alotropowe żelaza. 3.

Bardziej szczegółowo

Nauka o materiałach III

Nauka o materiałach III Pomiar twardości metali metodami: Brinella, Rockwella i Vickersa Nr ćwiczenia: 1 Zapoznanie się z zasadami pomiaru, budową i obsługą twardościomierzy: Brinella, Rockwella i Vickersa. Twardościomierz Brinella

Bardziej szczegółowo

POLITECHNIKA RZESZOWSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA

POLITECHNIKA RZESZOWSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA POLITECHNIK RZEZOWK im. IGNCEGO ŁUKIEWICZ WYDZIŁ BUDOWNICTW I INŻYNIERII ŚRODOWIK LBORTORIUM WYTRZYMŁOŚCI MTERIŁÓW Ćwiczenie nr 1 PRÓB TTYCZN ROZCIĄGNI METLI Rzeszów 4-1 - PRz, Katedra Mechaniki Konstrkcji

Bardziej szczegółowo

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA

Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA Zachodniopomorski Uniwersytet Technologiczny INSTYTUT INŻYNIERII MATERIAŁOWEJ ZAKŁAD METALOZNAWSTWA I ODLEWNICTWA PRZEDMIOT: INŻYNIERIA WARSTWY WIERZCHNIEJ Temat ćwiczenia: Badanie prędkości zużycia materiałów

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R,5, umownej granicy plastyczności R,2 oraz modułu sprężystości podłużnej E 3.1. Wstęp Nie wszystkie materiały posiadają wyraźną granicę plastyczności

Bardziej szczegółowo

SPECYFIKACJA TECHNICZNA DLA PRZEWODÓW RUROWYCH

SPECYFIKACJA TECHNICZNA DLA PRZEWODÓW RUROWYCH PSE-Operator S.A. SPECYFIKACJA TECHNICZNA DLA PRZEWODÓW RUROWYCH Warszawa 2006 1 z 5 SPIS TREŚCI 1.0 WYMAGANIA OGÓLNE... 3 2.0 NORMY... 3 3.0 WYMAGANE PARAMETRY TECHNICZNE... 4 4.0 WYMAGANIA TECHNICZNE...

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE TWORZYW SZTUCZNYCH OZNACZENIE WŁASNOŚCI MECHANICZNYCH PRZY STATYCZNYM ROZCIĄGANIU

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz. 7

Dobór materiałów konstrukcyjnych cz. 7 Dobór materiałów konstrukcyjnych cz. 7 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne Sprężystość i wytrzymałość Naprężenie

Bardziej szczegółowo

Stal - definicja Stal

Stal - definicja Stal \ Stal - definicja Stal stop żelaza z węglem,plastycznie obrobiony i obrabialny cieplnie o zawartości węgla nieprzekraczającej 2,11% co odpowiada granicznej rozpuszczalności węgla w żelazie (dla stali

Bardziej szczegółowo

Laboratorium wytrzymałości materiałów

Laboratorium wytrzymałości materiałów Politechnika Lubelska MECHANIKA Laboratorium wytrzymałości materiałów Ćwiczenie 1 - Statyczna próba rozciągania Przygotował: Andrzej Teter (do użytku wewnętrznego) Statyczna próba rozciągania Statyczną

Bardziej szczegółowo

MATERIAŁOZNAWSTWO. dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu )

MATERIAŁOZNAWSTWO. dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu ) MATERIAŁOZNAWSTWO dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu ) jhucinsk@pg.gda.pl MATERIAŁOZNAWSTWO dziedzina nauki stosowanej obejmująca badania zależności

Bardziej szczegółowo

Techniki wytwarzania - odlewnictwo

Techniki wytwarzania - odlewnictwo Techniki wytwarzania - odlewnictwo Główne elementy układu wlewowego Układy wlewowe Struga metalu Przekrój minimalny Produkcja odlewów na świecie Odbieranie ciepła od odlewów przez formę Krystalizacja Schematyczne

Bardziej szczegółowo

MATERIAŁOZNAWSTWO vs WYTRZYMAŁOŚĆ MATERIAŁÓW

MATERIAŁOZNAWSTWO vs WYTRZYMAŁOŚĆ MATERIAŁÓW ĆWICZENIA LABORATORYJNE Z MATERIAŁOZNAWSTWA Statyczna próba rozciągania stali Wyznaczanie charakterystyki naprężeniowo odkształceniowej. Określanie: granicy sprężystości, plastyczności, wytrzymałości na

Bardziej szczegółowo

PaleZbrojenie 5.0. Instrukcja użytkowania

PaleZbrojenie 5.0. Instrukcja użytkowania Instrukcja użytkowania ZAWARTOŚĆ INSTRUKCJI UŻYTKOWANIA: 1. WPROWADZENIE 3 2. TERMINOLOGIA 3 3. PRZEZNACZENIE PROGRAMU 3 4. WPROWADZENIE DANYCH ZAKŁADKA DANE 4 5. ZASADY WYMIAROWANIA PRZEKROJU PALA 8 5.1.

Bardziej szczegółowo

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między

Bardziej szczegółowo

STAL NARZĘDZIOWA DO PRACY NA GORĄCO

STAL NARZĘDZIOWA DO PRACY NA GORĄCO STAL NARZĘDZIOWA DO PRACY NA GORĄCO Stal BÖHLER W360 ISOBLOC jest stalą narzędziową na matryce i stemple do kucia na zimno i na gorąco. Stal ta może mieć szerokie zastosowanie, gdzie wymagane są wysoka

Bardziej szczegółowo

LABORATORIUM NAUKI O MATERIAŁACH

LABORATORIUM NAUKI O MATERIAŁACH Politechnika Łódzka Wydział Mechaniczny Instytut Inżynierii Materiałowej LABORATORIUM NAUKI O MATERIAŁACH Blok nr 1 Badania Własności Mechanicznych L.p. Nazwisko i imię Nr indeksu Wydział Semestr Grupa

Bardziej szczegółowo

Wyznaczanie modułu Younga metodą strzałki ugięcia

Wyznaczanie modułu Younga metodą strzałki ugięcia Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych

Bardziej szczegółowo

Materiały dydaktyczne. Semestr IV. Laboratorium

Materiały dydaktyczne. Semestr IV. Laboratorium Materiały dydaktyczne Wytrzymałość materiałów Semestr IV Laboratorium 1 Temat: Statyczna zwykła próba rozciągania metali. Praktyczne przeprowadzenie statycznej próby rozciągania metali, oraz zapoznanie

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz. 9

Dobór materiałów konstrukcyjnych cz. 9 Dobór materiałów konstrukcyjnych cz. 9 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne Materiały na uszczelki Ashby M.F.:

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 2 Temat ćwiczenia:

Bardziej szczegółowo

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2.

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2. Ocena Laboratorium Dydaktyczne Zakład Wytrzymałości Materiałów, W2/Z7 Dzień i godzina ćw. Imię i Nazwisko ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA 1. Protokół próby rozciągania 1.1.

Bardziej szczegółowo

Pomiar twardości. gdzie: HB - twardość wg Brinella, F - siła obciążająca, S cz - pole powierzchni czaszy.

Pomiar twardości. gdzie: HB - twardość wg Brinella, F - siła obciążająca, S cz - pole powierzchni czaszy. Pomiar twardości 1. Wprowadzenie Badanie twardości polega na wciskaniu wgłębnika w badany materiał poza granicę sprężystości, do spowodowania odkształceń trwałych. Wobec czego twardość można określić jako

Bardziej szczegółowo

Badanie próbek materiału kompozytowego wykonanego z blachy stalowej i powłoki siatkobetonowej

Badanie próbek materiału kompozytowego wykonanego z blachy stalowej i powłoki siatkobetonowej Badanie próbek materiału kompozytowego wykonanego z blachy stalowej i powłoki siatkobetonowej Temat: Sprawozdanie z wykonanych badań. OPRACOWAŁ: mgr inż. Piotr Materek Kielce, lipiec 2015 SPIS TREŚCI str.

Bardziej szczegółowo

Analiza zużycia narzędzi w linii zgrzewania rur ocena niezawodności. Stanisław Nowak, Krzysztof Żaba, Grzegorz Sikorski, Marcin Szota, Paweł Góra

Analiza zużycia narzędzi w linii zgrzewania rur ocena niezawodności. Stanisław Nowak, Krzysztof Żaba, Grzegorz Sikorski, Marcin Szota, Paweł Góra Analiza zużycia narzędzi w linii zgrzewania rur ocena niezawodności Stanisław Nowak, Krzysztof Żaba, Grzegorz Sikorski, Marcin Szota, Paweł Góra Dlaczego narzędzia są takie ważne 1. Udział kosztów narzędzi

Bardziej szczegółowo

MIKROSKOPIA METALOGRAFICZNA

MIKROSKOPIA METALOGRAFICZNA MIKROSKOPIA METALOGRAFICZNA WYKŁAD 3 Stopy żelazo - węgiel dr inż. Michał Szociński Spis zagadnień Ogólna charakterystyka żelaza Alotropowe odmiany żelaza Układ równowagi fazowej Fe Fe 3 C Przemiany podczas

Bardziej szczegółowo

STATYCZNA PRÓBA SKRĘCANIA

STATYCZNA PRÓBA SKRĘCANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku

Bardziej szczegółowo

PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW.

PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW. PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW. 1 Wiadomości wstępne 1.1 Zakres zastosowania stali do konstrukcji 1.2 Korzyści z zastosowania stali do konstrukcji 1.3 Podstawowe części i elementy

Bardziej szczegółowo

Spis treści Przedmowa

Spis treści Przedmowa Spis treści Przedmowa 1. Wprowadzenie do problematyki konstruowania - Marek Dietrich (p. 1.1, 1.2), Włodzimierz Ozimowski (p. 1.3 -i-1.7), Jacek Stupnicki (p. l.8) 1.1. Proces konstruowania 1.2. Kryteria

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH POMIARY TWARDOŚCI Instrukcja przeznaczona jest dla studentów następujących kierunków: 1.

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz. 2

Dobór materiałów konstrukcyjnych cz. 2 Dobór materiałów konstrukcyjnych cz. 2 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne Własności materiałów brane pod uwagę

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA O ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW TECH OLOGICZ A PRÓBA ZGI A IA Zasada wykonania próby. Próba polega

Bardziej szczegółowo

STAL NARZĘDZIOWA DO PRACY NA ZIMNO

STAL NARZĘDZIOWA DO PRACY NA ZIMNO STAL NARZĘDZIOWA DO PRACY NA ZIMNO Jakościowe porównanie głównych własności stali Tabela daje jedynie wskazówki, by ułatwić dobór stali. Nie uwzględniono tu charakteru obciążenia narzędzia wynikającego

Bardziej szczegółowo

Wykład 8: Lepko-sprężyste odkształcenia ciał

Wykład 8: Lepko-sprężyste odkształcenia ciał Wykład 8: Lepko-sprężyste odkształcenia ciał Leszek CHODOR dr inż. bud, inż.arch. leszek@chodor.pl Literatura: [1] Piechnik St., Wytrzymałość materiałów dla wydziałów budowlanych,, PWN, Warszaw-Kraków,

Bardziej szczegółowo

Technologia obróbki cieplnej. Grzanie i ośrodki grzejne

Technologia obróbki cieplnej. Grzanie i ośrodki grzejne Technologia obróbki cieplnej Grzanie i ośrodki grzejne Grzanie: nagrzewanie i wygrzewanie Dobór czasu grzania Rodzaje ośrodków grzejnych Powietrze Ośrodki gazowe Złoża fluidalne Kąpiele solne: sole chlorkowe

Bardziej szczegółowo

Hartowność jako kryterium doboru stali

Hartowność jako kryterium doboru stali Hartowność jako kryterium doboru stali 1. Wstęp Od stali przeznaczonej do wyrobu części maszyn wymaga się przede wszystkim dobrych właściwości mechanicznych. Stali nie można jednak uznać za stal wysokiej

Bardziej szczegółowo

Politechnika Rzeszowska - Materiały inżynierskie - I DUT - 2010/2011 - dr inż. Maciej Motyka

Politechnika Rzeszowska - Materiały inżynierskie - I DUT - 2010/2011 - dr inż. Maciej Motyka PODSTAWY DOBORU MATERIAŁÓW INŻYNIERSKICH 1 Ogólna charakterystyka materiałów inżynierskich MATERIAŁAMI (inżynierskimi) nazywa się skondensowane (stałe) substancje, których właściwości czynią ją użytecznymi

Bardziej szczegółowo

LABORATORIUM NAUKI O MATERIAŁACH

LABORATORIUM NAUKI O MATERIAŁACH Politechnika Łódzka Wydział Mechaniczny Instytut Inżynierii Materiałowej LABORATORIUM NAUKI O MATERIAŁACH Ćwiczenie nr 5 Temat: Stale stopowe, konstrukcyjne, narzędziowe i specjalne. Łódź 2010 1 S t r

Bardziej szczegółowo