Ćwiczenie 1 POMIAR CHARAKTERYSTYK FILTRÓW PIEZOELEKTRYCZNYCH. Laboratorium Inżynierii Materiałowej
|
|
- Krystyna Małek
- 7 lat temu
- Przeglądów:
Transkrypt
1 Ćwiczenie 1 POMIAR CHARAKTERYSTYK FILTRÓW PIEZOELEKTRYCZNYCH Laboratorium Inżynierii Materiałowej
2 1. CEL ĆWICZENIA Filtry piezoelektryczne należą do grupy selektywnych podzespołów elektrycznych, w których wykorzystywany jest efekt piezoelektryczny. Filtry te wykorzystują płaskie, akustyczne fale objętościowe rozchodzące się wewnątrz materiału rezonatora lub płaskie, akustyczne fale powierzchniowe rozchodzące się wzdłuż swobodnej powierzchni na granicy ośrodków rezonator - powietrze. Fale te mogą przemieszczać się po powierzchni i są silnie tłumione w kierunku do wnętrza rezonatora. Granica rozdziałów ośrodków pełni tu, zatem funkcję prowadnicy fali powierzchniowej. Przez analogię do elektroniki półprzewodnikowej takie filtry można nazwać piezoelektrycznymi filtrami scalonymi. Ze względu na sposób rozchodzenia się drgań w elementach piezoelektrycznych filtry można podzielić na dwie zasadnicze grupy. Do pierwszej należą filtry, w których stosowane są rezonatory z drganiami objętościowymi. Filtry takie mogą zawierać rezonatory dyskretne lub rezonatory ze sprzężeniami akustycznymi, wykonane z jednej płytki piezoelektrycznej. Istnienie sprzężeń akustycznych między rezonatorami wykonywanymi na jednym podłożu możliwe jest dzięki występowaniu zjawiska pułapkowania energii. Filtry, w których stosuje się takie rezonatory nazywane są filtrami monolitycznymi. Do drugiej grupy zaliczane są filtry z akustyczną falą powierzchniową. Można je podzielić na dwie klasy: filtry transwersalne i filtry rezonansowe. Charakterystyczną cechą filtrów transwersalnych jest niezależność charakterystyk fazowych i amplitudowych. Mogą one realizować zarówno funkcję opóźnienia w czasie jak i funkcję filtracji częstotliwości. Filtry rezonansowe wykorzystują rezonatory z akustyczną falą powierzchniową. Ich struktura elektryczna jest podobna do struktury filtrów z rezonatorami dyskretnymi. W filtrach piezoelektrycznych jako materiału piezoelektrycznego używa się głównie monokryształów kwarcu, niobianu litu, tantalanu litu oraz ceramiki piezoelektrycznej. Spośród różnych materiałów ceramicznych najlepszymi parametrami piezoelektrycznymi charakteryzują się kompozycje ceramiczne systemu PZT będące roztworami stałymi cyrkonianu ołowiu (PbZrO3) i tytanianu ołowiu (PbTiO3). Są to ceramiki typu perowskitu, zawierające w swej strukturze krystalicznej typowy oktaedron tlenowy. Poniżej temperatury Curie, która w zależności od kompozycji wynosi od stu kilkudziesięciu do dwustu kilkudziesięciu stopni Celsjusza, ich regularna struktura krystaliczna deformuje się tworząc anizotopowe struktury ferroelektryczne. Struktury te wykazują także właściwości piezoelektryczne. Poważną zaletą ceramiki PZT jest stosunkowo prosta technologia wytwarzania, a w związku z tym niższa cena filtrów. Strony: 2/11
3 2. Podstawowe parametry filtrów piezoelektrycznych Zdolność transmisji filtrów piezoelektrycznych (podobnie jak filtrów innych typów) w normalnych warunkach pracy, z uwzględnieniem zarówno własności samego filtru jak i wpływu strat spowodowanych niedopasowaniem filtru do obwodów zewnętrznych, opisują pojęcia tamowności wtrąceniowej Γ, tłumienności wtrąceniowej A i przesuwności wtrąceniowej B związanych zależnością: (1) Tamowość wtrąceniowa definiowana jest wzorem: 10log (2) gdzie: P20 jest zespoloną mocą dysponowaną źródła, jaką mogłoby ono wydzielić w bezpośrednio dołączonej impedancji obciążenia Z2 (rys.1a), P2 jest mocą zespoloną jaką źródło wydziela na tej samej impedancji przy włączonym filtrze (rys.1b). Rysunek 1. Pomiar tamowości wtrąceniowej filtru a) układ odniesienia, b) układ do pomiaru w normalnych warunkach pracy Część rzeczywista tamowości, czyli tłumienność wtrąceniowa A decyduje o charakterystyce amplitudowej filtru, a część urojona, czyli przesuwalność B określa zmianę fazy sygnału spowodowaną włączaniem filtru piezoelektrycznego. W przypadku, gdy i, tłumienność wtrąceniową filtru wyrazić można wzorem (3): 10log 20log Zależność tę często przedstawia się w postaci: (3)!20log " (4.1) Strony: 3/11
4 gdzie: 20log " (4.2) Rozróżnia się dwie metody pomiaru tłumienności: bezpośrednią i pośrednią. Pierwsza metoda oparta jest na definicji tłumienności (wzór 3) w układzie zawierającym generator sygnału, badany filtr i miernik poziomu (mierzący napięcie na obciążeniu R2, rys1b). Druga metoda polega na pomiarze A (wzór 4.2) za pomocą wzorcowego tłumika dekadowego. Mierząc A przy różnych częstotliwościach sygnału generatora otrzymuje się charakterystykę amplitudową filtru. W praktyce, dla jej otrzymania stosuje się zestaw wobulatorowy, składający się z generatora przemiatającego i analizatora widma. Umożliwia on zaobserwowanie charakterystyk filtru na ekranie, w różnych zakresach częstotliwości. Na rysunku 2 przedstawiono typową charakterystykę tłumienności filtru. Rysunek 2. Parametry charakterystyka tłumienności filtru a) środkowoprzepustowego, b) środkowozaporowego. Wyróżnia się następujące parametry charakterystyk tłumienności (rys. 2): Minimalną tłumienność w pasie przepustowym A0 (w wymaganiach technicznych zazwyczaj podaje się dopuszczalną maksymalną wartość tej tłumienności), Częstotliwości krańcowe pasma przepustowego f±p, względnie pasma tłumionego f±t,przy których tłumienność wtrąceniowe względna Aw=A-A0 osiąga wymaganą wartość A (zwykle 3, 6, 15, 21, 40, 60, 80 lub 90 db), Strony: 4/11
5 Częstotliwość środkową f0 równą średniej geometrycznej częstotliwości krańcowych, # $ %# &' # ', Szerokość pasma przepustowego Δfp (tylko dla filtrów środkowoprzpustowych), równą przedziałowi częstotliwość, dla których względną tłumienność Aw nie przekracza żądanej wartości A (jest to więc różnica częstotliwości krańcowych), Współczynnik prostokątności K, równy stosunkowi dwóch szerokości pasm Δfp1 i Δfp2 (lub Δft1 i Δft2), dla dwóch różnych wartości tłumienności względnej Aw. Należy zwrócić uwagę, że dla prawidłowej pracy filtru muszą być spełnione określone warunki, przede wszystkim: Obciążenie filtru właściwymi rezystancjami; Zmniejszenie do minimum pasożytniczego sprzężenia między wejściem a wyjściem filtru; Nieprzekraczanie dopuszczalnej wartości poziomu mocy, napięcia lub prądu sygnału wejściowego. 3. Pomiary parametrów filtrów piezoelektrycznych Celem ćwiczenia jest pomiar metodą bezpośrednią charakterystyki amplitudowej filtrów piezoelektrycznych oraz zbadanie wpływu niedopasowania na kształt charakterystyki. Zasadę pomiaru ilustruje rys 1b oraz rys. 3. Rysunek 3. Układ laboratoryjny do badania charakterystyki amplitudowej filtrów ceramicznych. W zestawie laboratoryjnym znajduje się pięć filtrów piezoelektrycznych, które można obciążyć po stronie wejścia rezystorem R1, a po stronie wyjścia rezystorem R2. Zwora Z (przycisk) służy do bezpośredniego połączenia wejścia filtru z jego Strony: 5/11
6 wyjściem. Badane elementy należy dołączyć do płytki montażowej, przedstawionej na Rys. 4. Rysunek 4. Schemat płytki montażowej. Elementy umieszczone są na płytkach pomiarowych - Rys.5. Komplet elementów przedstawiono na Rys.6 Rysunek 5. Sposób montażu elementu na płytce pomiarowej. Rysunek 6. Rezonatory, obciążenia i zwora. Do pomiaru parametrów filtrów i rezonatorów zastosowano analizator widma z generatorem przemiatającym Instek GSP-810. Strony: 6/11
7 Rysunek 7. Pomiar filtru za pomocą analizatora widma Instek GSP-810. Przyrząd ten posiada wyświetlacz lampowy do prezentacji widm oraz wyświetlacz LCD i klawiaturę do komunikacji z użytkownikiem. Rysunek 8. Podłączenie przyrządu Instek GSP 810 do układu. Do włączenia przyrządu służy przycisk POWER na płycie czołowej. Po uruchomieniu należy wcisnąć sekwencyjnie klawisze Shift i TRK GEN celem aktywacji menu obsługującego generator przemiatający. Etykieta TRK GEN pokazuje status generatora. Po uaktywnieniu pola opisanego tą etykietą, klawisz umożliwia włączenie i wyłączenie generatora przemiatającego. Aby ustawić poziom sygnału z generatora należy za pomocą pokrętła obrotowego przejść do dolnej linii menu, do pola opisanego etykietą LEVEL. W sąsiednim polu, nieoznaczonym żadną etykietą, należy ustawić wartość przesunięcia częstotliwości początkowej na 0 khz. Strony: 7/11
8 Przycisk CENTER pozwala na wejście do pola oznaczonego taką samą etykietą, co umożliwia wybranie częstotliwości odpowiadającej środkowemu punktowi wyświetlacza. Ustawienia dokonuje się za pomocą przycisków i oraz pokrętła obrotowego. Przycisk SPAN umożliwia aktywację w menu pola odpowiadającego za prezentowany na ekranie zakres częstotliwości. Za pomocą pokrętła obrotowego ustala ilość Hz odpowiadającej jednej działce w poziomie. Pole RBW przedstawia rozdzielczość częstotliwości. Pole REF LVL opisuje najwyższej wyświetlaną wartość poziomu sygnału. Zmian wartości w tych polach, po ich aktywacji, dokonuje się za pomocą pokrętła obrotowego Do odczytu przebiegu zarejestrowanych widm służą dwa kursory pionowe: Standardowe; osiągalne po naciśnięciu przycisku MKR ; na wyświetlaczu LCD podawane jest położenie kursorów 1 i 2 (w jednostkach częstotliwości) oraz poziom sygnału w dbm; Różnicowe; osiągalne po naciśnięciu przycisku ΔMKR ; na wyświetlaczu LCD podawane jest położenie kursorów 1 i 2 oraz poziom sygnału w dbm odpowiadający kursorowi 1, natomiast w przypadku kursora 2 podawana jest różnica w poziomie sygnałów dla obu zaznaczonych częstotliwości. Dla obydwu typów znaczników, wyboru kursora dokonuje się za pomocą pokrętła obrotowego lub klawisza ENTER, a przesunięcia kursora za pomocą przycisków i (pozycja) i pokrętła obrotowego. Wciśnięcie sekwencyjne klawiszy SHIFT i MKR powoduje przesunięcie kursora 1 do najbliższego maksimum (funkcja PK->MKR), natomiast wciśnięcie sekwencyjne klawiszy SHIFT i MKR powoduje przyjęcie aktualnego położenia kursora 1 za nową częstotliwość środkowej (funkcja MKR->CF). Ćwiczenie polega na ustaleniu poziomu sygnału wejściowego filtru na zadanym poziomie i pomiarze jego charakterystyki widmowej dla wszystkich kombinacji wartości R1 i R2. Zakresy częstotliwości, w których należy mierzyć charakterystykę filtrów podano w tabeli nr 1. Tabela 3-1. Charakterystyka filtrów. Nr filtru TYP ZAKRES CZĘSTOTLIWOŚCI 1 SFE 10,7M podwójny 10,5 +,-.10,9 +,- 2 SFE 5,5M 5,2 +,-.5,7 +,- 3 CDA 5,5M 5,2 +,-.5,7 +,- 4 SFE 5,5M podwójny 5,2 +,-.5,7 +,- 5 SFE 10,7M 10,5 +,-.10,9 +,- Ponadto na stanowisku znajdują się rezonatory. Strony: 8/11
9 Tabela 3-2. Charakterystyki rezonatorów. CZĘSTOTLIWOŚĆ PRACY 4. Przebieg ćwiczenia NAZWA ELEMENTU 400 khz Rezonator: ceramiczny; YIC ZTB 400KHZP 2 MHz Rezonator: ceramiczny; YIC CSA-2MHZ 4 MHz Rezonator: kwarcowy; 4.00M-HC49 1. Połączyć układ pomiarowy. Sygnał z generatora należy ustalić na poziomie 0 dbm. 2. Odłączyć wszystkie filtry i ustawić kombinację , 1 ". Wcisnąć zworę i zmierzyć wartość P Wykorzystując kursory, zdjąć charakterystyki widmowe P 2(f) dla wybranych filtrów oraz wartości R 1 i R 2. Wykorzystując kursory różnicowe określić szerokość pasm dla 3 db, 6 db i 21 db. 4. Powtórzyć powyższe czynności dla wybranego filtru dla poziomu sygnału z generatora -20dBm. 5. Zmierzyć charakterystykę wybranego rezonatora. Pomiary należy przeprowadzić bardzo starannie. Częstotliwość należy zmienić tak, aby uwidocznić wszystkie zafalowania charakterystyki amplitudowej, wszystkie lokalne ekstrema. 5. Opracowanie 1. W oparciu o dokonane pomiaru należy obliczyć (ze wzoru 3) i wykreślić charakterystyki tłumienności wtrąceniowej 5. Należy zwrócić uwagę, że obliczając (ze wzoru 3) tłumienność A, należy do wartości rezystancji 1 2 obciążającej filtr (rys. 1 i 3.) dodać rezystancję wyjściową generatora Na podstawie otrzymanych wyników należy określić: a. Minimalną tłumienność 7 w paśmie przepustowym, b. Krańcowe częstotliwości pasma przepustowego 5 89, dla których względna tłumienność wtrąceniowa :! 7 3 (w przypadku silnego zafalowania przyjąć 6 db), c. Częstotliwość środkową 5 7 f 0 oraz szerokość 5 9 pasma przepustowego, d. Współczynnik prostokątności K dla dwóch wartości tłumienności względnej: :2 <! 7 3 :" <<! Przedyskutować wpływ niedopasowania na charakterystyki tłumienności wtrąceniowej. 4. Skomentować wpływ poziomu sygnału z generatora na kształt otrzymanych widm. Literatura 1. W. Soluch Filtry piezoelektryczne. WkiŁ, Warszawa G. Temes, S. Mitura Teoria i projektowanie filtrów, WNT, Warszawa Strony: 9/11
10 A. Dodatek. Logarytmiczne jednostki mocy a. Decybel Logarytmiczna jednostka miary równa 1/10 bela. Oznaczenie: [db]. Używamy, gdy porównujemy wielkości zmieniające się w sposób liniowy w bardzo szerokim zakresie, a najbardziej interesującymi zmianami są zmiany względne np. procentowe. Jednostką podstawową jest [B] bel. Powszechnie przyjęło się używać jednostki dziesięciokrotnie mniejszej, czyli => $, >. Wartości w decybelach odnoszą się do stosunku dwóch wielkości, danej wielkości P do pewnej wielkości odniesienia P 0. gdzie: P[dB] - wielkość P w decybelach, log10 - logarytm dziesiętny, P 0 - wielkość odniesienia.? 10log A Tabela A-1. Tabela wartości współczynnika X. Decybel 10log 10(X) Wartość X ,1-20 0, ,001 (A.1) W przypadku wielkości typu wzmocnienie napięciowe wykorzystuje się definicję opisaną wzorem: B C 20log 27 (A.2) Wzór ten wykorzystywany jest przy analizie charakterystyk amplitudowych filtrów elektronicznych oraz obiektów automatyki, w których np. o sytuacji, gdy 10-krotny wzrost częstotliwości powoduje 10-krotny wzrost napięcia, mówi się o wzroście 20 db na dekadę. Dla stosunku napięć lub prądów będzie to: b. dbm 20log 27 (A.2) Jednostka dbm określa logarytmiczną miarę poziomu mocy odniesioną do 1 miliwata. Moc wyrażana w dbm informuje o ile decybeli moc ta jest większa lub mniejsza od mocy 1 mw. Strony: 10/11
11 Przy czym:?d 10log EF 2EF A?D!30?G (A.4) (A.5) Tabela A-2. Tabela zależności mocy z dbm i mw. Moc w dbm Moc w mw -10 0, Strony: 11/11
Laboratorium Inżynierii Materiałowej. Ćwiczenie 1. Pomiar charakterystyk filtrów piezoelektrycznych
Laboratorium Inżynierii Materiałowej Ćwiczenie 1. Pomiar charakterystyk filtrów piezoelektrycznych Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdaosk 011 1. Cel dwiczenia
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.
Pomiar podstawowych parametrów liniowych układów scalonych
Instytut Fizyki ul Wielkopolska 15 70-451 Szczecin 5 Pracownia Elektroniki Pomiar podstawowych parametrów liniowych układów scalonych Zakres materiału obowiązujący do ćwiczenia: wzmacniacz operacyjny,
Ćwiczenie nr 65. Badanie wzmacniacza mocy
Ćwiczenie nr 65 Badanie wzmacniacza mocy 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów wzmacniaczy oraz wyznaczenie charakterystyk opisujących ich właściwości na przykładzie wzmacniacza
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................
Analiza właściwości filtra selektywnego
Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..
Bierne układy różniczkujące i całkujące typu RC
Instytut Fizyki ul. Wielkopolska 15 70-451 Szczecin 6 Pracownia Elektroniki. Bierne układy różniczkujące i całkujące typu RC........ (Oprac. dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia:
Zastosowania liniowe wzmacniaczy operacyjnych
UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Zastosowania liniowe wzmacniaczy operacyjnych Laboratorium Układów Elektronicznych Poznań 2008 1. Cel i zakres ćwiczenia Celem ćwiczenia jest
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej
Badanie wzmacniacza niskiej częstotliwości
Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 9 Pracownia Elektroniki Badanie wzmacniacza niskiej częstotliwości (Oprac dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia: klasyfikacje
Ćwiczenie 21. Badanie właściwości dynamicznych obiektów II rzędu. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:
Ćwiczenie Badanie właściwości dynamicznych obiektów II rzędu Program ćwiczenia:. Pomiary metodą skoku jednostkowego a. obserwacja charakteru odpowiedzi obiektu dynamicznego II rzędu w zależności od współczynnika
Ćwiczenie nr 11. Projektowanie sekcji bikwadratowej filtrów aktywnych
Ćwiczenie nr 11 Projektowanie sekcji bikwadratowej filtrów aktywnych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi filtrami elektrycznymi o charakterystyce dolno-, środkowo- i górnoprzepustowej,
Filtry aktywne filtr środkowoprzepustowy
Filtry aktywne iltr środkowoprzepustowy. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości iltrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów iltru.. Budowa
1. Nadajnik światłowodowy
1. Nadajnik światłowodowy Nadajnik światłowodowy jest jednym z bloków światłowodowego systemu transmisyjnego. Przetwarza sygnał elektryczny na sygnał optyczny. Jakość transmisji w dużej mierze zależy od
Filtry aktywne filtr górnoprzepustowy
. el ćwiczenia. Filtry aktywne filtr górnoprzepustowy elem ćwiczenia jest praktyczne poznanie właściwości filtrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów filtru.. Budowa
Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU
REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza
Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora.
I. Cel ćwiczenia ĆWICZENIE 6 Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. Badanie właściwości wzmacniaczy tranzystorowych pracujących w układzie wspólnego kolektora. II.
Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera.
ĆWICZENIE 5 Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. I. Cel ćwiczenia Badanie właściwości dynamicznych wzmacniaczy tranzystorowych pracujących w układzie
Własności dynamiczne przetworników pierwszego rzędu
1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości
BADANIE ELEMENTÓW RLC
KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE BADANIE ELEMENTÓW RLC REV. 1.0 1. CEL ĆWICZENIA - zapoznanie się z systemem laboratoryjnym NI ELVIS II, - zapoznanie się z podstawowymi
Podstawowe układy pracy tranzystora bipolarnego
L A B O A T O I U M A N A L O G O W Y C H U K Ł A D Ó W E L E K T O N I C Z N Y C H Podstawowe układy pracy tranzystora bipolarnego Ćwiczenie opracował Jacek Jakusz 4. Wstęp Ćwiczenie umożliwia pomiar
Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki
Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Na podstawie instrukcji Wtórniki Napięcia,, Laboratorium układów Elektronicznych Opis badanych układów Spis Treści 1. CEL ĆWICZENIA... 2 2.
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: UKŁADY ELEKTRONICZNE 2 (TS1C500 030) Tranzystor w układzie wzmacniacza
Akustyczne wzmacniacze mocy
Akustyczne wzmacniacze mocy 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową, sposobem projektowania oraz parametrami wzmacniaczy mocy klasy AB zbudowanych z użyciem scalonych wzmacniaczy
Politechnika Warszawska
Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.02. Woltomierz RMS oraz Analizator Widma 1. Woltomierz RMS oraz Analizator Widma Ćwiczenie to ma na celu poznanie
3GHz (opcja 6GHz) Cyfrowy Analizator Widma GA4063
Cyfrowy Analizator Widma GA4063 3GHz (opcja 6GHz) Wysoka kla sa pomiarowa Duże możliwości pomiarowo -funkcjonalne Wysoka s tabi lność Łatwy w użyc iu GUI Małe wymiary, lekki, przenośny Opis produktu GA4063
POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO
Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Elektroniczne przyrządy i techniki pomiarowe POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO Grupa Nr
WZMACNIACZ OPERACYJNY
1. OPIS WKŁADKI DA 01A WZMACNIACZ OPERACYJNY Wkładka DA01A zawiera wzmacniacz operacyjny A 71 oraz zestaw zacisków, które umożliwiają dołączenie elementów zewnętrznych: rezystorów, kondensatorów i zwór.
POLITECHNIKA BIAŁOSTOCKA
POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI 3. Podstawowe układy wzmacniaczy tranzystorowych Materiały pomocnicze do pracowni specjalistycznej z przedmiotu: Systemy CAD
BADANIE FILTRÓW. Instytut Fizyki Akademia Pomorska w Słupsku
BADANIE FILTRÓW Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z właściwościami filtrów. Zagadnienia teoretyczne. Filtry częstotliwościowe Filtrem nazywamy układ o strukturze czwórnika, który przepuszcza
Wzmacniacze operacyjne
Wzmacniacze operacyjne Cel ćwiczenia Celem ćwiczenia jest badanie podstawowych układów pracy wzmacniaczy operacyjnych. Wymagania Wstęp 1. Zasada działania wzmacniacza operacyjnego. 2. Ujemne sprzężenie
POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTRONIKI Ćwiczenie nr 4. Czwórniki bierne - charakterystyki częstotliwościowe
. el ćwiczenia elem ćwiczenia jest zapoznanie studentów z podstawowymi pojęciami dotyczącymi czwórników i pomiarem ich charakterystyk czestotliwościowych na przykładzie filtrów elektrycznych. 2. Wprowadzenie
06 Tor pośredniej częstotliwości, demodulatory AM i FM Pytania sprawdzające Wiadomości podstawowe Budowa wzmacniaczy pośredniej częstotliwości
06 Tor pośredniej częstotliwości, demodulatory AM i FM Pytania sprawdzające 1. Jakie są wymagania stawiane wzmacniaczom p.cz.? 2. Jaka jest szerokość pasma sygnału AM i FM? 3. Ile wynosi częstotliwość
LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY
ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 9 WZMACNIACZ MOCY DO UŻYTKU
ZASADA DZIAŁANIA miernika V-640
ZASADA DZIAŁANIA miernika V-640 Zasadniczą częścią przyrządu jest wzmacniacz napięcia mierzonego. Jest to układ o wzmocnieniu bezpośred nim, o dużym współczynniku wzmocnienia i dużej rezystancji wejściowej,
POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C
ĆWICZENIE 4EMC POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C Cel ćwiczenia Pomiar parametrów elementów R, L i C stosowanych w urządzeniach elektronicznych w obwodach prądu zmiennego.
LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE e LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Ćwiczenie nr 3 Pomiary wzmacniacza operacyjnego Wykonując pomiary PRZESTRZEGAJ
H f = U WY f U WE f =A f e j f. 1. Cel ćwiczenia. 2. Wprowadzenie. H f
. el ćwiczenia elem ćwiczenia jest zapoznanie studentów z podstawowymi pojęciami dotyczącymi czwórników i pomiarem ich charakterystyk czestotliwościowych na przykładzie filtrów elektrycznych. 2. Wprowadzenie
Analiza właściwości filtrów dolnoprzepustowych
Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.
Zastosowania nieliniowe wzmacniaczy operacyjnych
UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Zastosowania nieliniowe wzmacniaczy operacyjnych Laboratorium Układów Elektronicznych Poznań 2008 1. Cel i zakres ćwiczenia Celem ćwiczenia jest
Temat: Wzmacniacze selektywne
Temat: Wzmacniacze selektywne. Wzmacniacz selektywny to układy, których zadaniem jest wzmacnianie sygnałów o częstotliwości zawartej w wąskim paśmie wokół pewnej częstotliwości środkowej f. Sygnały o częstotliwości
Ćwiczenie 4: Pomiar parametrów i charakterystyk wzmacniacza mocy małej częstotliwości REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU
REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie : Pomiar parametrów i charakterystyk wzmacniacza mocy małej
Charakterystyka amplitudowa i fazowa filtru aktywnego
1 Charakterystyka amplitudowa i fazowa filtru aktywnego Charakterystyka amplitudowa (wzmocnienie amplitudowe) K u (f) jest to stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w funkcji
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 ZASTOSOWANIE WZMACNIACZY OPERACYJNYCH W UKŁADACH
LABORATORIUM Sygnałów, Modulacji i Systemów ĆWICZENIE 2: Modulacje analogowe
Protokół ćwiczenia 2 LABORATORIUM Sygnałów, Modulacji i Systemów Zespół data: ĆWICZENIE 2: Modulacje analogowe Imię i Nazwisko: 1.... 2.... ocena: Modulacja AM 1. Zestawić układ pomiarowy do badań modulacji
Ćwiczenie F1. Filtry Pasywne
Laboratorium Podstaw Elektroniki Instytutu Fizyki PŁ Ćwiczenie F Filtry Pasywne Przed zapoznaniem się z instrukcją i przystąpieniem do wykonywania ćwiczenia naleŝy opanować następujący materiał teoretyczny:.
PRZEŁĄCZANIE DIOD I TRANZYSTORÓW
L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE PRZEŁĄCZANIE DIOD I TRANZYSTORÓW REV. 1.1 1. CEL ĆWICZENIA - obserwacja pracy diod i tranzystorów podczas przełączania, - pomiary charakterystycznych czasów
POLITECHNIKA POZNAŃSKA
POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 1 Temat: Pomiar widma częstotliwościowego
LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej
LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody
ĆWICZENIE LABORATORYJNE. TEMAT: Badanie wzmacniacza różnicowego i określenie parametrów wzmacniacza operacyjnego
ĆWICZENIE LABORATORYJNE TEMAT: Badanie wzmacniacza różnicowego i określenie parametrów wzmacniacza operacyjnego 1. WPROWADZENIE Przedmiotem ćwiczenia jest zapoznanie się ze wzmacniaczem różnicowym, który
POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI 2
Cel ćwiczenia: Praktyczne poznanie podstawowych parametrów wzmacniaczy operacyjnych oraz ich możliwości i ograniczeń. Wyznaczenie charakterystyki amplitudowo-częstotliwościowej wzmacniacza operacyjnego.
TRANZYSTOROWY UKŁAD RÓŻNICOWY (DN 031A)
TRANZYSTOROWY UKŁAD RÓŻNICOWY (DN 031A) obciąże nie dynamiczne +1 +1 + 1 R 47k z erowanie R 8 3k R 9 6, 8 k R 11 6,8 k R 12 3k + T 6 BC17 T 7 BC17 + R c 20k zespół sterowania WY 1 R 2k R 23 9 R c dyn R
LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy
LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH Ćwiczenie nr 2 Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy Wykonując pomiary PRZESTRZEGAJ przepisów BHP związanych z obsługą urządzeń
LABORATORIUM ELEKTRONIKI
INSTYTUT NAWIGACJI MOSKIEJ ZAKŁD ŁĄCZNOŚCI I CYBENETYKI MOSKIEJ AUTOMATYKI I ELEKTONIKA OKĘTOWA LABOATOIUM ELEKTONIKI Studia dzienne I rok studiów Specjalności: TM, IM, PHiON, AT, PM, MSI ĆWICZENIE N 10
Laboratorium Przyrządów Półprzewodnikowych Laboratorium 1
Laboratorium Przyrządów Półprzewodnikowych Laboratorium 1 1/10 2/10 PODSTAWOWE WIADOMOŚCI W trakcie zajęć wykorzystywane będą następujące urządzenia: oscyloskop, generator, zasilacz, multimetr. Instrukcje
PRACOWNIA ELEKTRONIKI
PRACOWNIA ELEKTRONIKI UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI Ćwiczenie nr Temat ćwiczenia:. 2. 3. Imię i Nazwisko Badanie filtrów RC 4. Data wykonania Data oddania Ocena Kierunek
ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI
1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności
Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna
Ćwiczenie 20 Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Program ćwiczenia: 1. Wyznaczenie stałej czasowej oraz wzmocnienia statycznego obiektu inercyjnego I rzędu 2. orekcja
Ćwiczenie F3. Filtry aktywne
Laboratorium Podstaw Elektroniki Instytutu Fizyki PŁ 1 Ćwiczenie F3 Filtry aktywne Przed zapoznaniem się z instrukcją i przystąpieniem do wykonywania ćwiczenia naleŝy opanować następujący materiał teoretyczny:
Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT
Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów
WYZNACZANIE CHARAKTERYSTYK FILTRÓW BIERNYCH. (komputerowe metody symulacji)
WYZNACZANIE CHARAKTERYSTYK FILTRÓW BIERNYCH (komputerowe metody symulacji) Zagadnienia: Filtr bierny, filtry selektywne LC, charakterystyka amplitudowo-częstotliwościowa, fazowo-częstotliwościowa, przebiegi
Ćwiczenie 3 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH
LABORATORIUM ELEKTRONIKI Ćwiczenie 3 Wybór i stabilizacja punktu pracy tranzystorów bipolarnego el ćwiczenia elem ćwiczenia jest poznanie wpływu ustawienia punktu pracy tranzystora na pracę wzmacniacza
Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302)
Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302) 1. Elementy elektroniczne stosowane w ćwiczeniach Elementy elektroniczne będące przedmiotem pomiaru, lub służące do zestawienia
PODSTAWY ELEKTRONIKI I TECHNIKI CYFROWEJ
1 z 9 2012-10-25 11:55 PODSTAWY ELEKTRONIKI I TECHNIKI CYFROWEJ opracowanie zagadnieo dwiczenie 1 Badanie wzmacniacza ze wspólnym emiterem POLITECHNIKA KRAKOWSKA Wydział Inżynierii Elektrycznej i Komputerowej
Zakład Dostępowych Sieci Przewodowych (Z-16) Załącznik 1. Praca nr
Zakład Dostępowych Sieci Przewodowych (Z-16) Załącznik 1 Praca nr 16.30.001.5 Warszawa, grudzień 2005 Załącznik 1 Praca nr 16300015 Słowa kluczowe (maksimum 5 słów): procedury badawcze,, zestawy badaniowe
5 Filtry drugiego rzędu
5 Filtry drugiego rzędu Cel ćwiczenia 1. Zrozumienie zasady działania i charakterystyk filtrów. 2. Poznanie zalet filtrów aktywnych. 3. Zastosowanie filtrów drugiego rzędu z układem całkującym Podstawy
LABORATORIUM ELEKTRONIKA. I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych
LABORATORIUM ELEKTRONIKA I. Scalony, trzykońcówkowy stabilizator napięcia II. Odprowadzanie ciepła z elementów półprzewodnikowych Opracował: dr inż. Jerzy Sawicki Wymagania, znajomość zagadnień (I): 1.
Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS
Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS Cel ćwiczenia: Praktyczne wykorzystanie wiadomości do projektowania wzmacniacza z tranzystorami CMOS Badanie wpływu parametrów geometrycznych
Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający
Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości wzmacniaczy operacyjnych i ich podstawowych
WZMACNIACZ NAPIĘCIOWY RC
WZMACNIACZ NAPIĘCIOWY RC 1. WSTĘP Tematem ćwiczenia są podstawowe właściwości jednostopniowego wzmacniacza pasmowego z tranzystorem bipolarnym. Zadaniem ćwiczących jest dokonanie pomiaru częstotliwości
Wzmacniacze selektywne Filtry aktywne cz.1
Wzmacniacze selektywne Filtry aktywne cz.1 Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Wzmacniacze selektywne
ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym
ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym 4. PRZEBIE ĆWICZENIA 4.1. Wyznaczanie parametrów wzmacniacza z tranzystorem unipolarnym złączowym w
WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW
POLTECHNKA WARSZAWSKA NSTYTUT RADOELEKTRONK ZAKŁAD RADOKOMUNKACJ WECZOROWE STUDA ZAWODOWE LABORATORUM OBWODÓW SYGNAŁÓW Ćwiczenie 1 Temat: OBWODY PRĄDU STAŁEGO Opracował: mgr inż. Henryk Chaciński Warszawa
Elektronika. Wzmacniacz operacyjny
LABORATORIUM Elektronika Wzmacniacz operacyjny Opracował: mgr inż. Andrzej Biedka Wymagania, znajomość zagadnień: 1. Podstawowych parametrów elektrycznych wzmacniaczy operacyjnych. 2. Układów pracy wzmacniacza
rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym
Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie
Wzmacniacz tranzystorowy
Wzmacniacz tranzystorowy. Cel ćwiczenia Celem ćwiczenia jest poznanie właściwości jednostopniowego, tranzystorowego wzmacniacza napięcia. Wyniki pomiarów parametrów samego tranzystora jak i całego układu
Instrukcja do ćwiczenia laboratoryjnego nr 11
Instrukcja do ćwiczenia laboratoryjnego nr 11 Temat: Charakterystyki i parametry tyrystora Cel ćwiczenia. Celem ćwiczenia jest poznanie właściwości elektrycznych tyrystora. I. Wymagane wiadomości. 1. Podział
Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"
Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres
Przetwarzanie AC i CA
1 Elektroniki Elektroniki Elektroniki Elektroniki Elektroniki Katedr Przetwarzanie AC i CA Instrukcja do ćwiczenia laboratoryjnego opracował: Łukasz Buczek 05.2015 1. Cel ćwiczenia 2 Celem ćwiczenia jest
Przetworniki AC i CA
KATEDRA INFORMATYKI Wydział EAIiE AGH Laboratorium Techniki Mikroprocesorowej Ćwiczenie 4 Przetworniki AC i CA Cel ćwiczenia Celem ćwiczenia jest poznanie budowy i zasady działania wybranych rodzajów przetworników
Ćwiczenie 7 PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH
Ćwiczenie 7 PRMETRY MŁOSYGNŁO TRNZYSTORÓW BIPOLRNYCH Wstęp Celem ćwiczenia jest wyznaczenie niektórych parametrów małosygnałowych hybrydowego i modelu hybryd tranzystora bipolarnego. modelu Konspekt przygotowanie
LABORATORIUM OBWODÓW I SYGNAŁÓW
POLITECHNIKA WARSZAWSKA Instytut Radioelektroniki Zakład Radiokomunikacji WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW Ćwiczenie Temat: OBWODY PRĄDU SINUSOIDALNIE ZMIENNEGO Opracował: mgr
Tranzystory bipolarne. Podstawowe układy pracy tranzystorów.
ĆWICZENIE 4 Tranzystory bipolarne. Podstawowe układy pracy tranzystorów. I. Cel ćwiczenia Zapoznanie się z układami zasilania tranzystorów. Wybór punktu pracy tranzystora. Statyczna prosta pracy. II. Układ
Wzmacniacz operacyjny
ELEKTRONIKA CYFROWA SPRAWOZDANIE NR 3 Wzmacniacz operacyjny Grupa 6 Aleksandra Gierut CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniaczy operacyjnych do przetwarzania
PRAWO OHMA DLA PRĄDU PRZEMIENNEGO. Instrukcja wykonawcza
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Instrukcja wykonawcza 1 Wykaz przyrządów a. Generator AG 1022F. b. Woltomierz napięcia przemiennego. c. Miliamperomierz prądu przemiennego. d. Zestaw składający
Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający
Podstawowe zastosowania wzmacniaczy operacyjnych wzmacniacz odwracający i nieodwracający. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości wzmacniaczy operacyjnych i ich podstawowych
Badanie wzmacniacza operacyjnego
Badanie wzmacniacza operacyjnego CEL: Celem ćwiczenia jest poznanie właściwości wzmacniaczy operacyjnych i komparatorów oraz możliwości wykorzystania ich do realizacji bloków funkcjonalnych poprzez dobór
IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni
IR II 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni Promieniowanie podczerwone ma naturę elektromagnetyczną i jego absorpcja przez materię podlega tym samym prawom,
LABORATORIUM ELEKTRONIKA. Opracował: mgr inż. Tomasz Miłosławski
LABORATORIUM ELEKTRONIKA Generatory drgań sinusoidalnych Opracował: mgr inż. Tomasz Miłosławski Wymagania, znajomość zagadnień: 1. Rodzaje generatorów. 2. Warunki generacji generatorów RC z przesuwnikiem
Badanie diody półprzewodnikowej
Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 2 Pracownia Elektroniki Badanie diody półprzewodnikowej Zakres materiału obowiązujący do ćwiczenia: (Oprac dr Radosław Gąsowski) półprzewodniki samoistne
LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY
ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 9 WZMACNIACZ MOCY DO UŻYTKU
Przetwarzanie A/C i C/A
Przetwarzanie A/C i C/A Instrukcja do ćwiczenia laboratoryjnego opracował: Łukasz Buczek 05.2015 Rev. 204.2018 (KS) 1 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przetwornikami: analogowo-cyfrowym
ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów
ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego
PRACOWNIA ELEKTRONIKI
PRACOWNIA ELEKTRONIKI UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI Temat ćwiczenia: Ćwiczenie nr 1 BADANIE MONOLITYCZNEGO WZAMACNIACZA MOCY MAŁEJ CZĘSTOTLIWOŚĆI 1. 2. 3. 4. Imię i Nazwisko
UKŁADY Z PĘTLĄ SPRZĘŻENIA FAZOWEGO (wkładki DA171A i DA171B) 1. OPIS TECHNICZNY UKŁADÓW BADANYCH
UKŁADY Z PĘTLĄ SPRZĘŻENIA FAZOWEGO (wkładki DA171A i DA171B) WSTĘP Układy z pętlą sprzężenia fazowego (ang. phase-locked loop, skrót PLL) tworzą dynamicznie rozwijającą się klasę układów, stosowanych głównie
Państwowa Wyższa Szkoła Zawodowa
Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 17 WZMACNIACZ OPERACYJNY A. Cel ćwiczenia. - Przedstawienie właściwości wzmacniacza operacyjnego -
WZMACNIACZ ODWRACAJĄCY.
Ćwiczenie 19 Temat: Wzmacniacz odwracający i nieodwracający. Cel ćwiczenia Poznanie zasady działania wzmacniacza odwracającego. Pomiar przebiegów wejściowego wyjściowego oraz wzmocnienia napięciowego wzmacniacza
b) Zastosować powyższe układy RC do wykonania operacji analogowych: różniczkowania, całkowania
Instrukcja do ćwiczenia UKŁADY ANALOGOWE (NKF) 1. Zbadać za pomocą oscyloskopu cyfrowego sygnały z detektorów przedmiotów Det.1 oraz Det.2 (umieszczonych na spadkownicy). W menu MEASURE są dostępne komendy
POMIARY OSCYLOSKOPOWE II
Politechnika Rzeszowska Zakład Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II POMIARY OSCYLOSKOPOWE II Grupa L.../Z... 1... kierownik Nr ćwicz. 2 2... 3... 4... Data Ocena I. Cel ćwiczenia
Zespół Szkół Łączności w Krakowie. Badanie parametrów wzmacniacza mocy. Nr w dzienniku. Imię i nazwisko
Klasa Imię i nazwisko Nr w dzienniku espół Szkół Łączności w Krakowie Pracownia elektroniczna Nr ćw. Temat ćwiczenia Data Ocena Podpis Badanie parametrów wzmacniacza mocy 1. apoznać się ze schematem aplikacyjnym