Formaty zapisu zapis kropkowo-dziesiętny zapis szesnastkowy Oxacld2042
|
|
- Magdalena Nowacka
- 9 lat temu
- Przeglądów:
Transkrypt
1 Protokół IP Adresy IP mają długość 32 bitów. Rozpatruje się je jako sekwencję czterech bajtów lub, stosując terminologię inżynierów sieciowych, czterech oktetów (bajtów 8-bitowych). Aby zapisać adres IP, należy dokonać konwersji każdego z oktetów do postaci zapisu dziesiętnego i oddzielić cztery powstałe w ten sposób liczby dziesiętne kropkami. A zatem 32-bitowy adres IP: zwykle zapisywany jest jako: Formaty zapisu zapis kropkowo-dziesiętny zapis szesnastkowy Oxacld2042 Mimo że adres IP jest pojedynczą liczbą 32-bitową, to zbiór adresów IP nie jest płaski. Dwupoziomową hierarchia Sieci hostów wchodzących w skład tych sieci. Każda z tych dwóch przestrzeni adresowych identyfikowana jest przez określoną część adresu IP, w wyniku czego każdy adres IP możemy podzielić na numer sieci i numer hosta. W protokole IP numer sieci reprezentuje zbiór maszyn, które zdolne są do bezpośredniej komunikacji w warstwie drugiej sieciowego modelu odniesienia ISO*. Warstwa ta to warstwa łącza danych, która odzwierciedla działanie takich rozwiązań jak Ethernet, Token Ring, FDDI (Fiber Distńbuted Data Interconnect), a także łącza typu punkt-punkt. Każda z tych echnologii sieciowych traktowana jest przez IP jako jedna sieć, niezależnie od tego, czy jest to rzeczywiście jeden kabel sieciowy, czy też składa się ona z kilku segmentów połączonych ze sobą przez wzmacniaki, mosty lub przełączniki. Nie powinieneś być zaskoczony, dowiadując się, że numer hosta określa konkretną maszynę, która należy do danej sieci. Numery sieci i maski Wszystkie adresy IP składają się z numeru sieci i numeru hosta w tej sieci. Jednakże granica pomiędzy numerem sieci i numerem hosta przebiega różnie w każdej z sieci. Aby oprogramowanie ruterów i hostów mogło w łatwy sposób określić, w którym miejscu znajduje się wspomniany podział adresu, każdy z nich ma dołączoną informację w postaci maski sieci. Maska ta to liczba 32-bitowa, podobnie jak w adresie IP, w której wszystkie bity określające sieciową część adresu są równe l część adresu będącą numerem hosta ustawione są na 0. Na przykład: oznacza, że pierwszych 16 bitów adresu IP, z którym skojarzona jest ta maska, reprezentuje
2 numer sieci, a ostatnich 16 bitów reprezentuje numer hosta w tej sieci. Komputer może w prosty sposób wyliczyć numer sieci z adresu IP stosując bitowe działanie AND pomiędzy adresem IP i jego maską. Początkowo maski sieci mogły zawierać nie przylegające bity 1. Praktyka ta została jednak zmieniona, częściowo z powodu trudności, jakie sprawiała, a częściowo po to, by uprościć wymianę informacji o rutowaniu. Obecnie wszystkie maski muszą mieć wszystkie bity l przylegające. Oznacza to, że następująca maska: jest niedozwolona, ponieważ ostatnie dwa bity l nie przylegają do innych. Ograniczenie to nie spowodowało większych kłopotów, ponieważ do chwili jego wprowadzenia używano niewielu masek, w których bity l nie były przylegające. Podobnie jak adres IP, maska sieciowa jest tradycyjnie reprezentowana przy użyciu zapisu kropkowo-dziesiętnego lub szesnastkowego. A zatem maska może być zapisana jako lub jako OxfffffeOO - ten sposób jest częściej używany w programach komputerowych. Ponieważ jednak maski zawsze są związane z adresem IP i bez niego nie mają większego znaczenia, coraz popularniejszy staje się nowy format zapisu maski. W związku z tym, że wymagany jest obecnie zapis w postaci nieprzerwanego ciągu bitów l, możliwe jest posługiwanie się pojęciem maski 23-bito-wej. Takie określenie jednoznacznie mówi, że mamy na myśli maskę złożoną z 23 bitów l, po których następuje 9 bitów O lub w zapisie szesnastkowym Oxf f f f f eoo. Pozwala to na uproszczenie stwierdzenia że sieć rozpoczyna się adresem z maską " i zapisanie go w postaci /23. Ten nowy zapis adresów i masek nazywany jest zapisem adres/maska. Mimo że większość oprogramowania nie pozwala na użycie tego zapisu przy wprowadzaniu adresu i maski, to coraz częściej pojawia się on przy wyświetlaniu informacji o adresach. Podstawowy zapis adres/maska pozwala na opisywanie adresów IP o dowolnym rozmiarze, poczynając od prostego łącza punkt-punkt, w którym pracują dwa hosty w sieci, kończąc na sieciach, w których znajduje się wiele milionów hostów. Rozważmy na przykład dwa adresy pokazane na rysunku Ponieważ mają one jednakowy 23-bitowy przedrostek i są kolejnymi numerami, to możliwe jest zapisanie przestrzeni adresowej obu wymienionych adresów przy użyciu wspomnianego zapisu, w wyniku czego powstaje adres w postaci /23. Nie wszystkie kombinacje adresów i masek sieci mogą być poprawnie zapisane przy użyciu takiego zapisu. Na rysunku pokazano cztery adresy, które nie mogą być reprezentowane przez jeden zapis typu adres/maska.
3 Dzieje się tak dlatego, że adresy, mimo swej ciągłości, nie mają jednakowego 22- bitowego przedrostka. Dlatego nie jest możliwe podanie maski o długości 22 bitów, która objęłaby wszystkie te adresy. Jeśli chcemy zapisać te adresy podając /22, to zapis ten obejmie tylko dwa z podanych czterech adresów, a dwa pozostałe zostaną pominięte. Zamiast takiego zapisu należy użyć dwóch oddzielnych specyfikacji: /23 i /23, co oznacza dwa oddzielne zapisy w tablicy rutowania Czy zapis /22 określa jakąś poprawną przestrzeń adresową? I tak, i nie. Jeśli użyjemy maski z tym adresem, okaże się, że powstała w ten sposób przestrzeń adresowa jest taka sama jak dla adresu /22. Czy w tego rodzaju zapisie ważny jest adres podstawowy? Tak! Nawet doświadczeni administratorzy błędnie sądzą, że opisana w ten sposób przestrzeń adresowa to numery od do , choć komputer na podstawie zapisu /22 wyznaczy przestrzeń adresową od do Są to oczywiście dwie zupełnie inne przestrzenie adresów. Takie błędne zapisy mogą powodować podwójne przydziały adresów, problemy z rutowaniem i inne tajemnicze błędy. Jeśli chcesz tego uniknąć i sprawić, że zapisy będą jednoznaczne, adres podstawowy, maskowany podaną maską, nie może mieć żadnego bitu l w części opisującej numery hostów. Ograniczenie to jest na tyle ważne, że każdy dobrze napisany program sieciowy będzie wymuszał taki właśnie zapis i informował o błędzie adresu w przypadku niezastosowania się do tej reguły. Ogólna zasada jest następująca: dla pewnej liczby N adresów podstawowych mających ten sam przedrostek N musi być podstawą potęgi 2, a ostatni oktet zawierający numer sieci (w którym nie ma żadnych bitów określających numer hosta) musi być bez reszty podzielny przez N. Klasy adresów IP Podstawowy sposób zapisu adresów, opisany wyżej, pozwala w łatwy sposób rozróżnić rozmiar części będącej adresem sieci oraz części określającej liczbę hostów w tej sieci. Łatwo można policzyć hosty w sieci, następnie liczbę tę zaokrąglić do najbliższej wartości potęgi liczby dwa i na tej podstawie wystąpić o numer sieci i maskę dla tej sieci. Należy jeszcze pamiętać o dodaniu odpowiedniej liczby adresów zapasowych, które pozwolą na rozbudowę sieci w przyszłości. Nie zawsze jednak przydzielanie adresów sieci odbywało się w taki sposób. W początkowym okresie rozwoju sieci IP maski miały ustalone wielkości, przez co po dodaniu ich do numerów sieci powsta-wały klasy sieci. Choć zastąpiono je bardziej elastyczną architekturą klas sieci opisaną wyżej, to w literaturze i w języku potocznym często występują odwołania do nich (czasem także w tej książce). Niektóre protokoły
4 rutowania, takie jak RIP, nadal posługują się tym pojęciem, dlatego cofnijmy się w czasie i zajmijmy się tymi podstawowymi klasami sieci oraz ich ewolucją w kierunku używanej obecnie nowoczesnej architektury klas sieci. Twórcy IP nie przewidywali, że protokół ten będzie musiał obsługiwać sieć o wielkości dzisiejszego Internetu. Zakładali, że będzie istniała potrzeba obsługi tylko kilku dużych sieci (działających w dużych firmach komputerowych i głównych uniwersytetach), średniej liczby sieci o średniej wielkości oraz wielu małych sieci. Dlatego też stworzyli trzy klasy sieci: klasę A przeznaczoną dla największych sieci, klasę B - dla sieci średniej wielkości, klasę C - dla sieci małych. Postanowili również ułatwić podejmowanie decyzji i zakodowali klasę sieci w pierwszych kilku bitach adresu IP A: pierwszy bit adresu jest 0, pierwszy oktet jest numerem sieci, a pozostałe trzy oktety identyfikują host w tej sieci. Ponieważ pierwszy bit adresu jest ustalony na stałe jako O, to można używać tylko 127 sieci klasy A, a w każdej z nich możliwe jest adresowania ponad 16 milionów hostów. B: pierwsze dwa bity adresu to 10, pierwsze dwa oktety oznaczają numer sieci, a kolejne dwa - numer hosta w sieci. Pozwala to na utworzenie sieci klasy B, a w każdej z nich może być hostów. C: pierwsze trzy bity to 110, pierwsze trzy oktety są numerem sieci, a ostami oktet określa numer hosta w sieci. Pozwala to na utworzenie około 2 milionów sieci, z których każda może składać się z 256 hostów. Na podstawie pierwszych kilku bitów określić klasę sieci, a następnie znaleźć część adresu opisującą numer sieci i część z numerem hosta. Taka prostota była konieczna, ponieważ komputery wtamtych czasach miały znacznie mniejsze moce przetwarzania niż obecnie. Zgodnie z oryginalną definicją, adresy, w których pierwsze trzy bity to 111, należą do klasy D i zostały przeznaczone do wykorzystania w przyszłości. Od tego czasu definicja sieci tej klasy zmieniła się i klasa D definiowana jest obecnie jako adresy, w których pierwsze cztery bity to Adresy te nie oznaczają pojedynczego urządzenia, lecz zestaw urządzeń, które wchodzą w skład grupy IP, określanej jako multicast, i zostaną omówione w następnej części książki. Adresy rozpoczynające się od 1111 nazywane są obecnie adresami klasy E i są zarezerwowane do wykorzystania w przyszłości. Prawdopodobnie jeśli dla kolejnej klasy adresów zostanie przydzielony jakiś sposób ich wykorzystania, to definicja klas zostanie zmodyfikowana tak, że klasa E będzie się zaczynała od 11110, a nowa zdefiniowana
5 klasa F (jako rezerwa na przyszłość) wyróżniana będzie początkowymi bitami w postaci * Jak się więc mają opisane wyżej klasy sieci do swych najnowszych odpowiedników? Zwróćmy uwagę, że sieć klasy A ma 8-bitową maskę sieci. Oznacza to, że taka sieć o numerze może być opisana jako /8 przy użyciu zapisu bezklasowego. Także naturalna maska sieci dla sieci klasy B ma długość 16 bitów, a dla sieci klasy C długość ta wynosi 24 bity. W wyniku tak ustalonych długości masek oznaczenie sieci klasy B będzie następujące: /16, a dla sieci klasy C o adresie /24. Należy jednak pamiętać, że choć wszystkie sieci znane wcześniej jako sieci klasy B mają maski 16-bitowe, to nie jest prawdą, iż wszystkie sieci +mające maski o długości 16 bitów są sieciami klasy B. Rozważmy przykład sieci /16. Wykorzystuje ona maskę 16-bitową, ale nadal pozostaje siecią klasy A (a raczej częścią takiej sieci), ponieważ jej binarna reprezentacja nadal zaczyna się od bitu 0. Na podobnej zasadzie skonstruowana jest sieć opisana przez /16, która nie jest siecią klasy B, lecz zbiorem 256 sieci klasy C. Różnice te mają duże znaczenie, gdy masz do czynienia z hostami i protokołami, które są świadome istnienia klas sieci. W takich przypadkach poprawne konfigurowanie maski jest sprawą niezmiernie istotną dla pracy systemu. W przypadku stosowania adresacji bezklasowej maska 16-bitowa to po prostu maska 16-bitowa. W zależności od implementacji, występują różne notacje w których podawana jest maska podsieci: pełna - określa wartość maski zapisując ją bezpośrednio (np , , , itd) skrócona - określa, ile pierwszych bitów zapisu binarnego maski ma wartość 1. Pozostałe bity są wyzerowane (np. /24, /25, /26) zanegowana - jak notacja pełna, zera i jedynki w notacji binarnej są zamienione (np , , ) Adresy broadcast i multicast Zdarzają się sytuacje, w których host pracujący w sieci IP musi komunikować się ze wszystkimi innymi hostami pracującymi w tej sieci. Ponieważ nie ma łatwego sposobu na stwierdzenie, jakie inne adresy w sieci są przypisane do hostów, a nawet trudno jest stwierdzić, które hosty w danym momencie są uruchomione, to host może wysłać kopię komunikatu na każdy adres w danej sieci po kolei. Jest to marnotrawstwo pasma sieci i mocy pracujących w niej komputerów. Aby poradzić sobie z tym problemem, IP definiuje adres jako adres broadcast w sieci lokalnej. Każdy host pracujący w sieci IP odbiera komunikaty przychodzące na jego własny adres IP oraz na adres typu broadcast. Broadcast w sieci lokalnej działa dobrze, jeśli host chce tylko przesłać komunikat do innych hostów połączonych bezpośrednio do tej samej sieci.
6 Zdarzają, się jednak sytuacje, kiedy host chce wysłać pakiet do wszystkich hostów, które nie są bezpośrednio połączone z siecią. IP definiuje taki pakiet jako skierowany broadcast. Jego adres zawiera numer sieci, do której jest on kierowany, oraz wszystkie bity numeru hosta ustawione na 1. Inne adresy specjalne (loopback) Adres ten zdefiniowany jest jako adres programowego interfejsu pętli zwrotnej działającego na danej maszynie. Adres ten nie jest przypisany do żadnego interfejsu sprzętowego i nie łączy się z siecią. Jest używany głównie w celu testowania oprogramowania IP na maszynie, która nie jest przyłączona do sieci, i bez względu na to, czy interfejs sieciowy lub jego sterowniki działają poprawnie. Uwaga. Adres ten narusza zasadę, że adres IP jednoznacznie identyfikuje host, ponieważ wszystkie hosty pracujące w sieci IP wykorzystują ten sam adres dla obsługi interfejsu loopback to adres domyślny (ang. default). Adresy do wykorzystania przy danej masce Teza: w każdej sieci z maską 24-bitową można umieścić do 256 hostów. Nie jest to do końca prawda. Adres zawierający bity l, w części określającej numer hosta, to adres broadcast. W niektórych starszych implementacjach dla określenia adresu broadcast stosowane są bity 0. W związku z tym adresy zawierające bity l i bity 0 w części określającej numer hosta nie mogą być stosowane do adresowania hosta w sieci. Daje to rzeczywistą liczbę dostępnych adresów hostów w takiej sieci, która wynosi 254. Takie same restrykcje dotyczą wszystkich sieci i podsieci, niezależnie od długości maski. W tabeli 1-2 pokazano liczbę podsieci i hostów dla wszystkich masek podsieci w trzech blokach sieci o różnej wielkości. Na przykład jeśli wykorzystywany blok sieci ma długość 16 bitów, to możesz użyć 25-bitowej maski podsieci w celu uzyskania 510 podsieci i 126 hostów w każdej z nich. Jeśli jednak długość bloku sieci wynosi 20 bitów, to taka sama 25-bitowa maska pozwoli na zaadresowanie 30 podsieci i 126 hostów w każdej z nich. Wniosek: niektóre maski nie tworzą użytecznej liczby podsieci. Takie przypadki oznaczono za pomocą kreski poziomej. Podobne numery sieci można łatwo podzielić na bloki sieci o innej długości.
7 Kto zarządza adresami IP Ze względu na skończoną ilość adresów oraz konieczność ich agregacji dla celów uproszczenia routingu powstały Regionalne Rejestry Internetowe (ang. RIR) - organizacje zajmujące się przydzielaniem puli adresów dla poszczególnych dostawców Internetu (ang. ISP). Organizacją nadrzędną jest Agencja Zarządzania Numeracją Internetową (ang. IANA), która zajmuje się dystrybucją poszczególnych klas A. Organizacji regionalnych należą: APNIC (ang. Asia Pacific Network Information Centre) - dla rejonu Azji i Pacyfiku, ARIN (ang. American Registry for Internet Numbers) - dla rejonu Ameryki Północnej, LACNIC (ang. Regional Latin-American and Caribbean IP Address Registry) - dla rejonu Ameryki Łacińskiej i wysp Karaibskich, RIPE (fr. Réseaux IP Européens) - dla rejonu Europy, Bliskiego Wschodu i centralnej Azji. Adresy prywatne i publiczne Adresy przeznaczone do prywatnego użytku wymienione zostały w tabeli Adresy te nie są unikalne w całej sieci Internet, lecz tylko wewnątrz sieci przedsiębiorstwa, które je stosuje. Hosty mające prywatne adresy są w stanie komunikować się ze
8 wszystkimi innymi hostami o adresach prywatnych, działającymi w przedsiębiorstwie, jak również z hostami pracującymi w sieci tego przedsiębiorstwa, które mają adresy publiczne. Hosty te nie mogą jednak komunikować się z hostami pracującymi w sieci innego przedsiębiorstwa. Także hosty z adresami publicznymi mogą komunikować się ze wszystkimi hostami o adresach publicznych, niezależnie od tego, czy pracują one w sieci tego samego, czy innego przedsiębiorstwa, a także z hostami o adresach prywatnych z sieci przedsiębiorstwa. Nie mogą jednak komunikować się z hostami o prywatnych adresach pracującymi w sieci innego przedsiębiorstwa. Rozdzielanie adresów Nazwa Pierwszy adres IP Ostatni adres IP Klasa Największy ciągły blok Blok 24-bit pojedyncza sieć klasy A /8 Blok 20-bit kolejnych sieci klasy B /12 Blok 16-bit kolejnych sieci klasy C / dla sieci prywatnych klasy A (maska: ) dla sieci prywatnych klasy B (maska: ) dla sieci prywatnych klasy C (maska: ) IPv6 IPv6 / IPNG (anng. Internet Protocol version 6 / Internet Protocol Next Generation) najnowsza wersja protokołu IP, będąca następcą IPv4, do którego stworzenia przyczynił się w głównej mierze problem małej, kończącej się ilości adresów IPv4. Dodatkowymi zamierzeniami było udoskonalenie protokołu IP: eliminacja wad starszej wersji, wprowadzenie nowych rozszerzeń (uwierzytelnienie, kompresja i inne), zminimalizowanie czynności wymaganych do podłączenia nowego węzła do Internetu (autokonfiguracja). Warto zaznaczyć, iż IPv6 stanowi tylko jedna warstwę w modelu OSI nie ingeruje on w inne warstwy, np. aplikacyjną, co pozwala działać istniejącym już protokołom zasadniczo "bezboleśnie". Pierwsze dokumenty RFC opisujące protokół IPv6 powstały w 1995 roku. W latach w infrastrukturę Internetu wdrażany był projekt 6BONE w formie eksperymentalnej sieci działającej w oparciu o IPv6. Po zamknięciu tego projektu niektórzy dostawcy usług internetowych (ISP) rozpoczęli produkcyjne dostarczanie IPv6 "w kabelku" tak samo jak obecnie IPv4; spora część szkieletu sieci IPv6 opiera się jednak jeszcze na tunelach wykorzystujących poprzednią wersję protokołu (tzw. tunelowanie IPv6-in-IPv4). Najprostszą metodą zestawienia takiego tunelu jest obecnie mechanizm 6to4.
9 Adresowanie hostów [edytuj] W protokole IPv4, przestrzeń adresowa opisywana była za pomocą 32 bitów, pozwalając zaadresować , węzłów, co odpowiada liczbie 8,42 adresów/km² powierzchni Ziemi. W protokole IPv6 rozmiar tej przestrzeni został zwiększony do 128 bitów co daje , kombinacji. Odpowiada to liczbie 6, adresów/mm² powierzchni Ziemi. Adres reprezentowany jest w postaci heksadecymalnej, z dwukropkiem co 16 bitów, np. 2001:0db8:0000:0000:0000:0000:1428:57ab. Dozwolone jest skrócenie jednego bloku zer na podwójny dwukropek, początkowe zera w grupach również mogą być opuszczane, w związku z czym poniższe sposoby zapisu są prawidłowe i równoznaczne sobie: 2001:0db8:0000:0000:0000::1428:57ab 2001:0db8:0:0:0:0:1428:57ab 2001:0db8:0:0::1428:57ab 2001:0db8::1428:57ab 2001:db8::1428:57ab Sekwencja ostatnich 4 bajtów adresu może być również zapisania w postaci adresu IPv4, z wykorzystaniem kropek jako separatorów: adres ::ffff: jest równoznaczny adresowi ::ffff:102:304. Gdy jest to wymagane, do adresu może być dołączona maska sieci w notacji CIDR, np. 2002:0db8:1234::/48. Jeżeli natomiast zachodzi potrzeba podania portu docelowego (np. w adresie URL), adres IPv6 otaczany jest nawiasami kwadratowymi, np.: Adresy specjalne [edytuj] Następujące adresy i grupy adresów posiadają specjalne, zarezerwowane znaczenie: ::/128 - adres nieokreślony (zawierający same zera). ::1/128</128 - loopback, adres wskazujący na host lokalny. ::/96 - pula zarezerwowana dla zachowania kompatybilności z protokołem IPv4 (pierwsze 96 bitów stanowią 0, pozostają 32 bity na adresy w formacie IPv4). ::ffff:0:0/64 - jw., ale pozwala wykorzystywanie komunikację według protokołu IPv6 w sieci IPv :db8::/32 - pula wykorzystywana w przykładach i dokumentacji - nigdy nie będzie wykorzystywana. fc00::/7 pula lokalnych unikalnych adresów IPv6 typu unicast (adresatem jest jeden węzeł), wykorzystywane w komunikacji pomiędzy paroma podsieciami bez możliwości komunikacji w sieci Internet. fe80::/10 - pula link-local określa adresy w obrębie jednego łącza fizycznego (np. segmentu sieci Ethernet). Pakiety z tej puli nie są przekazywane poza podsieć, jej działanie jest analogiczne do automatycznie konfigurowanych adresów z puli /16 w IPv4. fec0::/10 - pula site-local określa adresy w obrębie jednej lokalnej organizacji. Obecnie nie zaleca się wykorzystywanie tej puli, przyszłe implementacje IPv6 nie będą musiały obsługiwać tej puli. ff00::/8 - pula multicastowa używana do komunikacji multicast. W protokole IPv6 nie występuje pojęcie komunikacji broadcastowej (dane rozsyłane do wszystkich węzłów w danej podsieci). Aby wysyłać dane do wielu odbiorców jednocześnie, należy korzystać z komunikacji multicastowej. Autokonfiguracja [edytuj] Dla podsieci będących LAN-em przydzielana jest pula adresów z maską /64 co umożliwia tworzenie unikalnych numerów IP w oparciu o (niepowtarzalne) numery sprzętowe MAC; adres taki (dla adresu MAC 11:22:33:44:55:66) będzie miał postać: 64bitowy_prefiks_sieci:1322:33FF:FE44:5566 (pierwsza część adresu MAC
10 zwiększana jest o 2, w środku wstawiane jest FFFE). 64 bitowy prefiks sieci jest informacją rozgłaszaną przy pomocy ICMPv6 przez routery; natomiast jeżeli host nie uzyskał wspomnianego prefiksu w jego miejsce wstawiane jest fe80:: (czyli fe80:0000:0000:0000) - taki adres nazywa się "link-local" (nie jest on routowany do sieci zewnętrznych, jednak zawsze (także gdy prefiks został uzyskany) może być używany wewnątrz sieci lokalnej). Oczywiście nadal możemy korzystać z przydziału IP przez DHCP oraz ręcznego przydziału IP.
LABORATORIUM 2 Adresacja IP
LABORATORIUM 2 Adresacja IP 1). Podstawy adresacji IP Problem: Jak adresować urządzenia w tak dużej sieci? Adresy IP adres IP składa się z 2 części: numeru sieci i numeru hosta, numer sieci należy uzyskać
Komunikacja w sieciach komputerowych
Komunikacja w sieciach komputerowych Dariusz CHAŁADYNIAK 2 Plan prezentacji Wstęp do adresowania IP Adresowanie klasowe Adresowanie bezklasowe - maski podsieci Podział na podsieci Translacja NAT i PAT
Adresacja IP w sieciach komputerowych. Adresacja IP w sieciach komputerowych
Adresacja IP w sieciach komputerowych 1. Model odniesienia OSI. Przyczyny powstania: - Gwałtowny rozwój i sieci komputerowych na początku lat 70. XX wieku, - Powstanie wielu niekompatybilnych ze sobą protokołów
Struktura adresu IP v4
Adresacja IP v4 E13 Struktura adresu IP v4 Adres 32 bitowy Notacja dziesiętna - każdy bajt (oktet) z osobna zostaje przekształcony do postaci dziesiętnej, liczby dziesiętne oddzielone są kropką. Zakres
Systemy operacyjne i sieci komputerowe Szymon Wilk Adresowanie w sieciach Klasy adresów IP a) klasa A
i sieci komputerowe Szymon Wilk Adresowanie w sieciach 1 1. Klasy adresów IP a) klasa A sieć host 0 mało sieci (1 oktet), dużo hostów (3 oktety) pierwszy bit równy 0 zakres adresów dla komputerów 1.0.0.0-127.255.255.255
DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ ADRESACJA W SIECIACH IP. WSTĘP DO SIECI INTERNET Kraków, dn. 24 października 2016r.
DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ ADRESACJA W SIECIACH IP WSTĘP DO SIECI INTERNET Kraków, dn. 24 października 2016r. PLAN Reprezentacja liczb w systemach cyfrowych Protokół IPv4 Adresacja w sieciach
Sieć komputerowa Adresy sprzętowe Adresy logiczne System adresacji IP (wersja IPv4)
Sieć komputerowa Siecią komputerową nazywamy system (tele)informatyczny łączący dwa lub więcej komputerów w celu wymiany danych między nimi. Sieć może być zbudowana z wykorzystaniem urządzeń takich jak
ZASADY PODZIAŁU SIECI NA PODSIECI, OBLICZANIA ADRESÓW PODSIECI, ADRESÓW HOSTÓW I ADRESU ROZGŁOSZENIOWEGO
ZASADY PODZIAŁU SIECI NA PODSIECI, OBLICZANIA ADRESÓW PODSIECI, ADRESÓW HOSTÓW I ADRESU ROZGŁOSZENIOWEGO Wybór schematu adresowania podsieci jest równoznaczny z wyborem podziału lokalnej części adresu
IPv6 Protokół następnej generacji
IPv6 Protokół następnej generacji Bartłomiej Świercz Katedra Mikroelektroniki i Technik Informatycznych Łódź,13maja2008 Wstęp Protokół IPv6 często nazywany również IPNG(Internet Protocol Next Generation)
Laboratorium Sieci Komputerowe
Laboratorium Sieci Komputerowe Adresowanie IP Mirosław Juszczak 9 października 2014 Mirosław Juszczak 1 Sieci Komputerowe Na początek: 1. Jak powstaje standard? 2. Co to są dokumenty RFC...??? (czego np.
Aby lepiej zrozumieć działanie adresów przedstawmy uproszczony schemat pakietów IP podróżujących w sieci.
Struktura komunikatów sieciowych Każdy pakiet posiada nagłówki kolejnych protokołów oraz dane w których mogą być zagnieżdżone nagłówki oraz dane protokołów wyższego poziomu. Każdy protokół ma inne zadanie
SIECI KOMPUTEROWE Adresowanie IP
Adresowanie IP Podstawowa funkcja protokołu IP (Internet Protocol) polega na dodawaniu informacji o adresie do pakietu danych i przesyłaniu ich poprzez sieć do właściwych miejsc docelowych. Aby umożliwić
Sieci komputerowe. Tadeusz Kobus, Maciej Kokociński Instytut Informatyki, Politechnika Poznańska
Sieci komputerowe Tadeusz Kobus, Maciej Kokociński Instytut Informatyki, Politechnika Poznańska Adresacja IPv4 Sieci Komputerowe, T. Kobus, M. Kokociński 2 Sieci Komputerowe, T. Kobus, M. Kokociński 3
1. Sieć komputerowa - grupa komputerów lub innych urządzeń połączonych ze sobą w celu wymiany danych lub współdzielenia różnych zasobów.
Sieci komputerowe 1. Sieć komputerowa - grupa komputerów lub innych urządzeń połączonych ze sobą w celu wymiany danych lub współdzielenia różnych zasobów. 2. Podział sieci ze względu na rozległość: - sieć
Adresy i sieci. Struktura adresu IP 172.29.32.66
Adresy i sieci W każdej sieci każde miejsce, do którego inne komputery wysyłają informacje, musi mieć niepowtarzalny identyfikator. Identyfikator taki nazywany jest zwykle adresem. W niektórych technologiach
Adresacja IPv4 - podstawy
Adresacja IPv4 - podstawy LAN LAN... MAN... LAN Internet Internet = sieć sieci Problem jak adresować urządzenia w takiej sieci? 1 Budowa adresu IP rozmiar adresu IP: 4 bajty (32 bity) Adres IP jest hierarchiczny
Ćwiczenia z arytmetyki komputera Budowa adresu IP
Ćwiczenia z arytmetyki komputera Budowa adresu IP Rozmiar adresu IP: 4 bajty (32 bity) Adres IP jest hierarchiczny - pierwsza część określa numer sieci, a pozostałe bity - numer komputera wewnątrz tej
Plan wykładu. Wyznaczanie tras. Podsieci liczba urządzeń w klasie C. Funkcje warstwy sieciowej
Wyznaczanie tras (routing) 1 Wyznaczanie tras (routing) 2 Wyznaczanie tras VLSM Algorytmy rutingu Tablica rutingu CIDR Ruting statyczny Plan wykładu Wyznaczanie tras (routing) 3 Funkcje warstwy sieciowej
Internet Protocol v6 - w czym tkwi problem?
NAUKOWA I AKADEMICKA SIEĆ KOMPUTEROWA Internet Protocol v6 - w czym tkwi problem? dr inż. Adam Kozakiewicz, adiunkt Zespół Metod Bezpieczeństwa Sieci i Informacji IPv6 bo adresów było za mało IPv6 co to
Sieci Komputerowe. Wykład 1: TCP/IP i adresowanie w sieci Internet
Sieci Komputerowe Wykład 1: TCP/IP i adresowanie w sieci Internet prof. nzw dr hab. inż. Adam Kisiel kisiel@if.pw.edu.pl Pokój 114 lub 117d 1 Kilka ważnych dat 1966: Projekt ARPANET finansowany przez DOD
Sieci Komputerowe. Zadania warstwy sieciowej. Adres IP. Przydzielanie adresów IP. Adresacja logiczna Trasowanie (ang. routing)
Sieci Komputerowe Zadania warstwy sieciowej Wykład 4. Warstwa sieciowa. Adresacja IP. Adresacja logiczna Trasowanie (ang. routing) Urządzenia pracujące w warstwie trzeciej nazywają się ruterami. Fragmentacja
Warstwa sieciowa. Adresowanie IP. Zadania. Warstwa sieciowa ćwiczenie 5
Warstwa sieciowa Zadania 1. Co to jest i do czego służy maska podsieci? 2. Jakie wyróżniamy klasy adresów IP? Jakie konsekwencje ma wprowadzenie podziału klasowego adresów IP? Jaka jest struktura adresów
Akademia Techniczno-Humanistyczna w Bielsku-Białej
Akademia Techniczno-Humanistyczna w Bielsku-Białej Wydział Budowy Maszyn i Informatyki Laboratorium z sieci komputerowych Ćwiczenie numer: 1 Temat ćwiczenia: Adresacja w sieciach komputerowych podstawowe
Scenariusz lekcji Opracowanie: mgr Bożena Marchlińska NKJO w Ciechanowie Czas trwania jednostki lekcyjnej: 90 min.
Scenariusz lekcji Opracowanie: mgr Bożena Marchlińska NKJO w Ciechanowie Czas trwania jednostki lekcyjnej: 90 min. Temat lekcji: Adresy IP. Konfiguracja stacji roboczych. Część I. Cele lekcji: wyjaśnienie
URZĄDZENIA TECHNIKI KOMPUTEROWEJ
Adres IP jest 32-bitową liczbą, składającą się z następujących części: części sieciowej części hosta Oprogramowanie sieciowe IP, na podstawie kilku pierwszych bitów adresu IP, określa jego klasę. Istnieją
Zestaw ten opiera się na pakietach co oznacza, że dane podczas wysyłania są dzielone na niewielkie porcje. Wojciech Śleziak
Protokół TCP/IP Protokół TCP/IP (Transmission Control Protokol/Internet Protokol) to zestaw trzech protokołów: IP (Internet Protokol), TCP (Transmission Control Protokol), UDP (Universal Datagram Protokol).
Sieci komputerowe - Wstęp do intersieci, protokół IPv4
Piotr Kowalski KAiTI Internet a internet - Wstęp do intersieci, protokół IPv Plan wykładu Informacje ogólne 1. Ogólne informacje na temat sieci Internet i protokołu IP (ang. Internet Protocol) w wersji.
SK Moduł 6 - Studia Informatyczne
1 z 27 2014-01-03 13:21 SK Moduł 6 From Studia Informatyczne W przypadku sieci komputerowych, podobnie jak w przypadku tradycyjnych sposobów komunikacji, istnieje potrzeba określenia miejsca przeznaczenia,
Adresy i sieci. Struktura adresu IP
Adresy i sieci W każdej sieci każde miejsce, do którego inne komputery wysyłają informacje, musi mieć niepowtarzalny identyfikator. Identyfikator taki nazywany jest zwykle adresem. W niektórych technologiach
Adresacja w sieci komputerowej
1 Adresacja w sieci komputerowej Idea transferu danych pomiędzy dwoma punktami sieci: w czasie podróży przez sieć dane umieszczone są w pakietach IP każdy pakiet (jednostka warstwy 3 OSI sieciowej) posiada
Adresacja IPv4 (Internet Protocol wersja 4)
Adresacja IPv4 (Internet Protocol wersja 4) Komputer, który chce wysłać pewne dane do innego komputera poprzez sieć, musi skonstruować odpowiednią ramkę (ramki). W nagłówku ramki musi znaleźć się tzw.
Systemy Operacyjne i Sieci Komputerowe Adres MAC 00-0A-E6-3E-FD-E1
Adres MAC (ang. MAC address) jest 48-bitowy i zapisywany jest heksadecymalnie (szesnastkowo). Pierwsze 24 bity oznaczają producenta karty sieciowej, pozostałe 24 bity są unikalnym identyfikatorem danego
Adresy w sieciach komputerowych
Adresy w sieciach komputerowych 1. Siedmio warstwowy model ISO-OSI (ang. Open System Interconnection Reference Model) 7. Warstwa aplikacji 6. Warstwa prezentacji 5. Warstwa sesji 4. Warstwa transportowa
LABORATORIUM Systemy teletransmisji i transmisja danych
LABORATORIUM Systemy teletransmisji i transmisja danych INSTRUKCJA NR:3 TEMAT: Podstawy adresowania IP w protokole TCP/IP 1 Cel ćwiczenia: WyŜsza Szkoła Technik Komputerowych i Telekomunikacji Zapoznanie
WYŻSZA SZKOŁA ZARZĄDZANIA I MARKETINGU BIAŁYSTOK, ul. Ciepła 40 filia w EŁKU, ul. Grunwaldzka
14 Protokół IP WYŻSZA SZKOŁA ZARZĄDZANIA I MARKETINGU BIAŁYSTOK, ul. Ciepła 40 Podstawowy, otwarty protokół w LAN / WAN (i w internecie) Lata 70 XX w. DARPA Defence Advanced Research Project Agency 1971
Sieci komputerowe - adresacja internetowa
Sieci komputerowe - adresacja internetowa mgr inż. Rafał Watza Katedra Telekomunikacji AGH 1 Wprowadzenie Co to jest adresacja? Przedmioty adresacji Sposoby adresacji Układ domenowy, a układ numeryczny
Plan wykładu. Warstwa sieci. Po co adresacja w warstwie sieci? Warstwa sieci
Sieci komputerowe 1 Sieci komputerowe 2 Plan wykładu Warstwa sieci Miejsce w modelu OSI/ISO unkcje warstwy sieciowej Adresacja w warstwie sieciowej Protokół IP Protokół ARP Protokoły RARP, BOOTP, DHCP
Stos protokołów TCP/IP (ang. Transmission Control Protocol/Internet Protocol)
Stos protokołów TCP/IP (ang. Transmission Control Protocol/Internet Protocol) W latach 1973-78 Agencja DARPA i Stanford University opracowały dwa wzajemnie uzupełniające się protokoły: połączeniowy TCP
Uproszczony opis obsługi ruchu w węźle IP. Trasa routingu. Warunek:
Uproszczony opis obsługi ruchu w węźle IP Poniższa procedura jest dokonywana dla każdego pakietu IP pojawiającego się w węźle z osobna. W routingu IP nie wyróżniamy połączeń. Te pojawiają się warstwę wyżej
Model sieci OSI, protokoły sieciowe, adresy IP
Model sieci OSI, protokoły sieciowe, adresy IP Podstawę działania internetu stanowi zestaw protokołów komunikacyjnych TCP/IP. Wiele z używanych obecnie protokołów zostało opartych na czterowarstwowym modelu
Akademickie Centrum Informatyki PS. Wydział Informatyki PS
kademickie Centrum Informatyki PS Wydział Informatyki PS Wydział Informatyki Sieci komputerowe i Telekomunikacyjne Transmisja w protokole IP Krzysztof ogusławski tel. 4 333 950 kbogu@man.szczecin.pl 1.
Podstawy Transmisji Danych. Wykład IV. Protokół IPV4. Sieci WAN to połączenia pomiędzy sieciami LAN
Podstawy Transmisji Danych Wykład IV Protokół IPV4 Sieci WAN to połączenia pomiędzy sieciami LAN 1 IPv4/IPv6 TCP (Transmission Control Protocol) IP (Internet Protocol) ICMP (Internet Control Message Protocol)
Nazwy i adresy - Sieci komputerowe
Artykuł pobrano ze strony eioba.pl Nazwy i adresy - Sieci komputerowe Adresy IP są niepowtarzalnymi identyfikatorami wszystkich stacji należących do intersieci TCP/IP. Stacją może być komputer, terminal,
Sprawozdanie z zajęć laboratoryjnych: Technologie sieciowe 1
Łukasz Przywarty 171018 Data utworzenia: 10.04.2010r. Prowadzący: dr inż. Marcin Markowski Sprawozdanie z zajęć laboratoryjnych: Technologie sieciowe 1 Temat: Zadanie domowe, rozdział 6 - Adresowanie sieci
Plan wykładu. Warstwa sieci. Po co adresacja w warstwie sieci? Warstwa sieci
Sieci komputerowe 1 Sieci komputerowe 2 Plan wykładu Warstwa sieci Miejsce w modelu OSI/ISO Funkcje warstwy sieciowej Adresacja w warstwie sieciowej Protokół IP Protokół ARP Protokoły RARP, BOOTP, DHCP
Podstawy sieci komputerowych
mariusz@math.uwb.edu.pl http://math.uwb.edu.pl/~mariusz Uniwersytet w Białymstoku Zakład Dydaktyki i Nowoczesnych Technologii w Kształceniu 2017/2018 Ekspancja sieci TCP/IP i rozwój adresacji IP 1975 opracowanie
Plan i problematyka wykładu. Sieci komputerowe IPv6. Rozwój sieci Internet. Dlaczego IPv6? Przykład zatykania dziur w funkcjonalności IPv4 - NAT
IPv6 dr inż. Piotr Kowalski Katedra Automatyki i Technik Informacyjnych Plan i problematyka wykładu 1. Uzasadnienie dla rozwoju protokołu IPv6 i próby ratowania idei IPv6 2. Główne aspekty funkcjonowania
Laboratorium Identyfikacja adresów IPv6
Laboratorium Identyfikacja adresów IPv6 Topologia Cele Część 1: Identyfikacja różnych typów adresów IPv6 Przegląd różnych typów adresów IPv6. Dopasowanie adresu IPv6 do odpowiedniego typu. Część 2: Sprawdzanie
Podstawy sieci komputerowych
mariusz@math.uwb.edu.pl http://math.uwb.edu.pl/~mariusz Uniwersytet w Białymstoku 2018/2019 Ekspancja sieci TCP/IP i rozwój adresacji IP 1975 opracowanie IPv4 32 bity na adres IP 2 32, czyli ok. 4 miliardów
Warstwa sieciowa rutowanie
Warstwa sieciowa rutowanie Protokół IP - Internet Protocol Protokoły rutowane (routed) a rutowania (routing) Rutowanie statyczne i dynamiczne (trasowanie) Statyczne administrator programuje trasy Dynamiczne
Pytanie 1 Z jakich protokołów korzysta usługa WWW? (Wybierz prawidłowe odpowiedzi)
Pytanie 1 Z jakich protokołów korzysta usługa WWW? (Wybierz prawidłowe odpowiedzi) Pytanie 2 a) HTTPs, b) HTTP, c) POP3, d) SMTP. Co oznacza skrót WWW? a) Wielka Wyszukiwarka Wiadomości, b) WAN Word Works,
Jedną z fundamentalnych cech IPv4 jest występowanie klucza bitowego w sposób jednoznaczny dzielącego adres na network-prefix oraz host-number.
ADRESOWANIE KLASOWE IPv4 Wszystkie hosty w danej sieci posiadają ten sam network-prefix lecz muszą mieć przypisany unikatowy host-number. Analogicznie, dowolne dwa hosty w różnych sieciach muszą posiadać
Tutorial 3 Adresacja sieci IPv4
1 Tutorial 3 Adresacja sieci IPv4 Adresacja odgrywa kluczową rolę w funkcjonowaniu protokołów warstwy sieciowej, umożliwiającej komunikację pomiędzy hostami (urządzeniami) znajdującymi się w tej samej
Akademickie Centrum Informatyki PS. Wydział Informatyki PS
Akademickie Centrum Informatyki PS Wydział Informatyki PS Wydział Informatyki Sieci komputerowe i Telekomunikacyjne ADRESOWANIE IP WERSJA 4 Wyczerpanie adresów IP CIDR, NAT Krzysztof Bogusławski tel. 449
Akademia Techniczno-Humanistyczna w Bielsku-Białej
Akademia Techniczno-Humanistyczna w Bielsku-Białej Wydział Budowy Maszyn i Informatyki Laboratorium z sieci komputerowych Ćwiczenie numer: 2 Temat ćwiczenia: Maska sieci, podział sieci na podsieci. 1.
Zadania z sieci Rozwiązanie
Zadania z sieci Rozwiązanie Zadanie 1. Komputery połączone są w sieci, z wykorzystaniem routera zgodnie ze schematem przedstawionym poniżej a) Jak się nazywa ten typ połączenia komputerów? (topologia sieciowa)
Podstawy sieci IP Adresy i sieci Adresy prywatne i publiczne Algorytm rutowania IP Nazwy domen i System Nazw Domen (DNS)
Podstawy sieci IP 1 Adresy i sieci Adresy prywatne i publiczne Algorytm rutowania IP Nazwy domen i System Nazw Domen (DNS) Ostatnio sieć IP staje się coraz popularniejsza, czego powodem jest rozwój i upowszechnienie
Funkcje warstwy sieciowej. Podstawy wyznaczania tras. Dostarczenie pakietu od nadawcy od odbiorcy (RIP, IGRP, OSPF, EGP, BGP)
Wyznaczanie tras (routing) 1 Wyznaczanie tras (routing) 17 Funkcje warstwy sieciowej Podstawy wyznaczania tras Routing statyczny Wprowadzenie jednolitej adresacji niezaleŝnej od niŝszych warstw (IP) Współpraca
Sieci komputerowe. Wykład 3: Protokół IP. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski. Sieci komputerowe (II UWr) Wykład 3 1 / 25
Sieci komputerowe Wykład 3: Protokół IP Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 3 1 / 25 W poprzednim odcinku Podstawy warstwy pierwszej (fizycznej)
Warstwa sieciowa (technika VLSM)
Warstwa sieciowa (technika VLSM) Zadania 1. Mając do dyspozycji sieć o adresie 10.10.1.0/24 zaproponuj podział dostępnej puli adresowej na następujące podsieci liczące: 10 hostów 13 hostów 44 hosty 102
SIECI KOMPUTEROWE ADRESACJA, MEDIA I URZĄDZENIA SIECIOWE
SIECI KOMPUTEROWE ADRESACJA, MEDIA I URZĄDZENIA SIECIOWE 1. Przeliczanie systemów liczbowych a) Dokonać konwersji liczb binarnych na szesnastkowe: 11100011100 2... 16 11111000 2... 16 1010101010 2... 16
Sieci lokalne Adresowanie IP Usługi sieciowe. Sieci. Jacek Izdebski. ektanet.pl. 27 stycznia 2011
lokalne ektanet.pl 27 stycznia 2011 lokalne Sieć domowa Udostępnianie łącza internetowego Wprowadzenie pojęcia sieci lokalnej (LAN) LAN Local Area Network czyli sieć lokalna, tak określa się sieci zlokalizowane
Warstwa sieciowa. Model OSI Model TCP/IP. Aplikacji. Aplikacji. Prezentacji. Sesji. Transportowa. Transportowa
Warstwa sieciowa Model OSI Model TCP/IP Aplikacji Prezentacji Aplikacji podjęcie decyzji o trasowaniu (rutingu) na podstawie znanej, lokalnej topologii sieci ; - podział danych na pakiety Sesji Transportowa
Połączenie sieci w intersieci ( internet ) Intersieci oparte o IP Internet
Warstwa sieciowa Usługi dla warstwy transportowej Niezależne od sieci podkładowych Oddzielenie warstwy transportu od parametrów sieci (numeracja,topologia, etc.) Adresy sieciowe dostępne dla warstwy transportowej
Podsieci IPv4 w przykładach. mgr inż. Krzysztof Szałajko
Podsieci IPv4 w przykładach mgr inż. Krzysztof Szałajko I. Podział sieci IP na równe podsieci Zadanie 1: Podziel sieć o adresie IP 220.110.40.0 / 24 na 5 podsieci. Dla każdej podsieci podaj: Adres podsieci
Dlaczego IPv6 / 48 = 256 planowanie adresacji
Dlaczego IPv6 / 48 = 256 planowanie adresacji XIII Konferencja KIKE Ożarów Maz. 26-27.11.2013 Piotr Marciniak Przestrzeń adresowa IPv6 Ile to jest 2^128??? 2 Przestrzeń adresowa IPv6 Ile to jest 2^128???
Stos TCP/IP Warstwa Internetu. Sieci komputerowe Wykład 4
Stos TCP/IP Warstwa Internetu Sieci komputerowe Wykład 4 Historia Internetu (1 etap) Wojsko USA zleca firmie Rand Corp. wyk. projektu sieci odpornej na atak nuklearny. Uruchomienie sieci ARPANet (1 IX
PORADNIKI. Routery i Sieci
PORADNIKI Routery i Sieci Projektowanie routera Sieci IP są sieciami z komutacją pakietów, co oznacza,że pakiety mogą wybierać różne trasy między hostem źródłowym a hostem przeznaczenia. Funkcje routingu
Dlaczego? Mało adresów IPv4. Wprowadzenie ulepszeń względem IPv4 NAT CIDR
IPv6 Dlaczego? Mało adresów IPv4 NAT CIDR Wprowadzenie ulepszeń względem IPv4 Większa pula adresów Lepszy routing Autokonfiguracja Bezpieczeństwo Lepsza organizacja nagłówków Przywrócenie end-to-end connectivity
Technologie informacyjne - wykład 8 -
Zakład Fizyki Budowli i Komputerowych Metod Projektowania Instytut Budownictwa Wydział Budownictwa Lądowego i Wodnego Politechnika Wrocławska Technologie informacyjne - wykład 8 - Prowadzący: Dmochowski
Klasy adresowe ip. xxx to dowolne numery w zakresie 0-255
Adresacja IP Co to jest adres ip? numer, który identyfikuje komputer lub opisuje sieć (wszystko zależy od dodatkowego parametru: maski) zewnętrzne (widziane w Internecie np. 217.96.171.101) - wewnętrzne
OBSŁUGA I KONFIGURACJA SIECI W WINDOWS
OBSŁUGA I KONFIGURACJA SIECI W WINDOWS Jak skonfigurować komputer pracujący pod kontrolą systemu operacyjnego Windows 7, tak aby uzyskać dostęp do internetu? Zakładamy, że komputer pracuje w małej domowej
MASKI SIECIOWE W IPv4
MASKI SIECIOWE W IPv4 Maska podsieci wykorzystuje ten sam format i sposób reprezentacji jak adresy IP. Różnica polega na tym, że maska podsieci posiada bity ustawione na 1 dla części określającej adres
Enkapsulacja RARP DANE TYP PREAMBUŁA SFD ADRES DOCELOWY ADRES ŹRÓDŁOWY TYP SUMA KONTROLNA 2 B 2 B 1 B 1 B 2 B N B N B N B N B Typ: 0x0835 Ramka RARP T
Skąd dostać adres? Metody uzyskiwania adresów IP Część sieciowa Jeśli nie jesteśmy dołączeni do Internetu wyssany z palca. W przeciwnym przypadku numer sieci dostajemy od NIC organizacji międzynarodowej
Podstawy IPv6, część 1
Podstawy IPv6, część 1 Tomasz Mrugalski 1 Informacje wstępne: Rodzina protokołów IPv6 W niniejszym punkcie przedstawione zostały zagadnienia związane z rodziną protokołów IPv6. 1.1 Adresowanie
IPv6 protokół internetowy następnej generacji
IPv6 protokół internetowy następnej generacji Grzegorz Olszanowski email: golszanowski@pwsz.chelm.pl Państwowa Wyższa Szkoła Zawodowa w Chełmie Streszczenie Publikacja ta ma na celu przybliżenie mechanizmu
Sieci Komputerowe. Zajęcia 2 c.d. Warstwa sieciowa. Adresacja IPv4
Sieci Komputerowe Zajęcia 2 c.d. Warstwa sieciowa. Adresacja IPv4 Zadania warstwy sieciowej Adresacja logiczna Trasowanie (ang. routing) Urządzenia pracujące w warstwie trzeciej nazywają się ruterami (ang.
ARP Address Resolution Protocol (RFC 826)
1 ARP Address Resolution Protocol (RFC 826) aby wysyłać dane tak po sieci lokalnej, jak i pomiędzy różnymi sieciami lokalnymi konieczny jest komplet czterech adresów: adres IP nadawcy i odbiorcy oraz adres
Laboratorium - Przeglądanie tablic routingu hosta
Topologia Cele Część 1: Dostęp do tablicy routingu hosta Część 2: Badanie wpisów tablicy routingu IPv4 hosta Część 3: Badanie wpisów tablicy routingu IPv6 hosta Scenariusz Aby uzyskać dostęp do zasobów
Sieci komputerowe. Wykład 3: Protokół IP. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski. Sieci komputerowe (II UWr) Wykład 3 1 / 24
Sieci komputerowe Wykład 3: Protokół IP Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 3 1 / 24 Przypomnienie W poprzednim odcinku Podstawy warstwy pierwszej
Zarządzanie sieciami WAN
Zarządzanie sieciami WAN Dariusz CHAŁADYNIAK 1 Plan prezentacji Technologie w sieciach rozległych Technologia PSTN Technologia ISDN Technologia xdsl Technologia ATM Technologia Frame Relay Wybrane usługi
1 2004 BRINET Sp. z o. o.
W niektórych routerach Vigor (np. serie 2900/2900V) interfejs WAN występuje w postaci portu Ethernet ze standardowym gniazdem RJ-45. Router 2900 potrafi obsługiwać ruch o natężeniu kilkudziesięciu Mbit/s,
Maski o stałej i zmiennej długości (VLSM) Autor: Natalia Dajniak IVFDS
Maski o stałej i zmiennej długości (VLSM) Autor: Natalia Dajniak IVFDS 1 STRESZCZENIE Projekt obejmuje wyjaśnienie pojęcia: maska sieciowa, maska o stałej długości, VLSM itp. Na przykładach pokazano podział
Tomasz Greszata - Koszalin
T: Zasady projektowania adresacji IP. Wyróżnia się cztery sposoby transmisji i adresowania w sieciach LAN: Transmisja pojedyncza (Unicast) stacja nadawcza adresuje pakiet używając adresu stacji odbiorczej.
Skąd dostać adres? Metody uzyskiwania adresów IP. Statycznie RARP. Część sieciowa. Część hosta
Sieci komputerowe 1 Sieci komputerowe 2 Skąd dostać adres? Metody uzyskiwania adresów IP Część sieciowa Jeśli nie jesteśmy dołączeni do Internetu wyssany z palca. W przeciwnym przypadku numer sieci dostajemy
Test sprawdzający wiadomości z przedmiotu Systemy operacyjne i sieci komputerowe.
Literka.pl Test sprawdzający wiadomości z przedmiotu Systemy operacyjne i sieci komputerowe Data dodania: 2010-06-07 09:32:06 Autor: Marcin Kowalczyk Test sprawdzający wiadomości z przedmiotu Systemy operacyjne
Jak dokonać podziału sieci metodą VLSM instrukcja krok po kroku.
Jak konać podziału sieci metodą VLSM instrukcja krok po kroku. Technika VLSM (tzw. adresacja gdzie wykorzystuje się zmienną długość masek) stosowana jest w celu pełnej optymalizacji wykorzystania przydzielanych
Laboratorium Wykorzystanie kalkulatora Windows do obliczania adresów sieciowych
Laboratorium Wykorzystanie kalkulatora Windows do obliczania adresów sieciowych Cele Część 1: Dostęp do programu Kalkulator. Część 2: Konwersja między systemami liczbowymi Część 3: Konwersja adresu IPv4
Co w sieci piszczy? Programowanie aplikacji sieciowych w C#
Co w sieci piszczy? Programowanie aplikacji sieciowych w C# Prelegenci: Michał Cywiński i Kamil Frankowicz kamil@vgeek.pl @fumfel www.vgeek.pl mcywinski@hotmail.com @mcywinskipl www.michal-cywinski.pl
Akademia CISCO. Skills Exam Wskazówki
Akademia CISCO Skills Exam Wskazówki Podsieci Ustalenie liczby podsieci Podsiecią jest każda domena rozgłoszeniowa: dowolna kombinacja komputerów oraz przełączników wraz z interfejsami routerów, do których
Routing - wstęp... 2 Routing statyczny... 3 Konfiguracja routingu statycznego IPv Konfiguracja routingu statycznego IPv6...
Routing - wstęp... 2 Routing statyczny... 3 Konfiguracja routingu statycznego IPv4... 3 Konfiguracja routingu statycznego IPv6... 3 Sprawdzenie połączenia... 4 Zadania... 4 Routing - wstęp O routowaniu
Laboratorium 2.8.2: Zaawansowana konfiguracja tras statycznych
Diagram topologii Tabela adresacji Urządzenie Interfejs Adres IP Maska podsieci Brama domyślna BRANCH HQ ISP PC1 PC2 Web Server Fa0/0 Nie dotyczy S0/0/0 Nie dotyczy Fa0/0 Nie dotyczy S0/0/0 Nie dotyczy
Adresowanie grupowe. Bartłomiej Świercz. Katedra Mikroelektroniki i Technik Informatycznych. Łódź, 25 kwietnia 2006
Adresowanie grupowe Bartłomiej Świercz Katedra Mikroelektroniki i Technik Informatycznych Łódź, 25 kwietnia 2006 Wstęp Na potrzeby sieci komputerowych zdefiniowano rożne rodzaje adresowania: adresowanie
Wykład 2: Budowanie sieci lokalnych. A. Kisiel, Budowanie sieci lokalnych
Wykład 2: Budowanie sieci lokalnych 1 Budowanie sieci lokalnych Technologie istotne z punktu widzenia konfiguracji i testowania poprawnego działania sieci lokalnej: Protokół ICMP i narzędzia go wykorzystujące
IPv6. Wprowadzenie. IPv6 w systemie Linux. Zadania Pytania. budowa i zapis adresu, typy adresów tunelowanie IPv6 w IPv4
Wprowadzenie budowa i zapis adresu, typy adresów tunelowanie w IPv4 w systemie Linux polecenie ip, system plików /proc Zadania Pytania Historia Cel rozwiązanie problemu wyczerpania przestrzeni adresowej
Zarządzanie infrastrukturą sieciową Modele funkcjonowania sieci
W miarę rozwoju sieci komputerowych pojawiały się różne rozwiązania organizujące elementy w sieć komputerową. W celu zapewnienia kompatybilności rozwiązań różnych producentów oraz opartych na różnych platformach
Sieci komputerowe - administracja
Sieci komputerowe - administracja warstwa sieciowa Andrzej Stroiński andrzej.stroinski@cs.put.edu.pl http://www.cs.put.poznan.pl/astroinski/ warstwa sieciowa 2 zapewnia adresowanie w sieci ustala trasę
1 Podstawy systemu dwójkowego i arytmetyki binarnej
Spis Treści 1 Podstawy systemu dwójkowego i arytmetyki binarnej...1 1.1 System dziesiętny...1 1.2 System dwójkowy (binarny)...2 1.3 Inne systemy liczbowe...3 1.4 Konwersja liczb systemu dziesiętnego do
Dzielenie sieci na podsieci
e-damiangarbus.pl Dzielenie sieci na podsieci dla każdego Uzupełnienie do wpisu http://e-damiangarbus.pl/podzial-sieci-na-podsieci/ Dwa słowa wstępu Witaj, właśnie czytasz uzupełnienie do wpisu na temat
pasja-informatyki.pl
Protokół DHCP 2017 pasja-informatyki.pl Sieci komputerowe Windows Server #4 DHCP & Routing (NAT) Damian Stelmach Protokół DHCP 2018 Spis treści Protokół DHCP... 3 Polecenia konsoli Windows do wyświetlania