PRACOWNIA FIZYCZNA Ćwiczenie nr 4. Instrukcja do ćwiczenia nr 4
|
|
- Michał Sikorski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Instrukcja do ćwiczenia nr 4 DROGI WYMIANY CIEPŁA Cel ćwiczenia Celem zadania jest zapoznanie się z teorią kinetyczno- molekularną budowy materii, wybranymi zagadnieniami termodynamiki oraz doświadczalne wyznaczenie współczynnika przewodnictwa cieplnego metalu. Zagadnienia do przygotowania. Kinetyczno - molekularna teoria budowy materii.. Stany termodynamiczne: ustalony i nieustalony. 3. Rozszerzalność cieplna, zjawiska termoelektryczne, 4. Drogi wymiany ciepła: przewodnictwo, konwekcja, parowanie, promieniowanie (ciało doskonale czarne). 5. Przyrządy do pomiaru temperatury (zasady pomiaru, mechanizmy działania) -termometry: cieczowe, bimetaliczne, termoelektryczne, ciekłokrystaliczne, podczerwieni i inne. 6. Skale termometryczne i zależności między nimi. 7. Telemetria. 8. Występowanie i znaczenie zjawiska rozszerzalności cieplnej w przyrodzie. Opis i przebieg ćwiczenia.. WYZNACZANIE WSPÓŁCZYNNIKA PRZEWODNICTWA CIEPLNEGO METALU Rysunek.. Schemat układu pomiarowego do wyznaczania współczynnika przewodnictwa cieplnego metalu. W celu wyznaczenia współczynnika przewodnictwa cieplnego metalu, wykorzystujemy zestaw pomiarowy przedstawiony na rys.. W zestawie piecyk G zasilany jest prądem przemiennym. Nagrzewa on koniec pręta P (o średnicy 0 mm). W piecyku i na pręcie w równych odstępach rozmieszczone są termopary (T, T...). Koniec pręta zanurzany jest w mieszaninie wody z lodem (W). Piecyk i boczne ścianki pręta są dobrze izolowane od otoczenia. Dzięki zastosowaniu układu termopar rozmieszczonych wzdłuż pręta możemy wyznaczyć gradient temperatury dt Tn T dx x gdzie x jest odległością między termoparami i n (UWAGA: x nie jest wartością stałą!!!). Wiedząc, że S=πr (r - promień pręta), napięcie zasilające piecyk U 0, napięcie zasilające piecyk z prętem U zatem możemy zapisać U U R 0 r T T x n Zakład Biofizyki Strona 06
2 stąd otrzymujemy wzór na współczynnik przewodnictwa cieplnego: ( U U r R( T Doświadczenie sprowadza się do pomiaru temperatur w układzie termopar rozmieszczonych wzdłuż pręta, napięcia U i U 0 oraz oporności grzałki R. W celu wyznaczenia współczynnika przewodnictwa cieplnego metalu należy wykonać następujące czynności:. Kalibracja miernika. Uwaga: układ długo się stabilizuje (długo ustala się równowaga termiczna). Czynności kalibracyjne należy wykonać powoli i powtórzyć kilka krotnie. W celu wykonania kalibracji należy: Ustawić przełącznik w położeniu T, W celu kalibracji zimnego końca termopary obie końcówki termopary umieścić w mieszaninie wody z lodem (termos) Wskazówka przyrządu powinna wskazywać 0 C, jeśli tak nie jest, należy ustawić ją gałką opisaną 0 C. Następnie w celu kalibracji ciepłego końca termopary, jeden koniec termopary T umieścić w naczyniu z wodą o wyższej temperaturze (ok. 0 C). Wskazówka przyrządu powinna wskazywać wartość taką jak termometr w naczyniu, jeśli tak nie jest, należy ustawić ją gałką opisaną 50 C. Czynności kalibracji ciepłego i zimnego końca termopary można powtórzyć, żeby upewnić się czy kalibracja została przeprowadzona prawidłowo. 3. Uruchomienie zestawu. 0 n Przed włączeniem piecyka należy watą zamknąć jego otwór tak by maksymalnie ograniczyć straty ciepła. Przełącznik służący do wybierania termopary, z której dokonywany jest odczyt temperatury piecyka, powinien być ustawiony na P. Włączyć piecyk. Dobrać tak napięcie zasilające, aby uzyskać temperaturę piecyka T p o C (ok. 30V na autotransformatorze w razie wątpliwości skonsultować się z prowadzącym). W razie potrzeby można wyregulować wartość pokrętłem autotransformatora. Uwaga: Zmian dokonywać o bardzo małą wartość, ze względu na dużą bezwładność cieplną grzałki piecyka. Zmian dokonywać najlepiej w porozumieniu z prowadzącym. Po ustabilizowaniu temperatury piecyka odczytać napięcie U 0 (zasilanie piecyka). Temperatura musi być stała!!! Po uzyskaniu zgody prowadzącego założyć piecyk na nieosłoniętą część pręta (pręt będzie pobierał ciepło z piecyka, co doprowadzi do obniżenia temperatury piecyka odczytujemy wskazania temperatury przy pozycji P na przełączniku). Należy podnieść temperaturę piecyka do uzyskania temperatury równej temperaturze początkowej T p (zmierzonej uprzednio-bez pręta w piecyku). W tym celu zwiększamy napięcie zasilające piecyk (o ok. 0%). (Zmian dokonywać ostrożnie, aby nie przegrzać piecyka, wziąć pod uwagę bezwładność cieplną grzałki piecyka. Zmian dokonywać za zgodą prowadzącego!!!) W trakcie stabilizowania się temperatury można wykonać pomiary z kolejnych doświadczeń. 4. Pomiary. c Po osiągnięciu wymaganej temperatury odczytujemy wartość napięcia zasilającego piecyk z prętem U. W jednakowych odstępach czasu odczytywać wskazanie miernika dla wszystkich termopar (wybieranych przełącznikiem - poz. P,,..,n). ) x T ) Zakład Biofizyki Strona 06
3 Wyniki notować w tabeli wg wzorca: U= U= R= n Seria Seria Seria 5 oraz zaznaczyć na wykresie T(n) Serię powtórzyć kilkakrotnie (w 5 min odstępach) do czasu otrzymania liniowego rozkładu temperatur. Między seriami pomiarowymi należy wykonać obserwacje w ramach kolejnych doświadczeń Po zakończeniu pomiarów temperatury odłączyć (za zgodą prowadzącego) przewody od transformatora i zmierzyć omomierzem opór elektryczny grzałki piecyka 5. Opracowanie wyników (w sprawozdaniu). Wykreślić zależność T(x), gdzie x-odległość termopary od piecyka, T- odczytane wartości temperatur (w układzie termopar rozmieszczonych wzdłuż pręta). Dla pierwszej termopary przyjmujemy x=0. Odległość między poszczególnymi termoparami wynosi 3 cm. Skomentować otrzymaną zależność. Obliczyć κ dla poszczególnych par termopar (T n-t dla n=,,5. dopuszczalne są obliczenia dla co drugiej pary), o Z uzyskanych wartości obliczyć wartość średnią, o Wyprowadzić jednostkę o Ocenić otrzymany wynik (obliczyć średni błąd średniej arytmetycznej - ). o Porównać otrzymany wynik z wynikiem tablicowym (dla duraluminium). o Skomentować wartość współczynnika duraluminium w porównaniu z innymi materiałami spotykanymi na co dzień. OBSERWACJA PRZEWODNOŚCI CIEPLNEJ RÓŻNYCH METALI A. Przyrząd do obserwacji przewodności cieplnej różnych metali i ich stopów składający się z mosiężnego krążka o średnicy ok. 0 mm, do którego przymocowanych jest 5 prętów metalowych o jednakowych wymiarach (ta sama długość i średnica przekroju), ale wykonanych z różnych metali/stopów, tj.: stal mosiądz aluminium stal miękka miedź (umowne oznaczenia na prętach, odpowiednio: S B A Ss C), zamocowany jest na statywie równolegle do podłoża (blatu) Wykonanie doświadczenia. Na końcu każdego z pięciu fragmentów metali/stopów (w specjalnym zagłębieniu) wkropl identyczną ilość wody (kropli). Następnie, używając przy pomocy palnika spirytusowego ogrzej środek przyrządu. Zanotuj obserwację i wniosek. W sprawozdaniu zinterpretuj obserwację. B. Wizualizator składa się z czterech metalowych płaskowników wykonanych ze stali, mosiądzu, aluminium i miedzi, umieszczonych na wspólnej, plastikowej podstawie. Na każdym z nich umieszczony jest wskaźnik, pokazujący zmiany temperatury (min. 35 C czerwony, max 45 Cniebieski). W temp. ok. 40 C przybiera on kolor zielony, który zmienia się w zakresie spektrum tej barwy w zależności od temperatury przewodzącego materiału. W ten sposób możemy zaobserwować jednocześnie przewodność cieplną różnych metali. Wykonanie doświadczenia. Dolną część wizualizatora (poniżej ciekłokrystalicznego wskaźnika temperatury) zanurz w ciepłej wodzie (ok. 45 C ) Zanotuj obserwację i wnioski. W sprawozdaniu zinterpretuj obserwację. Zakład Biofizyki Strona 3 06
4 3. PAROWANIE I PROMIENIOWANIE Kolejna część ćwiczenia to doświadczenia dotyczące parowania i promieniowania z wykorzystaniem termopar. Zestaw składa się z galwanometru i termopary. Złącza termopary są przyklejone do gąbki. Pomiary polegają na odczytywaniu wskazań galwanometru lub obserwowaniu kierunków zmian po każdej z niżej podanych czynności.. Pomiary. Pomiary rozpoczynamy od testu. Należy dotknąć palcem jednej, następnie drugiej końcówki termopary. Zaobserwować kierunek wychylenia wskazówki (środek większego świecącego prostokąta). Zanotować i zinterpretować obserwacje. Promieniowanie: Na obie końcówki termopary położyć jednakowej wielkości kawałki białego papieru (końcówki powinny być jednakowo zakryte). Ustawić lampkę tak, żeby końcówki były jednakowo oświetlone. Lampkę włączyć na ok.5s. Doświadczenie powtórzyć kładąc dwa czarne papierki, następnie biały i czarny. Zanotować wartości i kierunki wychylenia wskaźnika galwanometru Parowanie: Na obie końcówki termopary położyć niewielkie skrawki waty. Na jedną z nich nalać kroplę alkoholu obserwując jednocześnie efekt. Doświadczenie wykonujemy tylko raz, tylko na jednaj końcówce Zanotować wartość i kierunek wychylenia wskaźnika galwanometru. Opracowanie wyników Zanotować i zinterpretować obserwacje. Podać ich wytłumaczenie naukowe. 4. ROZSZERZALNOŚĆ CIEPLNA METALU Następnym etapem ćwiczenia jest obserwacja zjawiska rozszerzalności liniowej metalu z wykorzystaniem układu zamontowanego na statywie oraz bimetalu. Obserwacje. Zaobserwować zjawisko rozszerzalności liniowej metalu z wykorzystaniem układu zamontowanego na statywie. Zanotuj obserwację (na czym polega doświadczenie) Zaobserwować działanie bimetalu Osadzone w rękojeści połączone ze sobą paski różnych metali należy podgrzać nad palnikiem alkoholowym. Zanotuj obserwację. Zaobserwować działanie termometru bimetalicznego. Zanotuj obserwację 3. Opracowanie wyników. W opracowaniu opisać mechanizm działania układu do rozszerzalności liniowej. o Co obserwujemy? Co się dzieje z drutem? Dlaczego żarówka zapala się i gaśnie? o Z jakimi drogami wymiany ciepła mamy tutaj do czynienia? W wyjaśnieniu uwzględnić wpływ przepływającego prądu przez drut. o Opisać działanie żarówki wolframowej. Wyjaśnić budowę i działanie bimetalu. Opisać zastosowanie na przykładzie termostatu. Zakład Biofizyki Strona 4 06
5 . Obserwacje. 5. ZJAWISKA TERMOELEKTRYCZNE W doświadczeniu wykorzystujemy przyrząd, którego głównym elementem jest ogniwo Peltiera, w którym mogą zachodzić: A. zjawisko Seebecka powstanie różnicy potencjałów na granicy dwóch różnych metali lub półprzewodników zależnej od temperatury. W zamkniętym obwodzie składającym się z dwóch różnych metali lub półprzewodników, których miejsca styku znajdują się w różnych temperaturach, powstaje różnica potencjałów pomiędzy złączami. B. zjawisko Peltiera transport ciepła przez granicę dwóch różnych metali lub półprzewodników pod wpływem przepływającego przez złącze prądu elektrycznego (w efekcie ochładzanie jednej strony złącza i ogrzewanie drugiej) A. Ustawić przełącznik w pozycji A. Do jednego z naczyń nalać gorącej wody, do drugiego zimnej (lepiej mieszanina wody z lodem lub sam lód).włożyć przyrząd do naczyń (jak na zdjęciu obok). Po chwili wiatrak powinien zacząć się obracać. Następnie zamienić naczynia miejscami. Zaobserwować zmianę w działaniu układu. B. Wyjąć przyrząd z naczyń, odczekać do wyrównania temperatur (wiatrak przestanie się obracać). Podłączyć układ do zasilacza, ustawić napięcie na 0V. Przełącznik ustawić w poz. B zwiększyć napięcie do tak, aby natężenie prądu osiągnęło wartość A. Zaobserwować jak zmienia się temperatura przyrządu. Odłączyć od zasilacza. Przełącznik ustawić w poz. A. Zaobserwować działanie układu i zmianę jego temperatury. Obserwację powtórzyć przy przeciwnym kierunku prądu (zamienić wtyczki przy zasilaczu) 3. Opracowanie wyników. Zanotować i zinterpretować obserwację. Podać wytłumaczenie naukowe. LITERATURA. Encyklopedia fizyki. B. Kędzia Materiały do ćwiczeń z biofizyki i fizyki PZWL W-wa 98 str. 8- Zakład Biofizyki Strona 5 06
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 121: Termometr oporowy i termopara
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 121: Termometr oporowy i termopara Cel ćwiczenia: Wyznaczenie współczynnika temperaturowego oporu platyny oraz pomiar charakterystyk termopary miedź-konstantan.
ZADANIE 28. Wyznaczanie przewodnictwa cieplnego miedzi
ZADANIE 28 Wyznaczanie przewodnictwa cieplnego miedzi Wstęp Pomiędzy ciałami ogrzanymi do różnych temperatur zachodzi wymiana ciepła. Ciało o wyższej temperaturze traci ciepło, a ciało o niższej temperaturze
Wyznaczanie współczynnika przewodnictwa
Ćwiczenie C5 Wyznaczanie współczynnika przewodnictwa cieplnego wybranych materiałów C5.1. Cel ćwiczenia Celem ćwiczenia jest poznanie mechanizmów transportu energii, w szczególności zjawiska przewodnictwa
Termodynamika. Wydział Inżynierii Mechanicznej i Robotyki I rok inż. Pomiary temperatury Instrukcja do ćwiczenia
Termodynamika Wydział Inżynierii Mechanicznej i Robotyki I rok inż. Pomiary temperatury Instrukcja do ćwiczenia Katedra Systemów Energetycznych i Urządzeń Ochrony Środowiska AGH Kraków 2013 1. INSTRUKCJA
Termodynamika. Wydział Inżynierii Mechanicznej i Robotyki II rok inż. Pomiar temperatury Instrukcja do ćwiczenia
Termodynamika Wydział Inżynierii Mechanicznej i Robotyki II rok inż. Pomiar temperatury Instrukcja do ćwiczenia Katedra Systemów Energetycznych i Urządzeń Ochrony Środowiska AGH Kraków 2016 1. INSTRUKCJA
2.1 Cechowanie termopary i termistora(c1)
76 Ciepło 2.1 Cechowanie termopary i termistora(c1) Celem ćwiczenia jest zbadanie zależności temperaturowej oporu termistora oraz siły elektromotorycznej indukowanej w obwodach z termoparą. Przeprowadzane
Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą.
Ćwiczenie nr 9 Pomiar rezystancji metodą porównawczą. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne poznanie różnych metod pomiaru rezystancji, a konkretnie zapoznanie się z metodą porównawczą. 2. Dane
CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - 7 CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE
Ćwiczenie 425. Wyznaczanie ciepła właściwego ciał stałych. Woda. Ciało stałe Masa kalorymetru z ciałem stałym m 2 Masa ciała stałego m 0
2014 Katedra Fizyki Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg... Godzina... Ćwiczenie 425 Wyznaczanie ciepła właściwego ciał stałych Masa suchego kalorymetru m k = kg Opór grzałki
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną opracowanie ćwiczenia: dr J. Woźnicka, dr S. Belica ćwiczenie nr 38 Zakres zagadnień obowiązujących
Analiza natężenia przepływu ciepła przez materiały stałe dla jednowymiarowych ustalonych warunków przepływów ciepła- zastosowanie równania Fouriera.
Analiza natężenia przepływu ciepła przez materiały stałe dla jednowymiarowych ustalonych warunków przepływów ciepła- zastosowanie równania Fouriera. Uwaga: Energię elektryczną dostarczoną przez element
Wyznaczanie oporu elektrycznego właściwego przewodników
Wyznaczanie oporu elektrycznego właściwego przewodników Ćwiczenie nr 7 Wprowadzenie Natężenie prądu płynącego przez przewodnik zależy od przyłożonego napięcia U oraz jego oporu elektrycznego (rezystancji)
1. Wprowadzenie: dt q = - λ dx. q = lim F
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwiczenia: WYZNACZANIE WSPÓŁCZYNNIKA PRZEWODNOŚCI
SPRAWDZANIE SŁUSZNOŚCI PRAWA OHMA DLA PRĄDU STAŁEGO
SPRWDZNE SŁSZNOŚC PRW OHM DL PRĄD STŁEGO Cele ćwiczenia: Doskonalenie umiejętności posługiwania się miernikami elektrycznymi (stała miernika, klasa miernika, optymalny zakres wychyleń). Zapoznanie się
teoretyczne podstawy działania
Techniki Niskotemperaturowe w medycynie Seminarium Termoelektryczne urządzenia chłodnicze - teoretyczne podstawy działania Edyta Kamińska IMM II st. Sem I 1 Spis treści Termoelektryczność... 3 Zjawisko
Wzorcowanie mierników temperatur Błędy pomiaru temperatury
Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cieplnych W9/K2 Miernictwo Energetyczne laboratorium Wzorcowanie mierników temperatur Błędy pomiaru temperatury Instrukcja do ćwiczenia nr 3 Opracował: dr
J Wyznaczanie względnej czułości widmowej fotorezystorów
J 10.1. Wyznaczanie względnej czułości widmowej fotorezystorów INSTRUKCJA WYKONANIA ZADANIA Obowiązujące zagadnienia teoretyczne: 1. Podstawy teorii pasmowej ciał stałych metale, półprzewodniki, izolatory
ĆWICZENIE 22 WYZNACZANIE CIEPŁA PAROWANIA WODY W TEMPERETATURZE WRZENIA
ĆWICZENIE 22 WYZNACZANIE CIEPŁA PAROWANIA WODY W TEMPERETATURZE WRZENIA Aby parowanie cieczy zachodziło w stałej temperaturze należy dostarczyć jej określoną ilość ciepła w jednostce czasu. Wielkość równą
Badanie własności hallotronu, wyznaczenie stałej Halla (E2)
Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie
POMIAR TEMPERATURY TERMOLEMENTAMI I TERMOMETRAMI REZYSTANCYJNYMI
POMIAR TEMPERATURY TERMOLEMENTAMI I TERMOMETRAMI REZYSTANCYJNYMI Wykaz zagadnień teoretycznych, których znajomość jest niezbędna do wykonania ćwiczenia: Zasada działania termometru rezystancyjnego. Elementy
Układ pomiaru temperatury termoelementem typu K o dużej szybkości. Paweł Kowalczyk Michał Kotwica
Układ pomiaru temperatury termoelementem typu K o dużej szybkości Paweł Kowalczyk Michał Kotwica Plan prezentacji Fizyczne podstawy działania termopary Zalety wykorzystania termopar Właściwości termoelementu
Co się stanie, gdy połączymy szeregowo dwie żarówki?
Różne elementy układu elektrycznego można łączyć szeregowo. Z wartości poszczególnych oporów, można wyznaczyć oporność całkowitą oraz całkowite natężenie prądu. Zadania 1. Połącz szeregowo dwie identyczne
CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW
CHARAKTERYSTYKA PIROMETRÓW I METODYKA PRZEPROWADZANIA POMIARÓW Wykaz zagadnień teoretycznych, których znajomość jest niezbędna do wykonania ćwiczenia: Prawa promieniowania: Plancka, Stefana-Boltzmana.
BADANIE CHARAKTERYSTYK FOTOELEMENTU
Ćwiczenie E7 BADANIE CHARAKTERYSTYK FOTOELEMENTU Przyrzady: Przyrząd do badania zjawiska fotoelektrycznego, płytki absorbenta suwmiarka, fotoelementy (fotoopór, fotodioda, lub fototranzystor). Zjawisko
Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej
Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej - - Wstęp teoretyczny Jednym ze sposobów wymiany ciepła jest przewodzenie.
E12. Wyznaczanie parametrów użytkowych fotoogniwa
1/5 E12. Wyznaczanie parametrów użytkowych fotoogniwa Celem ćwiczenia jest poznanie podstaw zjawiska konwersji energii świetlnej na elektryczną, zasad działania fotoogniwa oraz wyznaczenie jego podstawowych
KO OF Szczecin:
45OF_II_D XLV OLIMIADA FIZYZNA (995/996) Stopień II zadanie doświadczalne D Źródło: Komitet Główny Olimpiady Fizycznej Andrzej Wysmołek sekretarz naukowy do zad dośw IFD UW; Włodzimierz Ungier Andrzej
Zapoznanie się ze zjawiskiem Seebecka i Peltiera. Zastosowanie elementu Peltiera do chłodzenia i zamiany energii cieplnej w energię elektryczną.
FiIS PRAONIA FIZYZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆIZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OENA el ćwiczenia: Zapoznanie się ze
Zjawisko termoelektryczne
34 Zjawisko Peltiera polega na tym, że w obwodzie składającym się z różnych przewodników lub półprzewodników wytworzenie różnicy temperatur między złączami wywołuje przepływ prądu spowodowany różnicą potencjałów
Wyznaczanie krzywej ładowania kondensatora
Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.
EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE
ĆWICZENIE 104 EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE Instrukcja wykonawcza 1. Wykaz przyrządów 1. Panel z ogniwami 5. Zasilacz stabilizowany oświetlacza 2. Oświetlacz 3. Woltomierz napięcia stałego 4. Miliamperomierz
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment
Ciepłe + Zimne = przepływ ładunków
AKADEMICKIE LICEUM OGÓLNOKSZTAŁCĄCE POLITECHNIKI WROCŁAWSKIEJ Ciepłe + Zimne = przepływ ładunków Zjawiska termoelektryczne Karol Kobiałka (1A), Michał Łakomski (1A), Monika Zemankiewicz (1A) 2015-01-29
Konkurs fizyczny - gimnazjum. 2018/2019. Etap rejonowy
UWAGA: W zadaniach o numerach od 1 do 7 spośród podanych propozycji odpowiedzi wybierz i zaznacz tą, która stanowi prawidłowe zakończenie ostatniego zdania w zadaniu. Zadanie 1. (0 1pkt.) Podczas testów
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 123: Półprzewodnikowe złącze p-n
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 123: Półprzewodnikowe złącze p-n Cel ćwiczenia: Zapoznanie się z własnościami warstwowych złącz półprzewodnikowych p-n. Wyznaczanie charakterystyk stałoprądowych
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Ruch obrotowy jednostajny: a) prędkość kątowa; b) prędkość liniowa; c) moment
WYZNACZANIE CHARAKTERYSTYK ELEKTRYCZNYCH ŹRÓDEŁ ŚWIATŁA
POLITECHNIKA ŁÓDZKA INSTYTUT ELEKTROENERGETYKI Instrukcja do ćwiczenia O9 Temat ćwiczenia WYZNACZANIE CHARAKTERYSTYK ELEKTRYCZNYCH ŹRÓDEŁ ŚWIATŁA Ćwiczenie O9 WYZNACZANIE CHARAKTERYSTYK ELEKTRYCZNYCH ŹRÓDEŁ
Zakład Zastosowań Elektroniki i Elektrotechniki
Zakład Zastosowań Elektroniki i Elektrotechniki Laboratorium Wytwarzania energii elektrycznej Temat ćwiczenia: Badanie alternatora 52 BADANIE CHARAKTERYSTYK EKSPLOATACYJNYCH ALTERNATORÓW SAMO- CHODOWYCH
Ćwiczenie 375. Badanie zależności mocy promieniowania cieplnego od temperatury. U [V] I [ma] R [ ] R/R 0 T [K] P [W] ln(t) ln(p)
1 Nazwisko... Data... Wydział... Imię... Dzień tyg.... Godzina... Ćwiczenie 375 Badanie zależności mocy promieniowania cieplnego od temperatury = U [V] I [ma] [] / T [K] P [W] ln(t) ln(p) 1.. 3. 4. 5.
ĆWICZENIE NR 4 WYMIENNIK CIEPŁA
ĆWICZENIE NR 4 WYMIENNIK CIEPŁA 1. Cel ćwiczenia Celem ćwiczenia jest doświadczalne zbadanie wymiany ciepła w przeponowym płaszczowo rurowym wymiennika ciepła i porównanie wyników z obliczeniami teoretycznymi.
str. 1 d. elektron oraz dziura e.
1. Półprzewodniki samoistne a. Niska temperatura b. Wzrost temperatury c. d. elektron oraz dziura e. f. zjawisko fotoelektryczne wewnętrzne g. Krzem i german 2. Półprzewodniki domieszkowe a. W półprzewodnikach
Konkurs fizyczny szkoła podstawowa. 2018/2019. Etap rejonowy
UWAGA: W zadaniach o numerach od 1 do 8 spośród podanych propozycji odpowiedzi wybierz i zaznacz tą, która stanowi prawidłowe zakończenie ostatniego zdania w zadaniu. Zadanie 1. (0 1pkt.) odczas testów
Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?
Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie
st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE
Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Układem
Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO
Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO
Laboratorium Podstaw Elektrotechniki i Elektroniki
Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 2 OBWODY NIELINIOWE PRĄDU
Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia II. Wyznaczanie charakterystyk statycznych czujników temperatury
Automatyka i pomiary wielkości fizykochemicznych Instrukcja do ćwiczenia II Wyznaczanie charakterystyk statycznych czujników temperatury 1 1. Wstęp Temperatura jest jedną z najważniejszych wielkości fizycznych
Ćwiczenie nr 123: Dioda półprzewodnikowa
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 123: Dioda półprzewodnikowa
BADANIE WYMIENNIKA CIEPŁA TYPU RURA W RURZE
BDNIE WYMIENNIK CIEPŁ TYPU RUR W RURZE. Cel ćwiczenia Celem ćwiczenia jest zapoznanie z konstrukcją, metodyką obliczeń cieplnych oraz poznanie procesu przenikania ciepła w rurowych wymiennikach ciepła..
Pomiar współczynnika przewodzenia ciepła ciał stałych
Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Pomiar współczynnika przewodzenia ciepła ciał stałych - - Wiadomości wstępne Przewodzenie ciepła jest procesem polegającym na przenoszeniu
LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ
LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwiczenia PC-13 BADANIE DZIAŁANIA EKRANÓW CIEPLNYCH
ĆWICZENIE NR 79 POMIARY MIKROSKOPOWE. I. Cel ćwiczenia: Zapoznanie się z budową mikroskopu i jego podstawowymi możliwościami pomiarowymi.
ĆWICZENIE NR 79 POMIARY MIKROSKOPOWE I. Zestaw przyrządów: 1. Mikroskop z wymiennymi obiektywami i okularami.. Oświetlacz mikroskopowy z zasilaczem. 3. Skala mikrometryczna. 4. Skala milimetrowa na statywie.
Energia promieniowania termicznego sprawdzenie zależności temperaturowej
6COACH 25 Energia promieniowania termicznego sprawdzenie zależności temperaturowej Program: Coach 6 Projekt: komputer H C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6 \Termodynamika\Promieniowanie
LABORATORIUM INŻYNIERII MATERIAŁOWEJ
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół
Pomiar podstawowych parametrów liniowych układów scalonych
Instytut Fizyki ul Wielkopolska 15 70-451 Szczecin 5 Pracownia Elektroniki Pomiar podstawowych parametrów liniowych układów scalonych Zakres materiału obowiązujący do ćwiczenia: wzmacniacz operacyjny,
WOJSKOWA AKADEMIA TECHNICZNA WYDZIAŁ MECHANICZNY INSTYTUT POJAZDÓW MECHANICZNYCH I TRANSPORTU
WOJSKOWA AKADEMIA TECHNICZNA WYDZIAŁ MECHANICZNY INSTYTUT POJAZDÓW MECHANICZNYCH I TRANSPORTU ZAKŁAD SILNIKÓW POJAZDÓW MECHANICZNYCH ĆWICZENIE LABORATORYJNE Z TERMODYNAMIKI TECHNICZNEJ Temat: Wymiana i
WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw 1) Instrukcja wykonawcza
ĆWICZENIE 76A WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw ) Instrukcja wykonawcza. Wykaz przyrządów Spektrometr (goniometr) Lampy spektralne Pryzmaty. Cel ćwiczenia
Wzorcowanie termometrów i termopar
Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wzorcowanie termometrów i termopar - 1 - Wstęp teoretyczny Temperatura jest jednym z parametrów określających stan termodynamiczny ciała
WYZNACZENIE STAŁEJ STEFANA - BOLTZMANNA
ĆWICZENIE 32 WYZNACZENIE STAŁEJ STEFANA - BOLTZMANNA Cel ćwiczenia: Wyznaczenie stałej Stefana-Boltzmanna metodami jednakowej temperatury i jednakowej mocy. Zagadnienia: ciało doskonale czarne, zdolność
WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ
INSYU INFORMAYKI SOSOWANEJ POLIECHNIKI ŁÓDZKIEJ Ćwiczenie Nr2 WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ 1.WPROWADZENIE. Wymiana ciepła pomiędzy układami termodynamicznymi może być realizowana na
Rozszerzalność cieplna ciał stałych
Zagadnienia powiązane Rozszerzalność liniowa, rozszerzalność objętościowa cieczy, pojemność cieplna, odkształcenia sieci krystalicznej, rozstaw położeń równowagi, parametr Grüneisena. Podstawy Zbadamy
Badanie rozkładu pola elektrycznego
Ćwiczenie E1 Badanie rozkładu pola elektrycznego E1.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie rozkładu pola elektrycznego dla różnych układów elektrod i ciał nieprzewodzących i przewodzących umieszczonych
Laboratorium z Konwersji Energii. Kolektor słoneczny
Laboratorium z Konwersji Energii Kolektor słoneczny 1.0 WSTĘP Kolektor słoneczny to urządzenie służące do bezpośredniej konwersji energii promieniowania słonecznego na ciepło użytkowe. Podział urządzeń
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Ćwiczenie 28 : Wyznaczanie charakterystyk termistorów I. Zagadnienia do opracowania. 1. Pasma energetyczne w
ε (1) ε, R w ε WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ
WYZNACZANIE SIŁY ELEKTROMOTOTYCZNEJ METODĄ KOMPENSACYJNĄ I. Cel ćwiczenia: wyznaczanie metodą kompensacji siły elektromotorycznej i oporu wewnętrznego kilku źródeł napięcia stałego. II. Przyrządy: zasilacz
Czujniki temperatur, termopary
Czujniki temperatur, termopary 1 Termopara Czujniki termoelektryczne są to przyrządy reagujące na zmianę temperatury zmianą siły termodynamicznej wbudowanego w nie termoelementu. Połączone na jednym końcu
Wyznaczanie sprawności grzejnika elektrycznego i ciepła właściwego cieczy za pomocą kalorymetru z grzejnikiem elektrycznym
Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 24 III 2009 Nr. ćwiczenia: 215 Temat ćwiczenia: Wyznaczanie sprawności grzejnika elektrycznego i ciepła
Termodynamika. Energia wewnętrzna ciał
ermodynamika Energia wewnętrzna ciał Cząsteczki ciał stałych, cieczy i gazów znajdują się w nieustannym ruchu oddziałując ze sobą. Sumę energii kinetycznej oraz potencjalnej oddziałujących cząsteczek nazywamy
Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek
Ćwiczenie 2 Mostek pojemnościowy Ćwiczenie wraz z instrukcją i konspektem opracowali P.Wisniowski, M.Dąbek el ćwiczenia elem ćwiczenia jest zapoznanie się z metodą mostkową pomiaru pojemności kondensatora
Cechowanie termopary i termistora
C1 Cechowanie termopary i termistora Celem ćwiczenia jest: - zbadanie zależności napięcia generowanego w termoparze od różnicy temperatur między jej złączami (cechowanie termopary); - dla chętnych/ambitnych
TEMAT: BADANIE ZJAWISKA PRZEWODNICTWA CIEPLNEGO W CIAŁACH STAŁYCH
TEMAT: BADANIE ZJAWISKA PRZEWODNICTWA CIEPLNEGO W CIAŁACH STAŁYCH Autor: Tomasz Kocur Podstawa programowa, III etap edukacyjny Cele kształcenia wymagania ogólne II. Przeprowadzanie doświadczeń i wyciąganie
LVI OLIMPIADA FIZYCZNA (2006/2007). Stopień III, zadanie doświadczalne D
LI OLIMPIADA FIZYCZNA (26/27). Stopień III, zadanie doświadczalne D Źródło: Autor: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej. Andrzej ysmołek Komitet Główny Olimpiady Fizycznej,
Ćwiczenie nr 31: Modelowanie pola elektrycznego
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko.. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr : Modelowanie pola
Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym
Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający
Ćwiczenie nr 3 Sprawdzenie prawa Ohma.
Ćwiczenie nr 3 Sprawdzenie prawa Ohma. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne wykazanie i potwierdzenie słuszności zależności określonych prawem Ohma. Zastosowanie prawa Ohma dla zmierzenia oporności
BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza
ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Instrukcja wykonawcza 1. Wykaz przyrządów Polarymetr Lampa sodowa Solenoid Źródło napięcia stałego o wydajności prądowej min. 5A Amperomierz prądu stałego
Badanie silnika bezszczotkowego z magnesami trwałymi (BLCD)
Badanie silnika bezszczotkowego z magnesami trwałymi (BLCD) Badane silniki BLCD są silnikami bezszczotkowymi prądu stałego (odpowiednikami odwróconego konwencjonalnego silnika prądu stałego z magnesami
EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY
ĆWICZENIE 91 EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY Instrukcja wykonawcza 1. Wykaz przyrządów 1. Monochromator 5. Zasilacz stabilizowany oświetlacza. Oświetlacz 6. Zasilacz fotokomórki 3. Woltomierz napięcia
Ćwiczenie 6. Wyznaczanie parametrów eksploatacyjnych kolektora słonecznego
Ćwiczenie 6 Wyznaczanie parametrów eksploatacyjnych kolektora słonecznego Wstęp Kolektor słoneczny jest urządzeniem do konwersji energii promieniowania słonecznego na ciepło. Energia docierająca do kolektora
WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ
WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała
CZUJNIKI I PRZETWORNIKI POJEMNOŚCIOWE
CZUJNIKI I PRZETWORNIKI POJEMNOŚCIOWE A POMIAR ZALEŻNOŚCI POJENOŚCI ELEKTRYCZNEJ OD WYMIARÓW KONDENSATOR PŁASKIEGO I Zestaw przyrządów: Kondensator płaski 2 Miernik pojemności II Przebieg pomiarów: Zmierzyć
Druty oporowe [ BAP_ doc ]
Druty oporowe [ ] Cel Przyrząd jest przeznaczony do następujących doświadczeń: 1. Pierwsze prawo Ohma: sprawdzenie związku między różnicą potencjałów na końcach przewodnika liniowego i natężeniem prądu
Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej
termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,
Ćwiczenie nr 23. Charakterystyka styku między metalem a półprzewodnikiem typu n. str. 1. Cel ćwiczenia:
Ćwiczenie nr 23 Charakterystyka styku między metalem a półprzkiem typu n. Cel ćwiczenia: Wyznaczanie charakterystyki napięciowo - prądowej złącza metal-półprzk n oraz zaobserwowanie działania elementów
MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM
Ćwiczenie nr 16 MOMENT MAGNETYCZNY W POLU MAGNETYCZNYM Aparatura Zasilacze regulowane, cewki Helmholtza, multimetry cyfrowe, dynamometr torsyjny oraz pętle próbne z przewodnika. X Y 1 2 Rys. 1 Układ pomiarowy
Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja)
Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja) Temat lekcji Siła wypadkowa siła wypadkowa, składanie sił o tym samym kierunku, R składanie sił o różnych kierunkach, siły równoważące się.
INSTRUKCJA DO ĆWICZENIA NR 7. Pomiar mocy czynnej, biernej i cosφ
INSTRUKCJA DO ĆWICZENIA NR 7 Pomiar mocy czynnej, biernej i cosφ Wstęp Układy elektryczne w postaci szeregowego połączenia RL, podczas zasilania z sieci napięcia przemiennego, pobierają moc czynną, bierną
Uwaga. Łącząc układ pomiarowy należy pamiętać o zachowaniu zgodności biegunów napięcia z generatora i zacisków na makiecie przetwornika.
PLANOWANIE I TECHNIKA EKSPERYMENTU Program ćwiczenia Temat: Badanie właściwości statycznych przetworników pomiarowych, badanie właściwości dynamicznych czujników temperatury Ćwiczenie 5 Spis przyrządów
Instrukcja do ćwiczenia laboratoryjnego nr 2
Instrukcja do ćwiczenia laboratoryjnego nr 2 Temat: Wpływ temperatury na charakterystyki i parametry statyczne diod Cel ćwiczenia. Celem ćwiczenia jest poznanie wpływu temperatury na charakterystyki i
RÓWNOWAGA CIECZ PARA W UKŁADZIE DWUSKŁADNIKOWYM
RÓWNOWAGA CIECZ PARA W UKŁADZIE DWUSKŁADNIKOWYM Cel ćwiczenia: wyznaczenie diagramu fazowego ciecz para w warunkach izobarycznych. Układ pomiarowy i opis metody: Pomiary wykonywane są metodą recyrkulacyjną
INSTRUKCJA OBSŁUGI TERMOMETR CYFROWY
INSTRUKCJA OBSŁUGI TERMOMETR CYFROWY 9612 tel: 91 880 88 80 www.thermopomiar.pl info@thermopomiar.pl Spis treści Strona 1. WSTĘP...3 2. BEZPIECZEŃSTWO...3 3. SPECYFIKACJA TECHNICZNA...4 3.1. Charakterystyka
Laboratorium Podstaw Elektrotechniki i Elektroniki
Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PĄDU SINUSOIDLNEGO
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Model solarny materiał szkoleniowy dla uczniów szkół ponadgimnazjalnych
Model solarny materiał szkoleniowy dla uczniów szkół ponadgimnazjalnych Spis treści: 1. Przeznaczenie stanowiska doświadczalnego... 3 2. Budowa stanowiska badawczego... 4 3. Elementy stanowiska badawczego...
Badanie rozkładu pola magnetycznego przewodników z prądem
Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze
ZJAWISKA TERMOELEKTRYCZNE
Wstęp W ZJAWISKA ERMOELEKRYCZNE W.1. Wstęp Do zjawisk termoelektrycznych zaliczamy: zjawisko Seebecka - efekt powstawania różnicy potencjałów elektrycznych na styku metali lub półprzewodników, zjawisko
Badanie bezzłączowych elementów elektronicznych
Temat ćwiczenia: Badanie bezzłączowych elementów elektronicznych - - ` Symbol studiów (np. PK10): data wykonania ćwiczenia - Dzień tygodnia: godzina wykonania ćwiczenia Lp. Nazwisko i imię*: 1 Pluton/Grupa
Klucz odpowiedzi. Konkurs Fizyczny Etap Rejonowy
Klucz odpowiedzi Konkurs Fizyczny Etap Rejonowy Zadania za 1 p. TEST JEDNOKROTNEGO WYBORU (łącznie 20 p.) Nr zadania 1 2 3 4 5 6 7 8 9 10 Odpowiedź B C C B B D C A D B Zadania za 2 p. Nr zadania 11 12
WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTRYCE I ELEKTRONICE
WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTRYCE I ELEKTRONICE Klasa: 2Tc Technik mechatronik Program: 311410 (KOWEZIU ) Wymiar: 4h tygodniowo Na ocenę dopuszczającą uczeń: Zna
E12. Mostek Wheatstona wyznaczenie oporu właściwego
E1. Mostek Wheatstona wyznaczenie oporu właściwego Marek Pękała Wstęp Zgodnie z prawem Ohma natężenie I prądu płynącego przez przewodnik / opornik jest proporcjonalne do napięcia przyłożonego do jego końców.