METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki
|
|
- Julian Marszałek
- 8 lat temu
- Przeglądów:
Transkrypt
1 METROLOGIA Dr inż. Eligiusz AWŁOWSKI olitechnika Lubelska Wydział Elektrotechniki i Informatyki rezentacja do wykładu dla EINS Zjazd 9, wykład nr 16
2 rawo autorskie Niniejsze materiały podlegają ochronie zgodnie z Ustawą o prawie autorskim i prawach pokrewnych (Dz.U nr 24 poz. 83 z późniejszymi zmianami). Materiał te udostępniam do celów dydaktycznych jako materiały pomocnicze do wykładu z przedmiotu Metrologia prowadzonego dla studentów Wydziału Elektrotechniki i Informatyki olitechniki Lubelskiej. Mogą z nich również korzystać inne osoby zainteresowane metrologią. Do tego celu materiały te można bez ograniczeń przeglądać, drukować i kopiować wyłącznie w całości. Wykorzystywanie tych materiałów bez zgody autora w inny sposób i do innych celów niż te, do których zostały udostępnione, jest zabronione. W szczególności niedopuszczalne jest: usuwanie nazwiska autora, edytowanie treści, kopiowanie fragmentów i wykorzystywanie w całości lub w części do własnych publikacji. Eligiusz awłowski Zjazd 9, wykład 16 2
3 Uwagi dydaktyczne Niniejsza prezentacja stanowi tylko i wyłącznie materiały pomocnicze do wykładu z przedmiotu Metrologia prowadzonego dla studentów Wydziału Elektrotechniki i Informatyki olitechniki Lubelskiej. Udostępnienie studentom tej prezentacji nie zwalnia ich z konieczności sporządzania własnych notatek z wykładów ani też nie zastępuje samodzielnego studiowania obowiązujących podręczników. Tym samym zawartość niniejszej prezentacji w szczególności nie może być traktowana jako zakres materiału obowiązujący na egzaminie. Na egzaminie obowiązujący jest zakres materiału faktycznie wyłożony podczas wykładu oraz zawarty w odpowiadających mu fragmentach podręczników podanych w wykazie literatury do wykładu. Eligiusz awłowski Zjazd 9, wykład 16 3
4 Tematyka wykładu rzekładnik prądowy rzekładnik napięciowy Ustrój elektrodynamiczny i ferrodynamiczny Watomierz i pomiary mocy Zjazd 9, wykład 16 4
5 Rozszerzanie zakresu amperomierza elektromagnetycznego Duży wpływ temperatury i częstotliwości rzypomnienie z poprzedniego wykładu. Do zwiększania zakresów amperomierzy elektromagnetycznych nie stosuje się boczników! Do tego celu stosuje się specjalne transformatory: przekładniki prądowe Zjazd 9, wykład 16 5
6 rzekładnik prądowy, budowa i oznaczenia N I = p p N s I s K L, k l stare oznakowania, 1 2, S1 S2 nowe oznakowania rawidłowo połączony przekładnik zachowuje taki sam kierunek prądu w amperomierzu, jak w obwodzie pierwotnym: na rysunku od 1 do 2 oraz od S1 do S2 Zjazd 9, wykład 16 6
7 rzekładnik prądowy, uwagi ogólne 1.rzekładnik prądowy konstrukcyjnie jest bardzo podobny do zwykłego transformatora energetycznego, ale pracuje w innym punkcie charakterystyki magnesowania rdzenia i różni się zasadniczo właściwościami. 2.odczas normalnej pracy przekładnik prądowy jest obciążony bardzo małą impedancją, a nawet może być zwarty. 3.rzekładnik prądowy stosuje się w dwóch celach: - rozszerzenie zakresu pomiaru prądu przemiennego, - uzyskanie izolacji galwanicznej podczas pomiarów w układach wysokonapięciowych. Zjazd 9, wykład 16 7
8 Dla idealnego przekładnika rzekładnia zwojowa rzekładnia prądowa rzekładnia znamionowa Błąd prądowy rzekładnik prądowy, przekładnia N p δ I p = N si s o N s I p = I s = N p K = z K = I K = I IN = K N N I I I I IN p s s p pn sn I I S, I 0 I K z = I s Nie uwzględnia I 0 Nie jest stała Nie jest dokładna K K K IN Do pracy przekładnika niezbędne jest wytworzenie pola magnetycznego w jego rdzeniu, czyli musi wystąpić prąd magnesujący I 0 I I Zjazd 9, wykład 16 8
9 rzekładnik prądowy, błędy Błąd prądowy δ I = I I = K IN I I S I = K IN K I K I Źródłem błędu prądowego jest prąd jałowy I 0 przekładnika. Błąd kątowy Błąd kątowy przekładnika prądowego jest to przesunięcie fazowe γ pomiędzy wektorem prądu pierwotnego I i odwróconym wektorem prądu wtórnego I S. Zjazd 9, wykład 16 9
10 rzekładnik prądowy idealny, wykres wskazowy rądy są w przeciwfazie Rezystancyjne obciążenie strony wtórnej Zjazd 9, wykład 16 10
11 rzekładnik prądowy rzeczywisty, schemat zastępczy rąd pierwotny rąd wtórny rąd jałowy Zjazd 9, wykład 16 11
12 rzekładnik prądowy rzeczywisty, wykres wskazowy Błąd kątowy Błąd prądowy Kąt fazowy obciążenia Zjazd 9, wykład 16 12
13 rzekładnik prądowy, błędy Obciążenie wyrażone mocą pozorną S Najmniejsze błędy dla znamionowego obciążenia Zjazd 9, wykład 16 13
14 rzekładnik prądowy, obciążenie strony wtórnej S 2 rąd strony wtórnej I 2 nie zależy od obciążenia Z 2 U 2 = Z 2I2 Obciążenie Z 2 wpływa na spadek napięcia U 2 i moc pozorną S 2 S = 2 U 2I 2 [VA] Zjazd 9, wykład 16 14
15 rzekładnik prądowy, zwarcie: Z 2 =0 Zwarcie strony wtórnej wprowadza przekładnik w stan jałowy (S 2 =0) S = U I = I = Zjazd 9, wykład 16 15
16 rzekładnik prądowy, zwarcie: S 2 =0 Zwarcie strony wtórnej przekładnika prądowego powoduje że: - spadek napięcia po stronie wtórnej wynosi zero: U 2 =0, - moc pozorna strony wtórnej spada do zera: S 2 =0, - przekładnik znajduje się w stanie jałowym. Dla przekładnika prądowego należy rozróżnić sformułowanie: zwarcie strony wtórnej od stanu zwarcia. To nie jest to samo, tu jest inaczej niż w zwykłym transformatorze!!! Zjazd 9, wykład 16 16
17 Silne grzanie się rdzenia rzekładnik prądowy, rozwarcie Indukowanie się wysokiego napięcia Rozwarcie strony wtórnej przekładnika jest niebezpieczne! Zjazd 9, wykład 16 17
18 Rozwarcie przekładnika prądowego, charakterystyka magnesowania Wzrost indukcji w rdzeniu Rozwarcie strony wtórnej przekładnika unkt pracy przekładnika prądowego w stanie normalnego obciążenia rzy rozwartej stronie wtórnej przekładnika cały prąd pierwotny staje się prądem magnesującym Zjazd 9, wykład 16 18
19 rzekładnik prądowy, rozwarcie strony wtórnej -rąd wtórny jest I s równy zero, prąd pierwotny I p staje się w całości prądem magnesującym I µ. -Wielokrotnie wzrasta natężenie pola H i rdzeń się nasyca, indukcja B osiąga duże wartości, rosną straty w żelazie, rdzeń się nagrzewa, izolacja ulega przegrzaniu i zniszczeniu. -Duże wartości indukcji B powodują indukowanie się wysokiego napięcia w uzwojeniu wtórnym, izolacja ulega przebiciu, występuje ryzyko porażenia obsługi. -rzekładnik prądowy nigdy nie może pracować z rozwartym obwodem wtórnym! Zjazd 9, wykład 16 19
20 Zabezpieczanie przekładnika prądowego W obwodzie wtórnym przekładnika prądowego nie wolno stosować bezpieczników ponieważ nie wolno dopuścić do rozwarcia strony wtórnej! Bezpieczniki tylko po stronie pierwotnej przekładnika prądowego!!! Dla zapewnienia bezpieczeństwa w przypadku uszkodzenia izolacji przekładnika prądowego, uziemia się stronę wtórną. Zjazd 9, wykład 16 20
21 rzekładnik prądowy, odporność na prądy zwarciowe Dla scharakteryzowania właściwości przekładnika prądowego podczas zwarć definiuje się parametry: -znamionowy prąd jednosekundowy I t1 - jest to największa wartość skuteczna prądu w uzwojeniu pierwotnym, który przepływając w ciągu 1 sekundy nie wywoła uszkodzenia cieplnego przekładnika, -znamionowy prąd szczytowy I dyn - jest to największa wartość chwilowa prądu w uzwojeniu pierwotnym, który nie wywoła uszkodzenia mechanicznego przekładnika, -liczbę przetężeniowa jest to krotność znamionowego prądu pierwotnego, przy której błąd przekładnika mieści się w określonych granicach 5% lub 10% (obecnie jest to współczynnik bezpieczeństwa przyrządu FS) Zjazd 9, wykład 16 21
22 rzekładnik prądowy, liczba przetężeniowa n = ip I I pn zn Zjazd 9, wykład 16 22
23 rzekładnik prądowy, pomiar charakterystyki magnesowania Strona wtórna obciążona tylko woltomierzem jest praktycznie rozwarta. Istnieje niebezpieczeństwo przeciążenia przekładnika. rąd pierwotny podczas tych pomiarów nie powinien przekraczać 10% wartości znamionowej. Zjazd 9, wykład 16 23
24 rzekładnik prądowy, charakterystyki magnesowania rąd jałowy I 0 Należy równomiernie rozmieścić punkty pomiarowe wzdłuż charakterystyki magnesowania. Zjazd 9, wykład 16 24
25 Charakterystyka magnesowania, błędy wyznaczania Nie można się ograniczyć tylko do punktów równomiernie rozłożonych wzdłuż osi X. Takie pomiary prowadzą do błędnej postaci wykresu! ominięta zostaje stroma część charakterystyki. Zjazd 9, wykład 16 25
26 Uzwojenie pierwotne rzekładnik prądu stałego, transduktor Uzwojenie wtórne rzeciwsobne połączenie uzwojeń wtórnych Zjazd 9, wykład 16 26
27 Transduktor, charakterystyka Nieliniowa charakterystyka rzesunięcie w zerze Transduktor nie rozróżnia kierunku prądu w uzwojeniu pierwotnym! Zjazd 9, wykład 16 27
28 rzekładnik prądowo napięciowy, transreaktor π E2 sr = ω M I1max = 2 f M I1max U 2 = E 2 R V RV + R 2Tr Zjazd 9, wykład 16 28
29 Transreaktor, rdzeń proszkowy Zjazd 9, wykład 16 29
30 Transreaktor, wykres wskazowy Wady: - Zależność E 2 od częstotliwości, - rzesunięcie fazowe 90 o, - Reagowanie na amplitudę prądu, czuły na zniekształcenia. Zjazd 9, wykład 16 30
31 Uzwojenie kompensacyjne Aktywne przekładniki prądowe LEM Czujnik Halla rąd wyjściowy rzewód uzwojenia pierwotnego Wzmacniacz Zjazd 9, wykład 16 31
32 Aktywne przekładniki prądowe LEM Zjazd 9, wykład 16 32
33 rzekładnik napięciowy, budowa i oznaczenia M N, m n stare oznakowania, A B, a b nowe oznakowania obciążenie strony wtórnej przekładnika dużą rezystancją! Zjazd 9, wykład 16 33
34 rzekładnik napięciowy, przekładnie U U p s N N p s rzekładnia zwojowa rzekładnia napięciowa rzekładnia znamionowa K = Uz K = U K = UN N N U U U U p s p s pn sn Nie uwzględnia strat Nie jest stała Nie jest dokładna Zastosowanie U = K p UN U s Zjazd 9, wykład 16 34
35 Błąd napięciowy rzekładnik napięciowy, błędy δ U = U U = K UN U U S U = K UN K U K U Źródłem błędu napięciowego są spadki napięć na uzwojeniach pierwotnym i wtórnym. Błąd kątowy Błąd kątowy przekładnika napięciowego jest to przesunięcie fazowe γ pomiędzy wektorem napięcia pierwotnego U i odwróconym wektorem napięcia wtórnego U S. Zjazd 9, wykład 16 35
36 rzekładnik napięciowy, wykres wskazowy Spadki napięć po stronie pierwotnej Błąd kątowy Spadki napięć po stronie wtórnej Zjazd 9, wykład 16 36
37 rzekładnik napięciowy, wykresy błędów Zjazd 9, wykład 16 37
38 rzekładniki, punkty pracy na ch-ce magnesowania Zjazd 9, wykład 16 38
39 rzekładnik napięciowy, pomiary 1F Zabezpieczenie przeciwzwarciowe! Uziemienie strony wtórnej! omiar napięcia międzyfazowego omiar napięcia fazowego Zjazd 9, wykład 16 39
40 rzekładnik napięciowy, pomiary 3F Zabezpieczenie przeciwzwarciowe! Dwa lub trzy przekładniki napięciowe Uziemienie strony wtórnej! Zjazd 9, wykład 16 40
41 omiary mocy Należy rozróżnić pomiary mocy dla: - rądów i napięć stałych - rądów i napięć przemiennych sinusoidalnych - rądów i napięć przemiennych odkształconych Dla prądów i napięć przemiennych mierzymy: - moc czynną - moc bierną Q - moc pozorną S Dodatkowo dla prądów i napięć odkształconych mierzymy: - moc odkształconą D Zjazd 9, wykład 16 41
42 omiary mocy przy prądach stałych rzy prądach stałych moc jest równa iloczynowi prądu I i napięcia U: = U I δ ( I ) = U R = ( U IRA )I R I V = I I V R = R R Układ dla małych R V δ = R A R Układ dla dużych R Zjazd 9, wykład 16 42
43 Moc chwilowa dla prądów i napięć przemiennych rzy prądach i napięciach przemiennych definiuje się moc chwilową p(t), która jest również zmienna w czasie: ( t) u( t) i( t) p = Dla przebiegów sinusoidalnych: p u i ( t) = U max sin( ωt) ( t) = I sin( ω t +ϕ) max ( t) = u( t) i( t) = U sin( ω t) I sin( ωt + ϕ) max max Stosujemy tożsamość trygonometryczną: sin 1 2 ( α ) sin( β ) = [ cos( α β ) cos( α + β )] Zjazd 9, wykład 16 43
44 Moc chwilowa dla prądów i napięć sinusoidalnych o podstawieniu otrzymamy: 1 p max max 2 2 ( t) = U I ( cos( ϕ ) cos( ωt + ϕ) ) Składnik stały, nie zależny od czasu Składnik przemienny o podwojonej pulsacji Zjazd 9, wykład 16 44
45 Moc dla prądów i napięć sinusoidalnych - przebiegi czasowe Składnik stały, nie zależny od czasu, p(t), u(t), i(t) p(t) Moc chwilowa p(t) Moc czynna i(t) ωt u(t) Składnik przemienny o podwojonej pulsacji Zjazd 9, wykład 16 45
46 Moc czynna, podstawowa definicja Moc czynna jest to uśredniona za okres T moc chwilowa p(t): = p 1 T T 1 T ( t) = p( t) dt = u( t) i( t) 0 T 0 dt Jest to podstawowy wzór definiujący moc czynną!!! Jest on słuszny i prawdziwy w każdym przypadku. Dla przebiegów sinusoidalnych postać tego wzoru ulega uproszczeniu Zjazd 9, wykład 16 46
47 Moc czynna dla prądów i napięć sinusoidalnych odstawiamy do wzoru sinusoidalne napięcie i prąd u ( t) = U sin( ωt) max i ( t) = I sin( ω t +ϕ) max = p 1 T T 1 T ( t) = p( t) dt = u( t) i( t) 0 T 0 dt Moc czynna wynosi więc: = 1 T T p 1 T T ( t) dt = U I ( cos( ϕ) cos( 2ωt ϕ) ) max max dt Zjazd 9, wykład 16 47
48 Moc czynna dla prądów i napięć sinusoidalnych Rozdzielamy na dwie całki: = 1 T T U maxi max cos T 2 0 T ( ϕ) dt + U maxi max cos( ωt ϕ) 0 dt Składnik stały, nie zależny od czasu Składnik przemienny o podwojonej pulsacji, wartość średnia równa 0 U = U maxi max cos = 2 1 max = U sk I sk max ( ϕ) cos( ϕ) 2 cos( ϕ) I 2 Zjazd 9, wykład 16 48
49 Moc czynna, definicja - podsumowanie = U sk I sk cos( ϕ) 1. Ten wzór jest słuszny tylko dla przebiegów sinusoidalnych 2. Dla przebiegów odkształconych obowiązuje podstawowy wzór definicyjny (uśredniona za okres moc chwilowa) 3. omiar mocy wymaga wymnożenia wartości chwilowych prądu i napięcia, a następnie uśrednieniu wyniku mnożenia 4. Uśrednianie można zastąpić odfiltrowaniem składnika o podwojonej częstotliwości 2ωt Zjazd 9, wykład 16 49
50 Moc czynna, bierna i pozorna dla sygnałów sinusoidalnych Moc czynna = U sk I sk cos( ϕ) [W] Moc bierna Q Q = U sk I sk sin( ϕ) [War] Moc pozorna S Trójkąt mocy S = U sk I sk 2 2 S = + Q 2 [VA] cosϕ = S ϕ Zjazd 9, wykład S. Q
51 rzebiegi odkształcone napięcia i prądu Odkształcone napięcie u( t) U sin( n t ) = n= 0 mn ω + ϕ un Odkształcony prąd i( t) = n= 0 I mn sin( nωt + ϕ ) in Zjazd 9, wykład 16 51
52 Moc czynna, bierna i pozorna dla przebiegów odkształconych Moc czynna + k = 1 = U 0I0 U k I k cos ( ϕ ) k Moc bierna Q Q = k =1 U k I k sin ( ϕ ) k Moc pozorna S S = I sk U sk = ( 2 I k k= 0 k = 0 U 2 k ) Trójkąt mocy nie obowiązuje! 2 2 S + Q 2 Zjazd 9, wykład 16 52
53 Trójkąt mocy dla przebiegów odkształconych Dla przebiegów odkształconych trójkąt mocy nie obowiązuje! 2 2 S + Q 2 roblematyka definiowania i pomiaru mocy dla przebiegów odkształconych nie posiada obecnie jeszcze jednej powszechnie uznanej i stosowanej teorii. Zagadnienia te są cały czas przedmiotem badań naukowych. Zjazd 9, wykład 16 53
54 Moc odkształcona D dla przebiegów odkształconych Jednym z prostszych rozwiązań problemu trójkąta mocy dla przebiegów odkształconych jest przyjęcie definicji na moc odkształconą D: D = S 2 2 Q 2, Q, S, D w przestrzeni trójwymiarowej. ϕ S. Q. D Zjazd 9, wykład 16 54
55 Współczynnik mocy dla przebiegów odkształconych W praktyce zawsze moc czynna jest mniejsza od mocy pozornej S (teoretycznie może być równa) : S Dla przebiegów sinusoidalnych występuje związek z kątem przesunięcia fazowego ϕ : cosϕ = S Dla przebiegów odkształconych nie można określić przesunięcia fazowego ϕ, wprowadza się współczynnik mocy F (ower Factor): F = S cosϕ F Zjazd 9, wykład To nie jest to samo!!!
56 omiary mocy czynnej - ustrój elektrodynamiczny Cewka nieruchoma Sprężynki zwrotne Cewki nieruchome Zjazd 9, wykład 16 56
57 Ustrój elektrodynamiczny, zasada działania Energia pola magnetycznego cewek Moment napędowy Moment zwrotny L I 2 L I W m = M n = dwm dα = M z = kα dm dα M I1I2 I 1 I 2 Dla prądów stałych Równowaga momentów dm M = I I = kα = dα 12 n 1 2 M Z Wychylenie wskazówki dla prądów stałych α = 1 k dm12 dα I 1 I 2 Zjazd 9, wykład 16 57
58 Ustrój elektrodynamiczny, prądy przemienne Dla prądów przemiennych dm 12 i1i 2 = I1max sin ωt I 2max dα sin + ( ωt ϕ ) dm dα 12 M n = Średni moment napędowy M śr = 1 T T T 1 Mdt = I1maxI 2max sin t sin + T 0 0 dm dα ( ωt ϕ) dt ω 12 Wychylenie wskazówki dla prądów przemiennych α = 1 k dm 12 I1I 2 cos( I I 1 dα 2 ) Wychylenie zależne od kąta fazowego Zjazd 9, wykład 16 58
59 omiary mocy czynnej - ustrój ferrodynamiczny Cewka nieruchoma Rdzeń ferromagnetyczny Cewki nieruchome Zjazd 9, wykład 16 59
60 Ustrój ferrodynamiczny, zasada działania Energia pola magnetycznego cewki Moment napędowy Moment zwrotny L I 2 L I W m = M n = dwm dα = M z = kα dm dα M I1I2 I 1 I 2 dm 12 = const. dα Równowaga momentów Wychylenie wskazówki dla prądów stałych Wychylenie wskazówki dla prądów przemiennych M = ci I = kα = n 1 2 M Z α = α = c k c k I 1 I 2 I 1I 2 1I cos( I 2) Zjazd 9, wykład 16 60
61 Watomierz połączenia, wykres wskazowy α = c k U I U = R U I1 cos( I1U ) R α = c1 UI cos( ϕ) = c1 Zjazd 9, wykład 16 61
62 Watomierz, stała watomierza k w = U zn I zn cosϕ α zn zn W dz. = α k w 1. Znamionowy cosϕ zn jest oznaczany na watomierzu tylko wtedy, jeśli jest różny od 1 2. Znamionowe napięcie i znamionowy prąd należy dobrać odpowiednio do mierzonych wartości napięcia i prądu 3. Wychylenie α należy odczytywać z rozdzielczością 1/5 działki Zjazd 9, wykład 16 62
63 Watomierz, oznaczenia na podzielni Nominalne zakresy użytkowania dla napięcia i prądu Zjazd 9, wykład 16 63
64 omiar mocy czynnej, jedna faza, układ bezpośredni omiar przy zadanym napięciu Układ dla dużych mocy o W omiar przy zadanym prądzie Układ dla małych mocy o W δ o = W o o = V + o WN δ o = W o o = A + o WI Zjazd 9, wykład 16 64
65 omiar mocy czynnej, zastosowanie przekładników Układ półpośredni z przekładnikiem prądowym stosujemy gdy prąd przekracza zakres prądowy watomierza. Układ pośredni z przekładnikami: napięciowym i prądowym stosujemy gdy napięcie i prąd przekraczają zakresy napięciowy i prądowy watomierza. Jeśli tylko napięcie przekracza zakres napięciowy watomierza, to ze względów bezpieczeństwa również stosujemy zawsze przekładnik prądowy. Układ półpośredni tylko z przekładnikiem napięciowym nigdy w praktyce nie jest stosowany! W układzie z wysokim napięciem zawsze stosujemy oba rodzaje przekładników! Zjazd 9, wykład 16 65
66 omiar mocy czynnej, jedna faza, układ półpośredni Kropka oznacza początek uzwojenia = W K IN = I δ δ + δ ϕ Zjazd 9, wykład 16 66
67 omiar mocy czynnej, jedna faza, układ pośredni = W K IN K UN δ δ + δ + = I U δ ϕ Zjazd 9, wykład 16 67
68 Układy trójfazowe - problemy unkt zerowy układy z dostępnym punktem zerowym (4 przewodowe) lub z niedostępnym punktem zerowym (3 przewodowe). Symetria odbiornika odbiornik symetryczny (możliwy pomiar jednym watomierzem) lub niesymetryczny (konieczny pomiar trzema watomierzami). Liczba przewodów w sieci 3 przewodowej można zastosować oszczędny układ z dwoma watomierzami (układ Arona). Zjazd 9, wykład 16 68
69 omiar mocy czynnej, trójfazowy, bezpośredni, 3 watomierze = ϕ ϕ = U1I1 cos 1 + U 2I 2 cos 2 U3I3 cos ϕ 3 omiar mocy odbiornika niesymetrycznego z dostępnym przewodem zerowym Zjazd 9, wykład 16 69
70 omiar mocy czynnej, trójfazowy, bezpośredni, 3 watomierze = ϕ ϕ = U1I1 cos 1 + U 2I 2 cos 2 U3I3 cos ϕ 3 omiar mocy odbiornika niesymetrycznego z nie dostępnym przewodem zerowym Zjazd 9, wykład 16 70
71 omiar mocy czynnej, trójfazowy, bezpośredni, 1 watomierz = 3 = ϕ 1 3U 1I1 cos 1 omiar mocy odbiornika symetrycznego z dostępnym przewodem zerowym Zjazd 9, wykład 16 71
72 omiar mocy czynnej, trójfazowy, 1 watomierz, sztuczne zero = 3 = ϕ 1 3U 1I1 cos 1 omiar mocy odbiornika symetrycznego z niedostępnym przewodem zerowym, układ ze sztucznym zerem Zjazd 9, wykład 16 72
73 omiar mocy czynnej, trójfazowy, układ Arona ( I ) I I 2 + I3 = 0 I3 = 1 I 2 ( 30 ϕ ) + U cos( + ϕ ) = I = U13I1 cos Układ Arona, tylko dla sieci trójprzewodowych 2 Zjazd 9, wykład 16 73
74 omiar mocy czynnej, trójfazowy, układ Arona 3 możliwe konfiguracje układu Arona Zjazd 9, wykład 16 74
75 omiar mocy czynnej, trójfazowy, układ Arona pośredni = ( ) K IN KUN Zjazd 9, wykład 16 75
76 omiary mocy czynnej podsumowanie 1. OBWODY NAIĘCIA STAŁEGO 1.1. omiar woltomierzem i amperomierzem (metoda techniczna) 1.2. omiar watomierzem elektrodynamicznym (nie ferrodynamicznym!) 2. OBWODY NAIĘCIA RZEMIENNEGO 2.1. Układy jednofazowe (jeden watomierz elektro- lub ferrodynamiczny) Układy bezpośrednie (bez przekładników) Układy półpośrednie (z przekładnikiem prądowym) Układy pośrednie (z przekładnikiem prądowym i napięciowym) 2.2. Układy trójfazowe Układy bezpośrednie Z odbiornikiem symetrycznym (jeden watomierz) W sieci 4-przewodowej W sieci 3-przewodowej Z dostępnym punktem zerowym odbiornika Z niedostępnym punktem zerowym odbiornika (sztuczne zero) Z odbiornikiem niesymetrycznym W sieci 4-przewodowej (3 watomierze) W sieci 3-przewodowej (2 watomierze w układzie Arona) Układy półpośrednie (wszystkie podpunkty ) Układy pośrednie (wszystkie podpunkty ) Zjazd 9, wykład 16 76
77 omiary mocy czynnej dodatkowe uwagi 1.Układy pośrednie stosowane są w sieciach wysokiego napięcia, w których zazwyczaj nie stosuje się przewodu zerowego, a odbiorniki często są symetryczne. Nie wszystkie możliwości układowe są więc w praktyce jednakowo często wykorzystywane. 2.Układy przeznaczone dla odbiorników niesymetrycznych mogą być stosowane również do pomiarów mocy odbiorników symetrycznych. 3.rzekładniki rozszerzają zakresy mierników oraz zapewniają izolację galwaniczną w obwodach wysokiego napięcia. 4.Nie stosuje się układów tylko z samym przekładnikiem napięciowym!!! rzy układach wysokiego napięcia ze względów bezpieczeństwa oraz ograniczonej wytrzymałości izolacji przyrządów zawsze stosuje się również przekładniki prądowe, nawet jeśli wartość prądu jest mała i możliwa do bezpośredniego pomiaru. Zjazd 9, wykład 16 77
78 omiary mocy czynnej zestawienie wzorów omiar woltomierzem i amperomierzem (metoda techniczna) Obwody napięcia stałego Obwody napięcia przemiennego (pomiar mocy pozornej) Układy jednofazowe (jeden watomierz elektro- lub ferrodynamiczny) Układy bezpośrednie (bez przekładników) Układy półpośrednie (z przekładnikiem prądowym) Układy pośrednie (z przekładnikiem prądowym i napięciowym) O S O = U I = U I = O = k = k O w O In In k w Un w Układy trójfazowe moc czynna odbiornika O Układy bezpośrednie, odbiornik symetryczny, jeden watomierz Układy bezpośrednie, odbiornik niesymetryczny, 3 watomierze Układy bezpośrednie, odbiornik niesymetryczny, 2 watomierze Układy półpośrednie (z przekładnikiem prądowym) Układy pośrednie (z przekładnikiem prądowym i napięciowym) = 3 O w O = w + w 2 + = + O w1 w2 = k O In w k k O 1 w3 = In Un w Zjazd 9, wykład 16 78
79 omiar mocy biernej uwagi wstępne 1. Do pomiaru mocy biernej stosuje się ustroje elektrodynamicznego lub ferrodynamiczne włączone w układ pomiarowy tak, aby faza prądu w cewce napięciowej była przesunięta o kąt 90 o względem napięcia wykorzystywanego przy pomiarze mocy czynnej. 2. Do pomiaru mocy biernej w układach 1-fazowych stosuje się waromierze zbudowane na bazie ustroju elektrodynamicznego i układu LC przesuwającego fazę prądu w obwodzie napięciowym (układ Hummla). 3. Do pomiaru mocy biernej w układach 3-fazowych stosuje się układy watomierzy z odpowiednio przełączonymi obwodami napięciowymi. Dla uzyskania wymaganego przesunięcia fazowego wykorzystuje się przesunięcie 90 o pomiędzy odpowiednimi napięciami fazowymi i przewodowymi. Wynik pomiaru należy skorygować odpowiednio o stosunek wartości skutecznych napięć przewodowych i fazowych, tzn. o 3 Zjazd 9, wykład 16 79
80 omiar mocy biernej podstawowe zasady = UI cosϕ Q = UI sinϕ ( 90 α ) sinα cos = ( 90 ϕ ) sinϕ cos ψ = cos = ψ = 90 ϕ w = UI cosψ = UI sinϕ Q = O w U = U = U = U f sinϕ = Q S S ϕ cosψ = ψ. Q S Q Zjazd 9, wykład 16 80
81 omiar mocy biernej w układzie jednofazowym Układ Hummla. ψ = UI cosϕ Q = UI sinϕ sinϕ = cos( 90 ϕ) ϕ Zjazd 9, wykład 16 81
82 omiar mocy biernej w układzie trójfazowym ψ Q sinϕ = cosψ = cos( 90 ϕ) 3 Q = 3Q W 1 = = 3 U W 12 = U23 = U31 = 3U f 3 Należy opóźnić napięcie na watomierzu o 90 o w stosunku do napięcia wykorzystywanego do pomiaru mocy czynnej Zjazd 9, wykład 16 82
83 omiar mocy biernej, trójfazowy, układ bezpośredni Q 3 Q = 3Q W 1 = = 3 3 W Zjazd 9, wykład 16 83
84 omiar mocy biernej, trójfazowy, 3 watomierze Q = Q 1 + Q 2 + Q 3 = Zjazd 9, wykład 16 84
85 omiar mocy biernej, trójfazowy, układ Arona U = U = U = ( ) Q = U f Zjazd 9, wykład 16 85
86 omiar mocy biernej w układach 3f - podsumowanie Układy bezpośrednie, odbiornik symetryczny, jeden watomierz Q = 3 O w Układy bezpośrednie, odbiornik niesymetryczny, 3 watomierze Q O = + w1 w2 w3 3 + Układy bezpośrednie, odbiornik niesymetryczny, 2 watomierze O ( ) Q = + 3 w1 w2 Zjazd 9, wykład 16 86
87 Kolejność faz zgodna i przeciwna Kolejność zgodna U 1 Kolejność przeciwna U 1 U 3 U 2 U 2 U 3 Kolejność oznaczenia faz jest zgodna z kolejnością wirowania wektorów napięć U 1 U 2 U 3 Kolejność oznaczenia faz jest przeciwna do kolejności wirowania wektorów napięć U 1 U 3 U 2 Zjazd 9, wykład 16 87
88 Moc bierna przy kolejności faz zgodnej i przeciwnej Kolejność zgodna U 1 Kolejność przeciwna U 1 U 23 -U 23 U 3 U 2 U 2 U 3 Wszystkie wcześniejsze wykresy wskazowe oraz wzory na moc bierną były przedstawione dla kolejności faz zgodnej. Jeśli w miejscu pomiaru mocy biernej występuje kolejność faz przeciwna, to znak wskazania watomierza będzie przeciwny. Zjazd 9, wykład 16 88
89 omiar mocy biernej przy kolejności faz przeciwnej Jeśli w miejscu pomiaru mocy biernej występuje kolejność faz przeciwna to należy pamiętać, że: - nie wolno zmieniać kolejności podłączenia przewodów zasilających, gdyż może to spowodować awarię maszyn zasilanych z tej sieci, - podczas pomiarów należy uwzględnić fakt, że znak wskazania watomierza będzie przeciwny, w stosunku do pomiaru mocy biernej przy kolejności faz zgodnej - dodatnie wskazanie mocy na watomierzu będzie oznaczało ujemną moc bierną odbiornika (pojemnościowego), - ujemne wskazanie mocy na watomierzu będzie oznaczało dodatnią moc bierną odbiornika (indukcyjnościowego). Zjazd 9, wykład 16 89
90 Odczyt ujemnego wskazania watomierza Aby odczytać ujemne wskazanie watomierza: - nie wolno zmieniać kolejności podłączenia przewodów zasilających, gdyż może to spowodować awarię maszyn zasilanych z tej sieci, - należy zamienić kolejność przewodów na zaciskach napięciowych watomierza, niektóre typy watomierzy mają w tym celu zainstalowany odpowiedni przełącznik, - nie należy zamieniać kolejności przewodów na zaciskach prądowych watomierza, gdyż może to być niebezpieczne, szczególnie przy dużych prądach obciążenia, - ujemne wskazanie watomierza przy pomiarze mocy biernej może wystąpić również przy kolejności faz zgodnej, wtedy oznacza to ujemną moc bierną, czyli odbiornik pojemnościowy. Zjazd 9, wykład 16 90
91 omiar mocy biernej, wskaźnik kolejności faz omiar mocy biernej wymaga sprawdzenie kolejności faz. W tym celu stosuje się wskaźniki kolejności faz. Zjazd 9, wykład 16 91
92 omiar mocy biernej, hase Rotation Indicator Należy pamiętać, że wskaźnik kolejności faz nie jest przyrządem pomiarowym, tylko wskaźnikiem! (wykłady z poprzedniego semestru o przyrządach pomiarowych, detektorach, czujkach i wskaźnikach). Tutaj producent niepoprawnie nazwał wskaźnik miernikiem! Zapewne nie chodził na wykłady z metrologii! oprawna nazwa: hase Rotation Indicator Zjazd 9, wykład 16 92
93 hase Rotation Indicator kierunki wirowania Kolejność zgodna U 1 U 3 U 2 W sieci trójfazowej wektory napięć wirują w kierunku przeciwnym do ruch wskazówek zegara (czyli w lewo), ale silnik, dołączony poprawnie do sieci o zgodnej kolejności faz, wiruje w prawo! To dlatego, że w kartezjańskim układzie współrzędnych przyjęto zasadę, że kąt mierzony jest od osi X w kierunku do osi Y, czyli przeciwnie do ruchu wskazówek zegara. Zjazd 9, wykład 16 93
94 odsumowanie 1.Mierniki EM mogą mieć rozszerzane zakresy za pomocą przekładników prądowych i napięciowych 2.Rozwarcie strony wtórnej przekładnika prądowego grozi jego uszkodzeniem. Zwarcie strony wtórnej przekładnika oznacza jego stan jałowy 3.rzekładniki napięciowe posiadają właściwości zbliżone do transformatorów energetycznych 4.Do pomiaru mocy czynnej można zastosować ustroje realizujące mnożenie sygnałów: elektrodynamiczne i ferrodynamiczne. 5.Do pomiaru mocy biernej można zastosować watomierz odpowiednio włączając jego obwód napięciowy Zjazd 9, wykład 16 94
95 DZIĘKUJĘ ZA UWAGĘ Zjazd 9, wykład 16 95
METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki
METROLOGIA Dr inż. Eligiusz AWŁOWSKI olitechnika Lubelska Wydział Elektrotechniki i Informatyki rezentacja do wykładu dla EINS Zjazd 9, wykład nr 16 rawo autorskie Niniejsze materiały podlegają ochronie
METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki
METROLOGIA Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EINS Zjazd 9, wykład nr 16 Prawo autorskie Niniejsze materiały podlegają ochronie
Ćwiczenie nr.14. Pomiar mocy biernej prądu trójfazowego. Q=UIsinϕ (1)
1 Ćwiczenie nr.14 Pomiar mocy biernej prądu trójfazowego 1. Zasada pomiaru Przy prądzie jednofazowym moc bierna wyraża się wzorem: Q=UIsinϕ (1) Do pomiaru tej mocy stosuje się waromierze jednofazowe typu
Ćwiczenie nr.13 Pomiar mocy czynnej prądu trójfazowego
1 Ćwiczenie nr.13 Pomiar mocy czynnej prądu trójfazowego A. Zasada pomiaru mocy za pomocą jednego i trzech watomierzy Moc czynna układu trójfazowego jest sumą mocy czynnej wszystkich jego faz. W zależności
Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude
Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Wiadomości do tej pory Podstawowe pojęcia Elementy bierne Podstawowe prawa obwodów elektrycznych Moc w układach 1-fazowych Pomiary
Ćwiczenia tablicowe nr 1
Ćwiczenia tablicowe nr 1 Temat Pomiary mocy i energii Wymagane wiadomości teoretyczne 1. Pomiar mocy w sieciach 3 fazowych 3 przewodowych: przy obciążeniu symetrycznym i niesymetrycznym 2. Pomiar mocy
I. WIADOMOŚCI TEORETYCZNE
omiary mocy w obwodach trójazowych. Cel ćwiczenia oznanie metod pomiaru mocy czynnej i biernej w układach trójazowych symetrycznych i niesymetrycznych za pomocą watomierzy. I. WIADOMOŚCI TEORETYCZNE omiary
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015
EROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 014/015 Zadania z elektrotechniki na zawody II stopnia (grupa elektryczna) Zadanie 1 W układzie jak na rysunku 1 dane są:,
Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude
Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 3 Zagadnienie mocy w obwodzie RLC przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie sinusoidalnie
LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego
Ćwiczenie 5 Wydział Geoinżynierii, Górnictwa i Geologii LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Rodzaje transformatorów.
LABORATORIUM PRZEKŁADNIKÓW
Politechnika Łódzka, Wydział Elektrotechniki, Elektroniki, nformatyki i Automatyki nstytut Elektroenergetyki, Zakład Przekładników i Kompatybilności Elektromagnetycznej Grupa dziekańska... Rok akademicki...
INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE TRANSFORMATORA. Autor: Grzegorz Lenc, Strona 1/11
NSTRKCJA LABORATORM ELEKTROTECHNK BADANE TRANSFORMATORA Autor: Grzegorz Lenc, Strona / Badanie transformatora Celem ćwiczenia jest poznanie zasady działania transformatora oraz wyznaczenie parametrów schematu
KOMPUTEROWE SYSTEMY POMIAROWE
KOMPUTEROWE SYSTEMY POMIAROWE Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST - ITwE Semestr zimowy Wykład nr 10 Prawo autorskie Niniejsze
Pracownia Technik Informatycznych w Inżynierii Elektrycznej
UNIWERSYTET RZESZOWSKI Pracownia Technik Informatycznych w Inżynierii Elektrycznej Ćw. 3 Pomiar mocy czynnej w układzie jednofazowym Rzeszów 2016/2017 Imię i nazwisko Grupa Rok studiów Data wykonania Podpis
Pomiar mocy czynnej, biernej i pozornej
Pomiar mocy czynnej, biernej i pozornej 1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z różnymi metodami pomiaru mocy w obwodach prądu przemiennego.. Wprowadzenie: Wykonując pomiary z wykorzystaniem
LABORATORIUM PRZEKŁADNIKÓW
Politechnika Łódzka, Wydział Elektrotechniki, Elektroniki, nformatyki i Automatyki nstytut Elektroenergetyki, Zakład Przekładników i Kompatybilności Elektromagnetycznej Grupa dziekańska... Rok akademicki...
Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi"
Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:
METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki
METROLOGIA Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EINS Zjazd 11, wykład nr 18 Prawo autorskie Niniejsze materiały podlegają ochronie
15. UKŁADY POŁĄCZEŃ PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH
15. UKŁDY POŁĄCZEŃ PRZEKŁDNIKÓW PRĄDOWYCH I NPIĘCIOWYCH 15.1. Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z najczęściej spotykanymi układami połączeń przekładników prądowych i napięciowych
BADANIE PRZEKŁADNIKÓW PRĄDOWYCH
1. Podstawy teoretyczne ĆWCENE NR 4 BADANE PREKŁADNKÓW PRĄDOWYCH Przekładnik prądowy jest to urządzenie elektryczne transformujące sinusoidalny prąd pierwotny na prąd wtórny o wartości dogodnej do zasilania
Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny
prąd stały (DC) prąd elektryczny zmienny okresowo prąd zmienny (AC) zmienny bezokresowo Wielkości opisujące sygnały okresowe Wartość chwilowa wartość, jaką sygnał przyjmuje w danej chwili: x x(t) Wartość
LABORATORIUM PRZEKŁADNIKÓW
Politechnika Łódzka, Wydział Elektrotechniki, Elektroniki, nformatyki i Automatyki nstytut Elektroenergetyki, Zakład Przekładników i Kompatybilności Elektromagnetycznej Grupa dziekańska... Rok akademicki...
7 Dodatek II Ogólna teoria prądu przemiennego
7 Dodatek II Ogólna teoria prądu przemiennego AC (ang. Alternating Current) oznacza naprzemienne zmiany natężenia prądu i jest symbolizowane przez znak ~. Te zmiany dotyczą zarówno amplitudy jak i kierunku
transformatora jednofazowego.
Badanie transformatora jednofazowego. Celem ćwiczenia jest zapoznanie się z budową, zasadami działania oraz podstawowymi właściwościami transformatora jednofazowego pracującego w stanie jałowym, zwarcia
POMIARY MOCY (OBWODY JEDNO- I TRÓJFAZOWE). POMIARY PRĄDÓW I NAPIĘĆ W OBWODACH TRÓJFAZOWYCH
POMIRY MOCY (OBWODY JEDNO- I TRÓJFZOWE). POMIRY PRĄDÓW I NPIĘĆ W OBWODCH TRÓJFZOWYCH. Pomiary mocy w obwodach jednofazowych W obwodach prądu stałego moc określamy jako iloczyn napięcia i prądu stałego,
INSTRUKCJA DO ĆWICZENIA NR 7. Pomiar mocy czynnej, biernej i cosφ
INSTRUKCJA DO ĆWICZENIA NR 7 Pomiar mocy czynnej, biernej i cosφ Wstęp Układy elektryczne w postaci szeregowego połączenia RL, podczas zasilania z sieci napięcia przemiennego, pobierają moc czynną, bierną
Ć w i c z e n i e 4 OBWODY TRÓJFAZOWE
Ć w i c z e n i e 4 OBWODY TRÓJFAZOWE 1. Wiadomości ogólne Wytwarzanie i przesyłanie energii elektrycznej odbywa się niemal wyłącznie za pośrednictwem prądu przemiennego trójazowego. Głównymi zaletami
st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE
Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Układem
Badanie silnika indukcyjnego jednofazowego i transformatora
Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych Ciężkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie M3 - protokół Badanie silnika indukcyjnego jednofazowego i transformatora Data
Podstawy elektrotechniki
Wydział Mechaniczno-Energetyczny Podstawy elektrotechniki Pro. dr hab. inż. Juliusz B. Gajewski, pro. zw. PWr Wybrzeże. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 tara kotłownia, pokój 359 el.: 71 320 3201
LABORATORIUM PODSTAWY ELEKTROTECHNIKI
LABORATORIUM PODSTAWY ELEKTROTECHNIKI CHARAKTERYSTYKI TRANSFORMATORA JEDNOFAZOWEGO Badanie właściwości transformatora jednofazowego. Celem ćwiczenia jest poznanie budowy oraz wyznaczenie charakterystyk
I. Cel ćwiczenia: Poznanie budowy i właściwości transformatora jednofazowego.
Zespół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PACOWNA ELEKTYCZNA ELEKTONCZNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE TANSFOMATOA JEDNOFAZOWEGO rok szkolny klasa grupa data
Pomiary mocy i energii elektrycznej
olitechnika Rzeszowska Zakład Metrologii i ystemów omiarowych omiary mocy i energii elektrycznej Grupa Nr ćwicz. 1 1... kierownik... 3... 4... Data Ocena I. Cel ćwiczenia Celem ćwiczenia jest poznanie
Data oddania sprawozdania BADANIA ODBIORNIKÓW TRÓJFAZOWYCH
LORTORIUM ELEKTROTEHNIKI I ELEKTRONIKI Grupa Podgrupa Numer ćwiczenia 5 Lp. Nazwisko i imię Ocena Data wykonania 1. ćwiczenia. Podpis prowadzącego 3. zajęcia 4. 5. Temat Data oddania sprawozdania DNI ODIORNIKÓ
Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii. Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA.
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA Kod przedmiotu ES1C 200 012 Ćwiczenie pt. POMIAR
Ćwiczenie 5 BADANIA ODBIORNIKÓW TRÓJFAZOWYCH
Ćwiczenie 5 BADANIA ODBIORNIKÓW TRÓJFAOWYCH Celem ćwiczenia jest poznanie własności odbiorników trójfazowych symetrycznych i niesymetrycznych połączonych w trójkąt i gwiazdę w układach z przewodem neutralnym
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 3 Prawo autorskie Niniejsze
Miernictwo - W10 - dr Adam Polak Notatki: Marcin Chwedziak. Miernictwo I. dr Adam Polak WYKŁAD 10
Miernictwo I dr Adam Polak WYKŁAD 10 Pomiary wielkości elektrycznych stałych w czasie Pomiary prądu stałego: Technika pomiaru prądu: Zakresy od pa do setek A Czynniki wpływające na wynik pomiaru (jest
Ć W I C Z E N I E nr 9 BADANIE TRANSFORMATORA JEDNOFAZOWEGO
Ć W I C Z E N I E nr 9 BADANIE TRANSFORMATORA JEDNOFAZOWEGO CEL ĆWICZENIA: poznanie zasady działania, budowy, właściwości i metod badania transformatora. PROGRAM ĆWICZENIA. Wiadomości ogólne.. Budowa i
METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki
METOLOGIA Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EINS Zjazd 13, wykład nr 0 Prawo autorskie Niniejsze materiały podlegają ochronie
Impedancje i moce odbiorników prądu zmiennego
POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Impedancje i moce odbiorników prądu zmiennego (E 6) Opracował: Dr inż.
TRANSFORMATORY. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
TRANSFORMATORY Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Maszyny elektryczne Przemiana energii za pośrednictwem pola magnetycznego i prądu elektrycznego
METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki
METROLOGIA Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EINS Zjazd 10, wykład nr 17 Prawo autorskie Niniejsze materiały podlegają ochronie
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Pracownia elektryczna MontaŜ Maszyn Instrukcja laboratoryjna Pomiar mocy w układach prądu przemiennego (dwa ćwiczenia) Opracował: mgr inŝ.
METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki
METROLOGIA Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EINS Zjazd 8, wykład nr 15 Prawo autorskie Niniejsze materiały podlegają ochronie
Wydział Elektryczny Katedra Elektroenergetyki. Instrukcja do zajęć laboratoryjnych. Ćwiczenie nr 1
Politechnika Białostocka Wydział Elektryczny Katedra Elektroenergetyki nstrukcja do zajęć laboratoryjnych Ćwiczenie nr 1 Temat: Badanie przekładników prądowych konwencjonalnych przeznaczonych do zabezpieczeń
Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, Spis treści
Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, 2015 Spis treści Przedmowa 7 Wstęp 9 1. PODSTAWY ELEKTROTECHNIKI 11 1.1. Prąd stały 11 1.1.1. Podstawowe
METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki
METROLOGIA Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EINS Zjazd 8, wykład nr 15 Prawo autorskie Niniejsze materiały podlegają ochronie
KOMPUTEROWE SYSTEMY POMIAROWE
KOMPUTEROWE SYSTEMY POMIAROWE Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMNS - ITwE Semestr letni Wykład nr 6 Prawo autorskie Niniejsze
Pomiary dużych prądów o f = 50Hz
Pomiary dużych prądów o f = 50Hz 1. Wstęp Pomiary prądów przemiennych o częstotliwości 50 Hz i wartościach od kilkudziesięciu do kilku tysięcy amperów są możliwe za pomocą przetworników pomiarowych. W
METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki
METROLOGIA Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EINS Zjazd 8, wykład nr 15 Prawo autorskie Niniejsze materiały podlegają ochronie
Ćwiczenie 4 Badanie wpływu napięcia na prąd. Wyznaczanie charakterystyk prądowo-napięciowych elementów pasywnych... 68
Spis treêci Wstęp................................................................. 9 1. Informacje ogólne.................................................... 9 2. Zasady postępowania w pracowni elektrycznej
Ćwiczenie: "Silnik indukcyjny"
Ćwiczenie: "Silnik indukcyjny" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada
Ćwiczenie 1 Badanie układów przekładników prądowych stosowanych w sieciach trójfazowych
Ćwiczenie 1 Badanie układów przekładników prądowych stosowanych w sieciach trójfazowych 1. Wiadomości podstawowe Przekładniki, czyli transformator mierniczy, jest to urządzenie elektryczne przekształcające
Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)
OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu
Ćwiczenie 15. Sprawdzanie watomierza i licznika energii
Ćwiczenie 15 Sprawdzanie watomierza i licznika energii Program ćwiczenia: 1. Sprawdzenie błędów podstawowych watomierza analogowego 2. Sprawdzanie jednofazowego licznika indukcyjnego 2.1. Sprawdzenie prądu
Przyrządy i przetworniki pomiarowe
Przyrządy i przetworniki pomiarowe Są to narzędzia pomiarowe: Przyrządy -służące do wykonywania pomiaru i służące do zamiany wielkości mierzonej na sygnał pomiarowy Znajomość zasady działania przyrządów
KOMPUTEROWE SYSTEMY POMIAROWE
KOMPUTEROWE SYSTEMY POMIAROWE Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST - ITwE Semestr zimowy Wykład nr 12 Prawo autorskie Niniejsze
PRACOWNIA ELEKTRYCZNA I ELEKTRONICZNA. Zespół Szkół Technicznych w Skarżysku-Kamiennej. Sprawozdanie z ćwiczenia nr Temat ćwiczenia: POMIARY MOCY
Zespół zkół Technicznych w karżysku-kamiennej prawozdanie z ćwiczenia nr Temat ćwiczenia: OWN ELEKTYZN ELEKTONZN imię i nazwisko OMY MOY rok szkolny klasa grupa data wykonania. el ćwiczenia: oznanie pośredniej
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST Semestr letni Wykład nr 2 Prawo autorskie Niniejsze
Laboratorium Podstaw Elektrotechniki i Elektroniki
Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PĄDU SINUSOIDLNEGO
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Przedmiot: Pomiary Elektryczne Materiały dydaktyczne: Pomiar i regulacja prądu i napięcia zmiennego Zebrał i opracował: mgr inż. Marcin Jabłoński
POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C
ĆWICZENIE 4EMC POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C Cel ćwiczenia Pomiar parametrów elementów R, L i C stosowanych w urządzeniach elektronicznych w obwodach prądu zmiennego.
Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych Z TR C. Materiał ilustracyjny do przedmiotu. (Cz. 3)
Politechnika Wrocławska nstytut Maszyn, Napędów i Pomiarów lektrycznych Z A KŁ A D M A S Z YN L K TR C Materiał ilustracyjny do przedmiotu LKTROTCHNKA Y Z N Y C H Prowadzący: * * M N (Cz. 3) Dr inż. Piotr
Badanie obwodów rozgałęzionych prądu stałego z jednym źródłem. Pomiar mocy w obwodach prądu stałego
Badanie obwodów rozgałęzionych prądu stałego z jednym źródłem. Pomiar mocy w obwodach prądu stałego I. Prawa Kirchoffa Celem ćwiczenia jest zapoznanie się z rozpływami prądów w obwodach rozgałęzionych
Ćwiczenie 6. BADANIE TRANSFORMATORÓW STANOWISKO I. Badanie transformatora jednofazowego V 1 X
4 Laboratorium elektrotechniki Ćwiczenie 6. BADANIE TRANSFORMATORÓW STANOWISKO I. Badanie transformatora jednofazowego Wykonanie ćwiczenia Prowadzący ćwiczenie określa obiekt naszych badań jeden z dwu,
Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych
Zakres wymaganych wiadomości do testów z przedmiotu Metrologia Ćwiczenie 1 Wprowadzenie do obsługi multimetrów analogowych i cyfrowych budowa i zasada działania przyrządów analogowych magnetoelektrycznych
Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ
Ćwiczenie 4 WYZNCZNE NDUKCYJNOŚC WŁSNEJ WZJEMNEJ Celem ćwiczenia jest poznanie pośrednich metod wyznaczania indukcyjności własnej i wzajemnej na podstawie pomiarów parametrów elektrycznych obwodu. 4..
WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO
Mirosław KAŹMIERSKI Okręgowy Urząd Miar w Łodzi 90-132 Łódź, ul. Narutowicza 75 oum.lodz.w3@gum.gov.pl WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1. Wstęp Konieczność
Badanie przekładnika prądowego
Katedra Elektryfikacji i Automatyzacji Górnictwa Ćwiczenia laboratoryjne nstrukcja do ćwiczenia Badanie przekładnika prądowego Autor: dr inż. Sergiusz Boron Gliwice, czerwiec 2009 -2- Celem ćwiczenia jest
Lekcja 69. Budowa przyrządów pomiarowych.
Lekcja 69. Budowa przyrządów pomiarowych. Metrologia jest jednym z działów nauki zajmująca się problemami naukowo-technicznymi związanymi z pomiarami, niezależnie od rodzaju wielkości mierzonej i od dokładności
METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki
METROLOGIA Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EINS Zjazd 10, wykład nr 17 Prawo autorskie Niniejsze materiały podlegają ochronie
PL B1. Sposób wyznaczania błędów napięciowego i kątowego indukcyjnych przekładników napięciowych dla przebiegów odkształconych
PL 216925 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 216925 (13) B1 (21) Numer zgłoszenia: 389198 (51) Int.Cl. G01R 35/02 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMNS Semestr zimowy studia niestacjonarne Wykład nr
Ćwiczenie M-2 Pomiar mocy
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH INSTRUKCJA do ćwiczeń laboratoryjnych z Metrologii wielkości energetycznych Ćwiczenie
ĆWICZENIE NR 7. Badanie i pomiary transformatora
ĆWICZENIE NR 7 Badanie i pomiary transformatora Cel ćwiczenia: Zapoznanie się z pracą i budową transformatorów Wyznaczenie początków i końców uzwojeń pomiar charakterystyk biegu jałowego pomiar charakterystyk
Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC
Ćwiczenie 3 3.1. Cel ćwiczenia BADANE OBWODÓW PRĄD SNSODANEGO Z EEMENTAM RC Zapoznanie się z własnościami prostych obwodów prądu sinusoidalnego utworzonych z elementów RC. Poznanie zasad rysowania wykresów
Weryfikacja przyłączenia zabezpieczenia odległościowego ZCS 4E i ZCR 4E. ( Test kierunkowości )
Weryfikacja przyłączenia zabezpieczenia odległościowego ZCS 4E i ZCR 4E. ( Test kierunkowości ) Katowice 2004 Computers & Control Sp. J Al Korfantego 191E 40-153 Katowice www.candc.pl Computers & Control
Katedra Elektroniki ZSTi. Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów
Katedra Elektroniki ZSTi Lekcja 12. Rodzaje mierników elektrycznych. Pomiary napięći prądów Symbole umieszczone na przyrządzie Katedra Elektroniki ZSTiO Mierniki magnetoelektryczne Budowane: z ruchomącewkąi
Projektowanie systemów pomiarowych
Projektowanie systemów pomiarowych 03 Konstrukcja mierników analogowych Zasada działania mierników cyfrowych Przetworniki pomiarowe wielkości elektrycznych 1 Analogowe przyrządy pomiarowe Podział ze względu
Prąd przemienny - wprowadzenie
Prąd przemienny - wprowadzenie Prądem zmiennym nazywa się wszelkie prądy elektryczne, dla których zależność natężenia prądu od czasu nie jest funkcją stałą. Zmienność ta może związana również ze zmianą
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH
POMIARY WIELKOŚCI NIEELEKTRYCZNYCH Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMNS Semestr zimowy studia niestacjonarne Wykład nr
Pomiary mocy i energii dla jednofazowego prądu zmiennego
AKADEMIA GÓRNICZO - HUTNICZA IM. STANISŁAWA STASZICA w KRAKOWIE WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI i INŻYNIERII BIOMEDYCZNEJ KATEDRA METROLOGII i ELEKTRONIKI LABORATORIUM METROLOGII Pomiary
Zaznacz właściwą odpowiedź
EUOEEKTA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej ok szkolny 200/20 Zadania dla grupy elektrycznej na zawody I stopnia Zaznacz właściwą odpowiedź Zadanie Kondensator o pojemności C =
Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski
Indukcja wzajemna Transformator dr inż. Romuald Kędzierski Do czego służy transformator? Jest to urządzenie (zwane też maszyną elektryczną), które wykorzystując zjawisko indukcji elektromagnetycznej pozwala
Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO
Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO
Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych
Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 1 Podstawy metrologii 1. Model matematyczny pomiaru. 2. Wzorce jednostek miar. 3. Błąd pomiaru.
2/57. Pomiar mocy. Watomierz analogowy Watomierz cyfrowy Przetworniki AC/DC (RMS) Wykład nr 8 04-06-2016
2/57 Pomiar mocy Watomierz analogowy Watomierz cyfrowy Przetworniki AC/DC (RMS) Wykład nr 8 04-06-2016 3/57 Watomierz analogowy Watomierz jest elektrycznym miernikiem wskazówkowym przeznaczonym do pomiaru
ĆWICZENIE T2 PRACA RÓWNOLEGŁA TRANSFORMATORÓW
ĆWICZENIE T2 PRACA RÓWNOLEGŁA TRANSFORMATORÓW I. Program ćwiczenia 1. Pomiar napięć i impedancji zwarciowych transformatorów 2. Pomiar przekładni napięciowych transformatorów 3. Wyznaczenie pomiarowe charakterystyk
KOMPUTEROWE SYSTEMY POMIAROWE
KOMPUTEROWE SYSTEMY POMIAROWE Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EMST - ITE Semestr zimowy Wykład nr 8 Prawo autorskie Niniejsze
EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ
Studia Podyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ w ramach projektu Śląsko-Małopolskie Centrum Kompetencji Zarządzania Energią Ocena poprawności pomiarów, wpływ zakłóceń i środowiska na niepewność
Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego.
Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego. 1. Moc odbiorników prądu stałego Prąd płynący przez odbiornik powoduje wydzielanie się określonej
Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii. Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA.
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METROLOGIA Kod przedmiotu ES1C 200 012 POMIAR MOCY WATOMIERZEM
LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH
-CEL- LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH PODSTAWOWE CHARAKTERYSTYKI I PARAMETRY SILNIKA RELUKTANCYJNEGO Z KLATKĄ ROZRUCHOWĄ (REL) Zapoznanie się z konstrukcją silników reluktancyjnych. Wyznaczenie
TRANSFORMATOR TRÓJFAZOWY
TRANSFORMATOR TRÓJFAZOWY Do transformacji energii elektrycznej w układach trójfazowych można wykorzystać trzy jednostki jednofazowe. Rozwiązanie taki jest jednak nieekonomiczne. Na Rys. 1 pokazano jakie
I. Cel ćwiczenia: Poznanie własności obwodu szeregowego, zawierającego elementy R, L, C.
espół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PAOWNA EEKTYNA EEKTONNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE SEEGOWEGO OBWOD rok szkolny klasa grupa data wykonania. el ćwiczenia:
Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia.
Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia. Transformator może się znajdować w jednym z trzech charakterystycznych stanów pracy: a) stanie jałowym b) stanie obciążenia c) stanie
Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 4)
Politechnika Wrocławska nstytut Maszyn, Napędów i Pomiarów lektrycznych Materiał ilustracyjny do przedmiotu LKTROTCHNKA Prowadzący: (Cz. 4) Dr inż. Piotr Zieliński (-9, A0 p.408, tel. 30-3 9) Wrocław 003/4