Data-driven Coordination of Distributed Energy Resources
|
|
- Nina Morawska
- 5 lat temu
- Przeglądów:
Transkrypt
1 Data-driven Coordination of Distributed Energy Resources Alejandro D. Domínguez-García Coordinated Science Laboratory Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign PSERC Webinar Series November 5, 2019
2 Outline 1 Introduction 2 DER Coordination for Active Power Provision 3 LTC Coordination for Voltage Regulation 4 Concluding Remarks
3 Impacts of Renewable-Based Power Generation Resources Deep penetration of renewable-based generation imposes additional requirements on ancillary services including: Frequency regulation (in bulk power systems) Reactive power support (in distribution systems) Frequency regulation in bulk power systems is typically achieved by controlling large synchronous generators Resources in distribution systems are not utilized for this task Reactive power support in distribution systems is provided by devices such as load tap changers (LTCs) and fixed/switched capacitors These devices are not designed to manage high variability in voltage fluctuations induced by renewable-based generation Domínguez-García (ECE ILLINOIS) Data-driven Coordination 1 / 32
4 The Solution An increasing number of DERs are being integrated into distribution systems DERs could potentially be utilized to provide ancillary services if properly coordinated by, e.g., an aggregator PV systems Electric Vehicles Fuel Cells Residential Storage Domínguez-García (ECE ILLINOIS) Data-driven Coordination 2 / 32
5 Need for Data-Driven Coordination G tie line aggregator G bulk power system power distribution system DER aggregators needs to develop appropriate coordination schemes so DERs can collectively provide services that meet certain requirements Model-based schemes may be infeasible due to the lack of accurate models Data-driven schemes that only rely on measurements provide a promising alternative for developing efficient coordination schemes Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 3 / 32
6 Presentation Overview Objective To develop data-driven coordination frameworks for assets (DERs, LTCs) in distribution systems Part I. Active power provision problem total active power exchanged between the distribution and bulk systems needs to equal to some amount requested by the bulk system operator Part II. Voltage regulation problem the voltage magnitude at each bus needs be maintained to stay close to some reference value Domínguez-García (ECE ILLINOIS) Data-driven Coordination 4 / 32
7 Outline 1 Introduction 2 DER Coordination for Active Power Provision 3 LTC Coordination for Voltage Regulation 4 Concluding Remarks
8 0<latexit sha1_base64="rspgdo38dcurlsat/ftnosrchua=">aaab6hicbvbns8naej3ur1q/qh69lbbbu0mqomeif48t2fpoq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgpr6xubw8xt0s7u3v5b+fcorenumwyxwmsqe1cngktsgw4edhkfnaoepgtj25n/8irk81jem0mcfkshkoecuwolptsvv9yqowdzjv5okpcj0s9/9qyxsyouhgmqdddze+nnvbnobe5lvvrjqtmydrfrqaqraj+bhzolz1yzkdbwtqqhc/x3reyjrsdrydsjakz62zuj/3nd1itxfszlkhqubleotauxmzl9tqzcitniygllittbcrtrrzmx2zrscn7yy6ukxat6f9va87jsv8njkmijnmi5ehafdbidbrsaacizvmkb8+i8oo/ox6k14oqzx/ahzucpememua==</latexit> 1<latexit sha1_base64="ttigpqprnje4hss++pum3etxya8=">aaab6hicbvbns8naej3ur1q/qh69lbbbu0mqomeif48t2fpoq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgpr6xubw8xt0s7u3v5b+fcorenumwyxwmsqe1cngktsgw4edhkfnaoepgtj25n/8irk81jem0mcfkshkoecuwolptcvv9yqowdzjv5okpcj0s9/9qyxsyouhgmqdddze+nnvbnobe5lvvrjqtmydrfrqaqraj+bhzolz1yzkdbwtqqhc/x3reyjrsdrydsjakz62zuj/3nd1itxfszlkhqubleotauxmzl9tqzcitniygllittbcrtrrzmx2zrscn7yy6ukxat6f9va87jsv8njkmijnmi5ehafdbidbrsaacizvmkb8+i8oo/ox6k14oqzx/ahzucpe+umuq==</latexit> 3<latexit sha1_base64="lnugvcgcwmrkaqmqfwjgrne8jzm=">aaab6hicbvdltgjbeozff+il9ehlijhxrhbbri9elx4hkuccgzi79mli7oxmztaeel7aiwen8eonefnvhgapclbssawqo91dqsk4nq777eq2nre2d/k7hb39g8oj4vfjs8epythksyhvj6aabzfynnwi7cqkarqibafju7nffkkleswfzcrbp6jdyupoqlfso9ovltyyuwbzj15gspch3i9+9qyxsyouhgmqdddze+npqtkcczwveqnghlixhwlxukkj1p50ceimxfhlqmjy2zkglntfe1maat2jatszutpsq95c/m/rpia88adcjqlbyzalwlqqe5p512taftijjpzqpri9lbarvzqzm03bhuctvrxowpwyvy1xglel2m0wrx7o4bwuwynrqme91kejdbce4rxenefnxxl3ppatoseboyu/cd5/ah7zjls=</latexit> 2<latexit sha1_base64="jk/1fpohxujb3eq/tofnvjxofrw=">aaab6hicbvbns8naej3ur1q/qh69lbbbu0mqomeif48t2fpoq9lsj+3azsbsboqs+gu8efdeqz/jm//gbzudtj4yelw3w8y8ibfcg9f9dgpr6xubw8xt0s7u3v5b+fcorenumwyxwmsqe1cngktsgw4edhkfnaoepgtj25n/8irk81jem0mcfkshkoecuwolzq1frrhvdw6ysrycvcbho1/+6g1ilkyodrnu667njsbpqdkcczyweqnghlixhwlxukkj1h42p3rkzqwyiggsbeld5urviyxgwk+iwhzg1iz0sjct//o6qqmv/yzljduo2wjrmapiyjl7mgy4qmbexblkfle3ejaiijjjsynzelzll1dju1b1lqq15mwlfpphuyqtoivz8oak6nahdwgba4rneiu359f5cd6dj0vrwclnjuepnm8ffw+mug==</latexit> <latexit sha1_base64="ehc+d5cywammzlse/g19iyaznzq=">aaab+3icbvdlssnafl3xwesr1qwbybfclarwdfmo6mkfsax7gcauyxtsdp1mwsxelkw/4safim79exf+jzm0c209mjfdofdy7xw/zlqq2/42vlbx1jc2c1vf7z3dvx3zonswusiwaegiralri0ky5aslqgkkgwucqp+rjj++sv3oixgsrvxbtwlihwjiauaxulrqm6w7+rnrfm+zyus1xftm2a7ygaxl4uskddmaffplhuq4cqlxmcepe44dk2+khkkykvnrtssjer6jielpylfipdfnbp9zj1ozweek9opkyttfe1musjkjfd0zijwsi14q/uf1ehvcelpk40qrjuelgorzkrlsikwbfqqrnteeyuh1rryeiygw0nglitilx14m7wrfoatu72vlxnuerwgo4bhowyelamannkefgj7ggv7hzzgzl8a78tfvxthymup4a+pzb05bkgg=</latexit> Optimal DER Coordination Problem (ODCP) bulk grid tie line y p g 4 5 f p 1 f p 5 p d 5 <latexit sha1_base64="m6z2tylkluktjhb6esfgrt/vw+o=">aaab7hicbvbns8naej34wetx1aoxxsj4kklv9fjqg8ckpi20sww2m3bpzjfsboqs+hu8efdeqz/im//gbzudtj4yelw3w8y8movmg9f9dlzw19y3nktb5e2d3b39ysfhs8tmeeotyaxqhfhtzgt1dtocdljfcrjy2g5hn1o//usvzli8mhfkgwqpbiszwczkftq/fiz6lapbc2day8qrsbuknpuvr14kszzqyqjhwnc9nzvbjpvhhnnjuzdpmmiywgpatvtghoognx07qadwivasls1h0ez9pzhjrotxetrobjuhxvsm4n9enzpxdzazkwagcjjffgccgymmn6oikuomh1uciwl2vksgwgfibd5lg4k3+piyadvr3nmtfn9rbdwwcztgge7gddy4ggbcqrn8imdggv7hzrhoi/pufmxbv5xi5gj+wpn8axnhjng=</latexit> p g 1 <latexit sha1_base64="azmen4pyl58tdinfvraycjrhg04=">aaab7hicbvbns8naej3ur1q/qh69lbbbu0mqomechjxwsb/qxrlzttqlm03y3qgl9dd48aciv3+qn/+n2zyhbx0w8hhvhpl5qsk4nq777rtw1jc2t4rbpz3dvf2d8ufrs8epythksyhvj6aabzfynnwi7cqkarqibafjm5nffkkleswfzcrbp6jdyupoqlfsm+l7j8n+uejw3tnikvfyuoecjx75qzeiwrqhnexqrbuemxg/o8pwjnba6quae8rgdihdsywnupvz/ngpobpkgisxsiunmau/jziaat2jatszutpsy95m/m/rpia89jmuk9sgzitfysqiicnsczlgcpkre0sou9zestiiksqmzadkq/cwx14lrvrvu6jw7i8r9ds8jikcwcmcgwdxuic7aeatghb4hld4c6tz4rw7h4vwgppphmmfoj8/eduodw==</latexit> 4 p d 4 p d 1 f p 3 <latexit sha1_base64="wc7t1+cdvsgrk59wh6wvx/8cs7q=">aaab7hicbvbns8naej34wetx1aoxxsj4kkkr6lggb48vtftoy9lsj+3szsbsbors+hu8efdeqz/im//gbzudtj4yelw3w8y8mbvcg9f9dtbwnza3tgs7xd29/ypd0tfxuyezyuizrcsqhvkngkv0dtcc26lcgoccw+hozua3nlbpnsghm04xiola8ogzaqzkr73ay9orld2kowdzjv5oypcj0st9dfsjy2kuhgmqdcdzuxnmqdkcczwwu5ngllirhwdhuklj1mfkfuyunfult6je2zkgznxfexmaaz2oq9szuzpuy95m/m/rzca6dizcpplbyralokwqk5dz56tpftijxpzqpri9lbahvzqzm0/rhuatv7xkmtwkv6tu7y/l9ds8jgkcwhlcgadxuic7aiapddg8wyu8odj5cd6dj0xrmpppnmafoj8/ezuoea==</latexit> f p 4 <latexit sha1_base64="crb9/fk0anrkxjjlxq0fkmuzz4u=">aaab7hicbvbns8naej3ur1q/qh69lbbbu0lqqy8fpxisyguhjwwznbrln5uwuxfk6g/w4kerr/4gb/4bt20o2vpg4pheddpzgkrwbvz32ymsrw9sbhw3szu7e/sh5cojto5txbdfyhgrtka1ci6xzbgr2eku0igq+bcmr2f+wxmqzwn5byyj+hedsh5yro2vwmg//pj0yxw36s5bvomxkwrkapblx71bzniipwgcat313mt4gvwgm4htui/vmfa2pkpswipphnrp5sdoyzlvbismls1pyfz9pzhrsotjfnjoijqrxvzm4n9enzxhlz9xmaqgjvssclnbtexmn5mbv8immfhcmel2vsjgvffmbd4lg4k3/piqadeq3kw1dlevng7yoipwaqdwdh5cqgnuoqktymdhgv7hzzhoi/pufcxac04+cwx/4hz+ahshjnk=</latexit> p d 3 <latexit sha1_base64="irulathtdaytvdfxlh/nreiqkje=">aaab7hicbvbns8naej34wetx1aoxxsj4kkkr6lggb48vtftoy9lsnu3s3u3y3qgl9dd48aciv3+qn/+n2zyhbx0w8hhvhpl5ycqznq777aytb2xubzd2yrt7+wehlapjtk4yrahpep6obog15uxs3zddatdvfiuq0044vpn5nseqnevkg5mknbb4kfnmcdzw8tnb4zeavkpuzz0drrkvifuo0bpuvvprqjjbpseca93z3nqeovageu6n5x6mayrjga9pz1kjbdvbpj92is6teqe4ubakqxp190sohdytedpogc1il3sz8t+vl5n4osiztdndjvksijootijmn6oikuomn1iciwl2vkrgwgfibd5lg4k3/piqaddrxqnwv7+snm+loepwcmdwar5cqrpuoau+egdwdk/w5kjnxxl3phata04xcwj/4hz+aha7jny=</latexit> f p 2 p g 3 p g 2 <latexit sha1_base64="kycwbbhvutl/nawjalrgyir3k7g=">aaab7hicbvbns8naej3ur1q/qh69lbbbu0mqomechjxwmg2hjwwz3brln5uwoxfk6w/w4kerr/4gb/4bt20o2vpg4pheddpzwlqkg6777rtw1jc2t4rbpz3dvf2d8ufr0yszztxniux0o6sgs6g4jwilb6ea0ziuvbwobmz+64lrixl1gooubzedkbejrtfkftqrpq565ypbdecgq8tlsqvynhrlr24/yvnmftjjjel4borbhgoutpjpqzsznli2ogpesvtrmjtgmj92ss6s0idrom0pjhp198sexsam49b2xhshztmbif95nqyj62aivjohv2yxkmokwytmpid9otldobaemi3sryqnqaymbt4lg4k3/piqadaq3kw1dn9zqd/mcrthbe7hhdy4gjrcqqn8ycdggv7hzvhoi/pufcxac04+cwx/4hz+ahnbjng=</latexit> p d 2 <latexit sha1_base64="gmdhp9fl/e9c16ixar0usca2vme=">aaab7hicbvbns8naej2tx7v+vt16wsycp5juqy8fpxisynpcg8tms2mxbjzhdyou0n/gxymixv1b3vw3btsctpxbwoo9gwbmbang2jjonyqtrw9sbpw3kzu7e/sh1cojtk4yrzlhe5gobka0e1wyz3ajwddvjmsbyj1gfdpzo09maz7ibznjmr+toeqrp8ryyushjcdwuk05dwcovercgtsgqgtq/eqhcc1ijg0vroue66tgz4kynao2rfqzzvjcx2tiepzkejpt5/njp/jmkigoemvlgjxxf0/kjnz6ege2myzmpje9mfif18tmdo3nxkazyziufkwzwcbbs89xybwjrkwsivrxeyumi6iintafig3bxx55lbqbdfei3ri/rdvvizjkcaknca4uxeet7qafhldg8ayv8iykekhv6gprwklfzdh8afr8axu1jnu=</latexit> N =5 L =5 n =4 distribution system <latexit sha1_base64="5oxhhblagdtarg/dpbskmcuxc24=">aaacbxicbvdjsgnbeo1xjxeb9slooteinsikhvqy8ojfiwawselo6dqktxowumvematbs/yuxdwo4tv/8cd4n3awgyy+khi8v0vvptesqqpjffsli0vlk6uptft6xubwtr2zw9zhrdiuechdvxwzbikckkfacdviafndcrw3ezhyk3egtaidw+xf0pbzoxce4ayn1lqp6wj3ql2kzxyp4cyjmeqervd7ttvjzj0x6dzjtummsp80gh5dprsb9me9fflyhwc5zfrx8k6ejyqpffxcp12pnusmd1kbaoygzafdsmzf9omxuvruc5wpaoly/t2rmf/rnu+atp9hr896i/e/rxajd95irbdfcagflpjistgko0hosyjgkhugmk6euzxydlomowkubulizb48t8r5bo40m78xavytcvlkgbyre5ijz6ralkmrlagnj2rixsirnbcertfrfdk6ye1n9sgfwb8/hs+dwa==</latexit> Legend Synchronous generator Inverter-interfaced source Load Bus Determine the DER active power injection vector, p g, that minimizes total cost of operation while satisfying: C1. The power exchanged with the bulk system, y, tracks some pre-specified value, y C2. The active power injection from each DER does not exceed its corresponding capacity limits, i.e., p g p g p g C3. The power flow on each line does not exceed its maximum capacity, i.e., f f f Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 5 / 32
9 Input-Output System Model y can be written as a function of p g, p d, q d as follows: y = h(p g, p d, q d ) h captures the impacts from both the physical laws as well as the effect of any reactive power control scheme Assumption 1 H1. The rate of change in y w.r.t. p g is bounded for bounded changes in the DER active power injections H2. The total active power provided to the bulk power system will increase when more active power is injected in the power distribution system Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 6 / 32
10 ODCP Formulation The ODCP can be formulated as: minimize p g [p g,p g ] c(p g ) subject to h(p g, p d, q d ) = y, f M 1 (Cp g p d ) f p g p g, p g p d, q d y f M C DER active power injections DER upper and lower capacity limits Load active, reactive power demands Requested power to be exchanged with bulk grid Line flow limits Reduced node-to-edge incidence matrix Matrix mapping DER indices to buses Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 7 / 32
11 Data-Driven DER Coordination Framework Data defining the ODCP problem: Cost function, c( ) DER capacity limits, p g, p g Network topology and DER location, M, C Load active and reactive power demand, p d, q d Line flow limits, f Input-output model, h(,, ) Assumed unknown Real-time measurements available: DER active power injections, p g [k], k = 1, 2,... Active power exchanged with the bulk system, y[k], k = 1, 2,... Framework Building Blocks An input-output (IO) model estimator that uses available real-time measurement data A controller that uses uses the identified IO model to solve the ODCP Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 8 / 32
12 Two-Timescale Coordination Framework controller solves ODCP time estimator updates sensitivities time Estimation Process iterations in estimation process p d and q d remain approximately constant between two time instants; therefore, changes in y[k] that occur across time steps in the estimation process depend only on changes in p g [k]; thus, y[k] = h(p g [k], p d, q d ), k = 0, 1,... Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 9 / 32
13 Input-Output Model as a Linear Time-Varying System For notational simplicity, define u[k] = p g [k], u = p g, u = p g, and π = [(p d ), (q d ) ] ; then, the IO model can be written as: y[k] = h(u[k], π), k = 0, 1,..., For k > 1, the above equation can be transformed into the following equivalent linear time-varying model: y[k] = y[k 1] + φ[k] (u[k] u[k 1]) where φ[k] = [φ i [k]] = h u ũ[k], with ũ[k] = a k u[k] + (1 a k )u[k] φ[k] is referred to as the sensitivity vector at time step k The entries of φ[k] are bounded for all k by Assumption 1 Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 10 / 32
14 Estimator Estimation Step At time step k, the objective of the estimator is to obtain an estimate of φ[k], denoted by ˆφ[k], using available measurements of u and y Problem P1: subject to ˆφ[k] = arg min J e ( ˆφ) = 1 (y[k 1] ŷ[k 1])2 ˆφ Q=[b 1,b 1 2 ] n ŷ[k 1] = y[k 2] + ˆφ (u[k 1] u[k 2]) Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 11 / 32
15 Estimator Control Step The objective of the controller during the estimation process is to ensure that the output tracks the target [Different from the ODCP] Problem P2: subject to u[k] = arg min u U=[u,u] J c (u) = 1 2 (y ŷ[k]) 2 ŷ[k] = y[k 1] + ˆφ[k] (u u[k 1]) Note that ˆφ[k] is used to predict the value of y[k] for a given u Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 12 / 32
16 Estimation Process Workflow control step u[k 1] y[k 1] }{{ ˆφ {}}{ [k] u[k] y[k] } ˆφ[k + 1] estimation step At the beginning of iteration k, y[k 1] is used in Problem P1 to update the sensitivity vector estimate, ˆφ[k] The updated sensitivity vector estimate, ˆφ[k], is then used in Problem P2 to determine the control, u[k] Then, the DERs are instructed to change their active power injection set-points based on u[k] Problems P1 and P2 are not solved to completion for each k Instead, we iterate the projected gradient descent algorithm that would solve them for one step at each iteration k Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 13 / 32
17 Simulation Setup DER Figure 1: The IEEE 123-bus distribution test feeder. Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 14 / 32
18 Tracking Performance During Estimation tracking error (kw) kw kw kw kw kw kw time (s) Figure 2: Tracking error for β k = 0.02 under various tracking targets. 0 tracking error (kw) time (s) Figure 3: Tracking error for y = 3000 kw and various constant control step sizes. Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 15 / 32
19 Estimation Accuracy Mean absolute error (MAE) of estimation errors: MAE = n i=1 where n is the number of DERs ˆφi [k] φ i [k], n MAE (p.u./p.u.) time (s) Figure 4: Estimation error under various control step sizes. Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 16 / 32
20 Outline 1 Introduction 2 DER Coordination for Active Power Provision 3 LTC Coordination for Voltage Regulation 4 Concluding Remarks
21 <latexit sha1_base64="o95+zhquihfz3qgd3xj3pvnivia=">aaae6nicjvrlb9naehabacw8wjhygagdsfsrnagtpsbvlaohhopih1kcrpv1jtl2vta765ti9u/gwggeupklupfvmhxstgklyiu7szpffpn0uong2nje77n5uvngzvsltyt37t67/2bx6egejlnf2s6nrawoukqzwsxbndwidpaorqkuypvd4y1r3x8ypxksm2aushze+pl3ocugvz2lkhn0wz/lzbb0yvtptlsceoiicfgpoqsyzcc0jiiiwywgspgrnoozosgzv9bilzoyazjism8vu7puejvnvfhi1q0oeduhbqntrmagfyrc48izwcvepbaladjhzgdbzs29au7pxokuxgp+ubaeyoxudbh121e8imoemocmhrewpm+gkm+kqdndzkfpcwv/wggsw/9woljo2mzsqdhk+balaybdv7maazobe6jwa5ielo3tmu1nbu1fpo7fkmikxhbvir/gernjx1tup3+beu1oas6oq+agbxlmhc2pmpnjj1otxtif9mfg4stfptobbfzcpj82wjbreyvbdznnmq6i7ommpvwibyjvkhm1jrxal7dwx11bmja2occ/5m001let4af5hvg6jyylpuy0x6u6d3dgpe38nb9jkwgwhdcbwmq9mj8om77uz0otrv4xarawamc3xckld9z4smdx2ua1b64k/krydiznp7p4kwhjmka49fqqrvu+l5h2rpth1bigqwyjoce4ki0ujymybmffp5pdftuh4gdxkqyk7uwpjeraj6iuiinibvqyzsqvs7vs03vvzrhmusmkhqfqpqjmdpa7h5djmhsxqofqxtfx2ykfg4x/dryj/uwsrwp79zrfqnxf15c330zasea8dp46lxzfwxc2nxfojrpr0fk/9ln0tfstlmpfyt/lp8bq+bmjzynn5pr//ghbvogb</latexit> Background Voltage regulation transformers also referred to as Load Tap Changers (LTCs) are widely utilized in power distribution systems to regulate voltage magnitudes along a feeder Model for a load tap changer on a line connecting buses i and j: i + V i tl :1 + V j r l +ix l = V i t 2 l j + V j V i V j 0 V j t` r` x` Primary side voltage magnitude Secondary side voltage magnitude Line receiving end voltage magnitude Tap ratio Transformer + line resistance Transformer + line reactance The tap ratio, t l, typically takes 33 discrete values ranging from 0.9 to 1.1, by an increment of 5/8%, i.e., t l T = {0.9, ,, , 1.1} Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 17 / 32
22 Problem Motivation Current LTC control schemes are myopic: Based on local voltage measurements Do not account for future uncertainty effects on current control actions These schemes are no longer suitable because of increased variability and uncertainty in uncontrolled power injections arising from: Residential PV installations Electric vehicles In addition, the use of controlled DERs for providing frequency regulation to the bulk grid has an impact on voltage regulation Domínguez-García (ECE ILLINOIS) Data-driven Coordination 18 / 32
23 Volt/VAR Control Architecture Fast Time-Scale Control time t 0 t 1 t 2 Slow Time-Scale Control Slow Time-Scale: LTCs are periodically dispatched so as to reduce mechanical wear Fast Time-Scale Control: Power-electronic-interfaced DERs with reactive power provision capability Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 19 / 32
24 <latexit sha1_base64="ehc+d5cywammzlse/g19iyaznzq=">aaab+3icbvdlssnafl3xwesr1qwbybfclarwdfmo6mkfsax7gcauyxtsdp1mwsxelkw/4safim79exf+jzm0c209mjfdofdy7xw/zlqq2/42vlbx1jc2c1vf7z3dvx3zonswusiwaegiralri0ky5aslqgkkgwucqp+rjj++sv3oixgsrvxbtwlihwjiauaxulrqm6w7+rnrfm+zyus1xftm2a7ygaxl4uskddmaffplhuq4cqlxmcepe44dk2+khkkykvnrtssjer6jielpylfipdfnbp9zj1ozweek9opkyttfe1musjkjfd0zijwsi14q/uf1ehvcelpk40qrjuelgorzkrlsikwbfqqrnteeyuh1rryeiygw0nglitilx14m7wrfoatu72vlxnuerwgo4bhowyelamannkefgj7ggv7hzzgzl8a78tfvxthymup4a+pzb05bkgg=</latexit> Optimal LTC Dispatch Problem tie line V 0 V 1 V 2 V5 V4 V 3 N =5 L =5 n =4 Legend Synchronous generator Inverter-interfaced source Load Bus bulk grid distribution system <latexit sha1_base64="5oxhhblagdtarg/dpbskmcuxc24=">aaacbxicbvdjsgnbeo1xjxeb9slooteinsikhvqy8ojfiwawselo6dqktxowumvematbs/yuxdwo4tv/8cd4n3awgyy+khi8v0vvptesqqpjffsli0vlk6uptft6xubwtr2zw9zhrdiuechdvxwzbikckkfacdviafndcrw3ezhyk3egtaidw+xf0pbzoxce4ayn1lqp6wj3ql2kzxyp4cyjmeqervd7ttvjzj0x6dzjtummsp80gh5dprsb9me9fflyhwc5zfrx8k6ejyqpffxcp12pnusmd1kbaoygzafdsmzf9omxuvruc5wpaoly/t2rmf/rnu+atp9hr896i/e/rxajd95irbdfcagflpjistgko0hosyjgkhugmk6euzxydlomowkubulizb48t8r5bo40m78xavytcvlkgbyre5ijz6ralkmrlagnj2rixsirnbcertfrfdk6ye1n9sgfwb8/hs+dwa==</latexit> Load tap changer (LTC) Objective Find a policy for determining the LTC tap positions based on measurements of current tap ratios bus voltage magnitudes so as to minimize bus voltages deviations from some reference value as power injections change as time evolves Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 20 / 32
25 Power Distribution System Model The relation between square voltage magnitudes and active/reactive power injections and LTC tap ratios at instant k can be written as V [k] = g(p[k], q[k], t[k]) V [k] p[k], q[k] t[k] Vector of voltage magnitudes at instant k Vector of active, reactive, power injections at instant k Vector of tap ratios at instant k Network topology and transmission line parameters are encapsulated into g Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 21 / 32
26 Assumptions T1. Changes in active and reactive power injections at instant k, p[k] := p[k + 1] p[k] and q[k] := q[k + 1] q[k], are random T2. Active and reactive power injections k, p[k] and q[k], are not measured and their joint probability distribution is unknown T3. Network topology is known, i.e., M is known T4. Line parameters are unknown, i.e., r and x are unknown Because of Assumption T1 is natural to formulate the problem as a Markov Decision Process (MDP) Because of Assumptions T2 T4, we will have to resort to reinforcement learning (RL) techniques to solve this MDP Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 22 / 32
27 LTC Coordination Problem as an MDP State space, S: the state, s, is composed of tap ratio and squared voltage magnitude vector, i.e., s = (t, v), t T Lt, v R N ; thus, S T Lt R N Action space, A: the action, a, is the change in LTC tap ratio between two consecutive time instants, i.e., a = t, t T Lt =: A, where T = {0, ± ,, ± , ±0.2} is the set set of feasible tap ratio changes Reward function, R: the reward when the system transitions from state s = (t, v) into state s = (t, v ) after taking action a = t is R(s, a, s ) = 1 N v v, i.e., we are penalizing voltage deviation from some reference value v Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 23 / 32
28 LTC Coordination Problem as an MDP State transitions: governed by random changes in active and reactive power injection vectors, p := p p and q := q q: Objective s = h(s, a, p, q) Network topology and transmission line paramters are encapsulated into h Probability of transitioning from s to s under action a, P(s s, a), could be computed if h and the joint pdf of p and q were know Find a policy π : (t, v) t, t T Lt, v R N, t T Lt 1 N k=0 γ k E [ v[k + 1] v ] t[0] = t 0, v[0] = v 0 is maximized (equivalent to minimizing voltage deviations) so that Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 24 / 32
29 Solving the LTC Coordination Problem Let R(s, a) denote the expected reward for the pair (s, a) The MDP is solved when we find Q (s, a), s S, a A, and π (s), s S, satisfying Q (s, a) = R(s, a) + γ s S P(s s, a) max a A Q (s, a ) π (s) = arg max Q (s, a) a Two issues in our setting: I1. We do not know P(, ) I2. Even if we knew P(, ), we could not solve for Q (s, a) efficiently because of the curse of dimensionality in the state and action spaces To circumvent Issue I1, we apply a model-free RL algorithm that utilizes transition samples obtained via a virtual transition generator To circumvent Issue I2, we use function approximation and a learning scheme for sequential estimation of the action-value function Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 25 / 32
30 LTC Coordination Framework Building Blocks action Environment Power Distribution System state reward Learning Agent Exploratory Actor History action Virtual Transition Generator Action-Value Function Estimator (Critic) Acting Agent Greedy Actor action-value function estimate Domínguez-García (ECE ILLINOIS) Data-driven Coordination 26 / 32
31 Action-Value Function Value Estimator Let ˆQ(, ) denote an approximation of the optimal action-value function Q(, ) Methods for obtaining ˆQ(, ) include: Parametric functions Neural networks Here we consider a linear parametrization of ˆQ(, ): ˆQ(s, a) = w φ(s, a), where w R f is the parameter vector and φ : S A R f is some basis function Let D = {(s, a, r, s ) : s, s S, a A} denote a set (batch) of transition samples obtained via observation or simulation We use least-square policy iteration (LSPI) algorithm [Lagoudakis and Parr, 2003] to find w that best fits the transition samples in D Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 27 / 32
32 Challenges The LSPI algorithm requires adequate transition samples that spread over S A This is challenging in power systems since the system operational reliability might be jeopardized when exploring randomly We address this by developing by generating samples via a virtual transition generator that leverages historical system operational data The LSPI also suffers from the curse of dimensionality when the action space is large the case in the LTC coordination problem We address this by using a sequential scheme that breaks the learning problem into smaller problems and uses the LSPI algorithm on those Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 28 / 32
33 IEEE 123-bus Test Feeder Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 29 / 32
34 IEEE 123-bus Test Feeder Results tap position Batch RL time (hour) reward ( 10 3 ) 5 10 batch RL exhaustive search conventional scheme time (hour) Figure 6: Immediate rewards. 4 2 Exhaustive search 0 tap position time (hour) Figure 5: Tap positions. reward ( 10 3 ) 5 10 batch RL exhaustive search conventional scheme time (day) Figure 7: Rewards over 7 days. Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 30 / 32
35 Outline 1 Introduction 2 DER Coordination for Active Power Provision 3 LTC Coordination for Voltage Regulation 4 Concluding Remarks
36 Conclusions We developed a data-driven coordination framework for coordinating assets in distribution systems to provide ancillary services: The proposed framework: It assumes no prior information on the distribution system model, except knowledge of network topology It mainly relies on measurements It is adaptive and robust to changes in operating conditions Refer to the following papers for more details: 1. H. Xu, A. Domínguez-García, and P. Sauer, Data-driven Coordination of Distributed Energy Resources for Active Power Provision, IEEE Transactions on Power System, H. Xu, A. Domínguez-García, and P. W. Sauer, Optimal tap setting of voltage regulation transformers using batch reinforcement learning, IEEE Transactions on Power System, Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 31 / 32
37 Questions? Alejandro D. Domínguez-García url: Domínguez-García (ECE ILLINOIS) Data-driven Coordination 32 / 32
38 References I [Lagoudakis and Parr, 2003] Lagoudakis, M. G. and Parr, R. (2003). Least-squares policy iteration. Journal of Machine Learning Research, 4:
39 A Primer on Markov Decision Processes A Markov Decision Process (MDP) is defined as a 5-tuple (S, A, P, R, γ) where S is a finite set of states A is a finite set of actions P is a Markovian transition model R : S A S R is a reward function γ [0, 1) is a discount factor Let s[k] and a[k] denote random variables (r.v. s) respectively describing the value the state and action take at time instant k Let r[k] denote a r.v. describing the reward received after taking action a[k] in state s[k] and transitioning to state s[k + 1]; then r[k] = R ( s[k], a[k], s[k + 1] ) A deterministic policy π is a mapping from S to A, i.e., a = π(s), s S, a A Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 33 / 32
40 A Primer on Markov Decision Processes Objective Given some initial state, s 0, we want to find a deterministic policy, π, that maximizes the expected value of the cumulative discounted reward, i.e., π = arg max π k=0 γ k E [r[k] ] s[0] = s 0 Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 34 / 32
41 A Primer on Markov Decision Processes The action-value function under policy π is defined as Q π (s, a) = k=0 γ k E [r[k] ] s[k] = s, a[k] = a; π, s S, a A The optimal action-value function, Q (s, a), s S, a A is the maximum action-value function over all policies, i.e., Q (s, a) = max π Qπ (s, a) Q (s, a), s S, a A, satisfies the following Bellman equation: Q (s, a) = E [r s, a] + γ s S P(s s, a) max a A Q (s, a ) The optimal policy, π (s), s S, is obtained as follows: π (s) = arg max Q (s, a) a The MDP is solved if we find Q (, ) and the corresponding π ( ) Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 35 / 32
42 LSPI Algorithm Iteration Let w i denote the estimate of w at the beginning of iteration i For each transition sample (s, a, r, s ) D, compute a = arg max wi φ(s, α) α A Update the estimate of w as follows: w i+1 = B 1 b where B = b = (s,a,r,s ) D (s,a,r,s ) D ( ) φ(s, a) φ(s, a) γφ(s, a ) } {{ } rank-1 matrix φ(s, a)r Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 36 / 32
43 Timeline Fast Time-Scale Control time t 0 t 1 t 2 Slow Time-Scale Control Policy updated every K T units of time, e.g., 2 hours Updated policy used for tap setting for K time instants Domínguez-García (ECE ILLINOIS) Data-driven Coordination aledan@illinois.edu 37 / 32
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 9: Inference in Structured Prediction
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 9: Inference in Structured Prediction 1 intro (1 lecture) Roadmap deep learning for NLP (5 lectures) structured prediction
tum.de/fall2018/ in2357
https://piazza.com/ tum.de/fall2018/ in2357 Prof. Daniel Cremers From to Classification Categories of Learning (Rep.) Learning Unsupervised Learning clustering, density estimation Supervised Learning learning
Helena Boguta, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Składają się na
Weronika Mysliwiec, klasa 8W, rok szkolny 2018/2019
Poniższy zbiór zadań został wykonany w ramach projektu Mazowiecki program stypendialny dla uczniów szczególnie uzdolnionych - najlepsza inwestycja w człowieka w roku szkolnym 2018/2019. Tresci zadań rozwiązanych
Linear Classification and Logistic Regression. Pascal Fua IC-CVLab
Linear Classification and Logistic Regression Pascal Fua IC-CVLab 1 aaagcxicbdtdbtmwfafwdgxlhk8orha31ibqycvkdgpshdqxtwotng2pxtvqujmok1qlky5xllzrnobbediegwcap4votk2kqkf+/y/tnphdschtadu/giv3vtea99cfma8fpx7ytlxx7ckns4sylo3doom7jguhj1hxchmy/irhrlgh67lxb5x3blis8jjqynmedqujiu5zsqqagrx+yjcfpcrydusshmzeluzsg7tttiew5khhcuzm5rv0gn1unw6zl3gbzlpr3liwncyr6aaqinx4wnc/rpg6ix5szd86agoftuu0g/krjxdarph62enthdey3zn/+mi5zknou2ap+tclvhob9sxhwvhaqketnde7geqjp21zvjsfrcnkfhtejoz23vq97elxjlpbtmxpl6qxtl1sgfv1ptpy/yq9mgacrzkgje0hjj2rq7vtywnishnnkzsqekucnlblrarlh8x8szxolrrxkb8n6o4kmo/e7siisnozcfvsedlol60a/j8nmul/gby8mmssrfr2it8lkyxr9dirxxngzthtbaejv
Hard-Margin Support Vector Machines
Hard-Margin Support Vector Machines aaacaxicbzdlssnafiyn9vbjlepk3ay2gicupasvu4iblxuaw2hjmuwn7ddjjmxm1bkcg1/fjqsvt76fo9/gazqfvn8y+pjpozw5vx8zkpvtfxmlhcwl5zxyqrm2vrg5zw3vxmsoezi4ogkr6phieky5crvvjhriqvdom9l2xxftevuwcekj3lktmhghgniauiyutvrwxtvme34a77kbvg73gtygpjsrfati1+xc8c84bvraowbf+uwnipyehcvmkjrdx46vlykhkgykm3ujjdhcyzqkxy0chur6ax5cbg+1m4bbjptjcubuz4kuhvjoql93hkin5hxtav5x6yyqopnsyuneey5ni4keqrxbar5wqaxbik00icyo/iveiyqqvjo1u4fgzj/8f9x67bzmxnurjzmijtlybwfgcdjgfdtajwgcf2dwaj7ac3g1ho1n4814n7wwjgjmf/ys8fenfycuzq==
Machine Learning for Data Science (CS4786) Lecture11. Random Projections & Canonical Correlation Analysis
Machine Learning for Data Science (CS4786) Lecture11 5 Random Projections & Canonical Correlation Analysis The Tall, THE FAT AND THE UGLY n X d The Tall, THE FAT AND THE UGLY d X > n X d n = n d d The
Zarządzanie sieciami telekomunikacyjnymi
SNMP Protocol The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission
Machine Learning for Data Science (CS4786) Lecture 11. Spectral Embedding + Clustering
Machine Learning for Data Science (CS4786) Lecture 11 Spectral Embedding + Clustering MOTIVATING EXAMPLE What can you say from this network? MOTIVATING EXAMPLE How about now? THOUGHT EXPERIMENT For each
Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application
Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application Gayane Vardoyan *, C. V. Hollot, Don Towsley* * College of Information and Computer Sciences, Department of Electrical
Gradient Coding using the Stochastic Block Model
Gradient Coding using the Stochastic Block Model Zachary Charles (UW-Madison) Joint work with Dimitris Papailiopoulos (UW-Madison) aaacaxicbvdlssnafj3uv62vqbvbzwarxjsqikaboelgzux7gcaeywtsdp1mwsxeaepd+ctuxcji1r9w5984bbpq1gmxdufcy733bcmjutn2t1fawl5zxsuvvzy2t7z3zn29lkwyguktjywrnqbjwigntuuvi51uebqhjlsdwfxebz8qiwnc79uwjv6mepxgfcoljd88uiox0m1hvlnzwzgowymjn7tjyzertmvpareju5aqkndwzs83thawe64wq1j2httvxo6eopirccxnjekrhqae6wrkuuykl08/gmnjryqwsoqurubu/t2ro1jkyrzozhipvpz3juj/xjdt0ywxu55mina8wxrldkoetukairuekzbubgfb9a0q95fawonqkjoez/7lrdi6trzbcm7pqvwrio4yoarh4aq44bzuwq1ogcba4be8g1fwzjwzl8a78tfrlrnfzd74a+pzb2h+lzm=
Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science
Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4
Revenue Maximization. Sept. 25, 2018
Revenue Maximization Sept. 25, 2018 Goal So Far: Ideal Auctions Dominant-Strategy Incentive Compatible (DSIC) b i = v i is a dominant strategy u i 0 x is welfare-maximizing x and p run in polynomial time
TTIC 31210: Advanced Natural Language Processing. Kevin Gimpel Spring Lecture 8: Structured PredicCon 2
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 8: Structured PredicCon 2 1 Roadmap intro (1 lecture) deep learning for NLP (5 lectures) structured predic+on (4 lectures)
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2
Analysis of Movie Profitability STAT 469 IN CLASS ANALYSIS #2 aaaklnictzzjb9tgfmcnadpg7oy0lxa9edva9kkapdarhyk2k7gourinlwsweyzikuyiigvyleiv/cv767fpf/5crc1xt9va5mx7w3m/ecuqw1kuztpx/rl3/70h73/w4cog9dhhn3z62d6jzy+yzj766txpoir9nzszisjynetqr+rvlfvyoozu5xbybpsxb1wahul8phczdt2v4zgchb7uecwphlyigrgkjcyiflfyci0kxnmr4z6kw0jsokvot8isntpa3gbknlcufiv/h+hh+eur4fomd417rvtfjoit5pfju6yxiab2fmwk0y/feuybobqk+axnke8xzjjhfyd8kkpl9zdoddkazd5j6bzpemjb64smjb6vb4xmehysu08lsrszopxftlzee130jcb0zjxy7r5wa2f1s2off2+dyatrughnrtpkuprlcpu55zlxpss/yqe2eamjkcf0jye8w8yas0paf6t0t2i9stmcua+inbi2rt01tz22tubbqwidypvgz6piynkpobirkxgu54ibzoti4pkw2i5ow9lnuaoabhuxfxqhvnrj6w15tb3furnbm+scyxobjhr5pmj5j/w5ix9wsa2tlwx9alpshlunzjgnrwvqbpwzjl9wes+ptyn+ypy/jgskavtl8j0hz1djdhzwtpjbbvpr1zj7jpg6ve7zxfngj75zee0vmp9qm2uvgu/9zdofq6r+g8l4xctvo+v+xdrfr8oxiwutycu0qgyf8icuyvp/sixfi9zxe11vp6mrjjovpmxm6acrtbia+wjr9bevlgjwlz5xd3rfna9g06qytaoofk8olxbxc7xby2evqjmmk6pjvvzxmpbnct6+036xp5vdbrnbdqph8brlfn/n/khnfumhf6z1v7h/80yieukkd5j0un82t9mynxzmk0s/bzn4tacdziszdhwrl8x5ako8qp1n1zn0k6w2em0km9zj1i4yt1pt3xiprw85jmc2m1ut2geum6y6es2fwx6c+wlrpykblopbuj5nnr2byygfy5opllv4+jmm7s6u+tvhywbnb0kv2lt5th4xipmiij+y1toiyo7bo0d+vzvovjkp6aoejsubhj3qrp3fjd/m23pay8h218ibvx3nicofvd1xi86+kh6nb/b+hgsjp5+qwpurzlir15np66vmdehh6tyazdm1k/5ejtuvurgcqux6yc+qw/sbsaj7lkt4x9qmtp7euk6zbdedyuzu6ptsu2eeu3rxcz06uf6g8wyuveznhkbzynajbb7r7cbmla+jbtrst0ow2v6ntkwv8svnwqnu5pa3oxfeexf93739p93chq/fv+jr8r0d9brhpcxr2w88bvqbr41j6wvrb+u5dzjpvx+veoaxwptzp/8cen+xbg==
Rozpoznawanie twarzy metodą PCA Michał Bereta 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów
Rozpoznawanie twarzy metodą PCA Michał Bereta www.michalbereta.pl 1. Testowanie statystycznej istotności różnic między jakością klasyfikatorów Wiemy, że możemy porównywad klasyfikatory np. za pomocą kroswalidacji.
deep learning for NLP (5 lectures)
TTIC 31210: Advanced Natural Language Processing Kevin Gimpel Spring 2019 Lecture 6: Finish Transformers; Sequence- to- Sequence Modeling and AJenKon 1 Roadmap intro (1 lecture) deep learning for NLP (5
Machine Learning for Data Science (CS4786) Lecture 24. Differential Privacy and Re-useable Holdout
Machine Learning for Data Science (CS4786) Lecture 24 Differential Privacy and Re-useable Holdout Defining Privacy Defining Privacy Dataset + Defining Privacy Dataset + Learning Algorithm Distribution
ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL
Read Online and Download Ebook ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA JEZYKOWA) BY DOUGLAS KENT HALL DOWNLOAD EBOOK : ARNOLD. EDUKACJA KULTURYSTY (POLSKA WERSJA Click link bellow and free register
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Few-fermion thermometry
Few-fermion thermometry Phys. Rev. A 97, 063619 (2018) Tomasz Sowiński Institute of Physics of the Polish Academy of Sciences Co-authors: Marcin Płodzień Rafał Demkowicz-Dobrzański FEW-BODY PROBLEMS FewBody.ifpan.edu.pl
PV i sieci dystrybucyjne
PV i sieci dystrybucyjne Stanisław M. Pietruszko Politechnika Warszawska Polskie Towarzystwo Fotowoltaiki tel.: +48-691 910 390, Tel.: +48-22-679 8870 pietruszko@pv-polska.pl www.pv-polska.pl Krajowy system
Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip)
Realizacja systemów wbudowanych (embeded systems) w strukturach PSoC (Programmable System on Chip) Embeded systems Architektura układów PSoC (Cypress) Możliwości bloków cyfrowych i analogowych Narzędzia
Zakopane, plan miasta: Skala ok. 1: = City map (Polish Edition)
Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Click here if your download doesn"t start automatically Zakopane, plan miasta: Skala ok. 1:15 000 = City map (Polish Edition) Zakopane,
POLITYKA PRYWATNOŚCI / PRIVACY POLICY
POLITYKA PRYWATNOŚCI / PRIVACY POLICY TeleTrade DJ International Consulting Ltd Sierpień 2013 2011-2014 TeleTrade-DJ International Consulting Ltd. 1 Polityka Prywatności Privacy Policy Niniejsza Polityka
Nonlinear data assimilation for ocean applications
Nonlinear data assimilation for ocean applications Peter Jan van Leeuwen, Manuel Pulido, Jacob Skauvold, Javier Amezcua, Polly Smith, Met Ades, Mengbin Zhu Comparing observations and models Ensure they
Cracow University of Economics Poland. Overview. Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005
Cracow University of Economics Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005 - Key Note Speech - Presented by: Dr. David Clowes The Growth Research Unit CE Europe
Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH
Kierunek Elektronika i Telekomunikacja, Studia II stopnia Specjalność: Systemy wbudowane Metodyki projektowania i modelowania systemów Cyganek & Kasperek & Rajda 2013 Katedra Elektroniki AGH Zagadnienia
Tychy, plan miasta: Skala 1: (Polish Edition)
Tychy, plan miasta: Skala 1:20 000 (Polish Edition) Poland) Przedsiebiorstwo Geodezyjno-Kartograficzne (Katowice Click here if your download doesn"t start automatically Tychy, plan miasta: Skala 1:20 000
MoA-Net: Self-supervised Motion Segmentation. Pia Bideau, Rakesh R Menon, Erik Learned-Miller
MoA-Net: Self-supervised Motion Segmentation Pia Bideau, Rakesh R Menon, Erik Learned-Miller University of Massachusetts Amherst College of Information and Computer Science Motion Segmentation P Bideau,
2014-3-30. Urbanek J., Jabłoński A., Barszcz T ssswedfsdfurbanek J., Jabłoński A., Barszcz T., Wykonanie pomiarów
Wykonanie pomiarów sygnałów wibroakustycznych przy stałych oraz zmiennych warunkach eksploatacyjnych na stanowisku testowym. Część II: Analiza poprawności pomiarów. Autorzy: Urbanek J., Jabłoński A., Barszcz
DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION
ELEKTRYKA 0 Zeszyt (9) Rok LX Andrzej KUKIEŁKA Politechnika Śląska w Gliwicach DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION
New Roads to Cryptopia. Amit Sahai. An NSF Frontier Center
New Roads to Cryptopia Amit Sahai An NSF Frontier Center OPACity Panel, May 19, 2019 New Roads to Cryptopia What about all this space? Cryptography = Hardness* PKE RSA MPC DDH ZK Signatures Factoring IBE
Cracow University of Economics Poland
Cracow University of Economics Poland Sources of Real GDP per Capita Growth: Polish Regional-Macroeconomic Dimensions 2000-2005 - Keynote Speech - Presented by: Dr. David Clowes The Growth Research Unit,
Cel szkolenia. Konspekt
Cel szkolenia About this CourseThis 5-day course provides administrators with the knowledge and skills needed to deploy and ma Windows 10 desktops, devices, and applications in an enterprise environment.
reinforcement learning through the optimization lens Benjamin Recht University of California, Berkeley
reinforcement learning through the optimization lens Benjamin Recht University of California, Berkeley trustable, scalable, predictable Control Theory! Reinforcement Learning is the study of how to use
Sargent Opens Sonairte Farmers' Market
Sargent Opens Sonairte Farmers' Market 31 March, 2008 1V8VIZSV7EVKIRX8(1MRMWXIVSJ7XEXIEXXLI(ITEVXQIRXSJ%KVMGYPXYVI *MWLIVMIWERH*SSHTIVJSVQIHXLISJJMGMEPSTIRMRKSJXLI7SREMVXI*EVQIVW 1EVOIXMR0E]XS[R'S1IEXL
Umowa Licencyjna Użytkownika Końcowego End-user licence agreement
Umowa Licencyjna Użytkownika Końcowego End-user licence agreement Umowa Licencyjna Użytkownika Końcowego Wersja z dnia 2 września 2014 Definicje GRA - Przeglądarkowa gra HTML5 o nazwie Sumerian City, dostępna
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS.
ERASMUS + : Trail of extinct and active volcanoes, earthquakes through Europe. SURVEY TO STUDENTS. Strona 1 1. Please give one answer. I am: Students involved in project 69% 18 Student not involved in
OpenPoland.net API Documentation
OpenPoland.net API Documentation Release 1.0 Michał Gryczka July 11, 2014 Contents 1 REST API tokens: 3 1.1 How to get a token............................................ 3 2 REST API : search for assets
KONSPEKT DO LEKCJI MATEMATYKI W KLASIE 3 POLO/ A LAYER FOR CLASS 3 POLO MATHEMATICS
KONSPEKT DO LEKCJI MATEMATYKI W KLASIE 3 POLO/ A LAYER FOR CLASS 3 POLO MATHEMATICS Temat: Funkcja logarytmiczna (i wykładnicza)/ Logarithmic (and exponential) function Typ lekcji: Lekcja ćwiczeniowa/training
Verification in POMDPs
Verification in OMDs rivacy, machine teaching and other belief-related problems Ufuk Topcu The University of Texas at Austin Slides originally prepared by Bo Wu. http://u-t-autonomous.info Ufuk Topcu rotecting
Raport bieżący: 44/2018 Data: g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc
Raport bieżący: 44/2018 Data: 2018-05-23 g. 21:03 Skrócona nazwa emitenta: SERINUS ENERGY plc Temat: Zawiadomienie o zmianie udziału w ogólnej liczbie głosów w Serinus Energy plc Podstawa prawna: Inne
Neural Networks (The Machine-Learning Kind) BCS 247 March 2019
Neural Networks (The Machine-Learning Kind) BCS 247 March 2019 Neurons http://biomedicalengineering.yolasite.com/neurons.php Networks https://en.wikipedia.org/wiki/network_theory#/media/file:social_network_analysis_visualization.png
Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards
INSPIRE Conference 2010 INSPIRE as a Framework for Cooperation Network Services for Spatial Data in European Geo-Portals and their Compliance with ISO and OGC Standards Elżbieta Bielecka Agnieszka Zwirowicz
Arrays -II. Arrays. Outline ECE Cal Poly Pomona Electrical & Computer Engineering. Introduction
ECE 114-9 Arrays -II Dr. Z. Aliyazicioglu Electrical & Computer Engineering Electrical & Computer Engineering 1 Outline Introduction Arrays Declaring and Allocation Arrays Examples Using Arrays Passing
Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)
Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition) Piotr Maluskiewicz Click here if your download doesn"t start automatically Miedzy
The Overview of Civilian Applications of Airborne SAR Systems
The Overview of Civilian Applications of Airborne SAR Systems Maciej Smolarczyk, Piotr Samczyński Andrzej Gadoś, Maj Mordzonek Research and Development Department of PIT S.A. PART I WHAT DOES SAR MEAN?
Installation of EuroCert software for qualified electronic signature
Installation of EuroCert software for qualified electronic signature for Microsoft Windows systems Warsaw 28.08.2019 Content 1. Downloading and running the software for the e-signature... 3 a) Installer
Inverse problems - Introduction - Probabilistic approach
Inverse problems - Introduction - Probabilistic approach Wojciech Dȩbski Instytut Geofizyki PAN debski@igf.edu.pl Wydział Fizyki UW, 13.10.2004 Wydział Fizyki UW Warszawa, 13.10.2004 (1) Plan of the talk
Gospodarka Elektroenergetyczna. Power Systems Economy. Energetics 1 st degree (1st degree / 2nd degree) General (general / practical)
MODULE DESCRIPTION Module code Module name Gospodarka Elektroenergetyczna Module name in English Power Systems Economy Valid from academic year 2012/2013 MODULE PLACEMENT IN THE SYLLABUS Subject Level
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
MULTI CRITERIA EVALUATION OF WIRELESS LOCAL AREA NETWORK DESIGNS
STUDIA INFORMATICA 2015 Volume 36 Number 2 (120) Remigiusz OLEJNIK West Pomeranian University of Technology, Szczecin, Faculty of Computer Science and Information Technology MULTI CRITERIA EVALUATION OF
Lecture 18 Review for Exam 1
Spring, 2019 ME 323 Mechanics of Materials Lecture 18 Review for Exam 1 Reading assignment: HW1-HW5 News: Ready for the exam? Instructor: Prof. Marcial Gonzalez Announcements Exam 1 - Wednesday February
Medical electronics part 10 Physiological transducers
Medical electronics part 10 Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka bez ograniczeń - zintegrowany
EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH
Anna BŁACH Centre of Geometry and Engineering Graphics Silesian University of Technology in Gliwice EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Introduction Computer techniques
Katowice, plan miasta: Skala 1: = City map = Stadtplan (Polish Edition)
Katowice, plan miasta: Skala 1:20 000 = City map = Stadtplan (Polish Edition) Polskie Przedsiebiorstwo Wydawnictw Kartograficznych im. Eugeniusza Romera Click here if your download doesn"t start automatically
STATISTICAL METHODS IN BIOLOGY
STATISTICAL METHODS IN BIOLOGY 1. Introduction 2. Populations and samples 3. Hypotheses testing and parameter estimation 4. Experimental design for biological data 5. Most widely used statistical tests
POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH
POLITECHNIKA ŚLĄSKA INSTYTUT AUTOMATYKI ZAKŁAD SYSTEMÓW POMIAROWYCH Gliwice, wrzesień 2005 Pomiar napięcia przemiennego Cel ćwiczenia Celem ćwiczenia jest zbadanie dokładności woltomierza cyfrowego dla
OPBOX ver USB 2.0 Mini Ultrasonic Box with Integrated Pulser and Receiver
OPBOX ver.0 USB.0 Mini Ultrasonic Box with Integrated Pulser and Receiver Przedsiębiorstwo BadawczoProdukcyjne OPTEL Sp. z o.o. ul. Morelowskiego 30 PL59 Wrocław phone: +8 7 39 8 53 fax.: +8 7 39 8 5 email:
!850016! www.irs.gov/form8879eo. e-file www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C,
Wpływ dyrektywy PSD II na korzystanie z instrumentów płatniczych. Warszawa, 15 stycznia 2015 r. Zbigniew Długosz
Wpływ dyrektywy PSD II na korzystanie z instrumentów płatniczych Warszawa, 15 stycznia 2015 r. Zbigniew Długosz 1 do czego można wykorzystywać bankowość elektroniczną? nowe usługi płatnicze a korzystanie
1 Nazwisko i imiona lub nazwa firmy będącej podmiotem uprawnionym /Surname and forenames or name of firm of applicant/
Naczelnik Drugiego Urzędu Skarbowego 02-013 Warszawa-Śródmieście ul. Lindleya 14 Czy jest to twój pierwszy wniosek? Jeśli nie, należy podać numer ewidencyjny /Is this your first application? If not, please
Previously on CSCI 4622
More Naïve Bayes aaace3icbvfba9rafj7ew423vr998obg2gpzkojyh4rcx3ys4lafzbjmjifdototmhoilml+hf/mn3+kl+jkdwtr64gbj+8yl2/ywklhsfircg/dvnp33s796mhdr4+fdj4+o3fvywvorkuqe5zzh0oanjakhwe1ra5zhaf5xvgvn35f62rlvtcyxpnm50awundy1hzwi46jbmgprbtrrvidrg4jre4g07kak+picee6xfgiwvfaltorirucni64eeigkqhpegbwaxglabftpyq4gjbls/hw2ci7tr2xj5ddfmfzwtazj6ubmyddgchbzpf88dmrktfonct6vazputos5zakunhfweow5ukcn+puq8m1ulm7kq+d154pokysx4zgxw4nwq6dw+rcozwnhbuu9et/tgld5cgslazuci1yh1q2ynca/u9ais0kukspulds3xxegvtyfycu8iwk1598e0z2xx/g6ef94ehbpo0d9ok9yiowsvfskh1ix2zcbpsdvaxgww7wj4zdn+he2hogm8xz9s+e7/4cuf/ata==
Instrukcja obsługi User s manual
Instrukcja obsługi User s manual Konfigurator Lanberg Lanberg Configurator E-mail: support@lanberg.pl support@lanberg.eu www.lanberg.pl www.lanberg.eu Lanberg 2015-2018 WERSJA VERSION: 2018/11 Instrukcja
SYNTEZA SCENARIUSZY EKSPLOATACJI I STEROWANIA
POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD ZAOPATRZENIA W WODĘ I OCHRONY ŚRODOWISKA mgr inż. Rafał BRODZIAK SYNTEZA SCENARIUSZY EKSPLOATACJI
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition)
Karpacz, plan miasta 1:10 000: Panorama Karkonoszy, mapa szlakow turystycznych (Polish Edition) J Krupski Click here if your download doesn"t start automatically Karpacz, plan miasta 1:10 000: Panorama
Anonymous Authentication Using Electronic Identity Documents
Department of Computer Science Faculty of Fundamental Problems of Technology Wroclaw University of Technology Anonymous Authentication Using Electronic Identity Documents by Kamil Kluczniak A thesis submitted
Configuring and Testing Your Network
Configuring and Testing Your Network Network Fundamentals Chapter 11 Version 4.0 1 Konfigurowanie i testowanie Twojej sieci Podstawy sieci Rozdział 11 Version 4.0 2 Objectives Define the role of the Internetwork
Label-Noise Robust Generative Adversarial Networks
Label-Noise Robust Generative Adversarial Networks Training data rcgan Noisy labeled Conditioned on clean labels Takuhiro Kaneko1 Yoshitaka Ushiku1 Tatsuya Harada1, 2 1The University of Tokyo 2RIKEN Talk
Convolution semigroups with linear Jacobi parameters
Convolution semigroups with linear Jacobi parameters Michael Anshelevich; Wojciech Młotkowski Texas A&M University; University of Wrocław February 14, 2011 Jacobi parameters. µ = measure with finite moments,
Ankiety Nowe funkcje! Pomoc magda.szewczyk@slo-wroc.pl. magda.szewczyk@slo-wroc.pl. Twoje konto Wyloguj. BIODIVERSITY OF RIVERS: Survey to students
Ankiety Nowe funkcje! Pomoc magda.szewczyk@slo-wroc.pl Back Twoje konto Wyloguj magda.szewczyk@slo-wroc.pl BIODIVERSITY OF RIVERS: Survey to students Tworzenie ankiety Udostępnianie Analiza (55) Wyniki
Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition)
Miedzy legenda a historia: Szlakiem piastowskim z Poznania do Gniezna (Biblioteka Kroniki Wielkopolski) (Polish Edition) Piotr Maluskiewicz Click here if your download doesn"t start automatically Miedzy
aforementioned device she also has to estimate the time when the patients need the infusion to be replaced and/or disconnected. Meanwhile, however, she must cope with many other tasks. If the department
Presented by. Dr. Morten Middelfart, CTO
Meeting Big Data challenges in Leadership with Human-Computer Synergy. Presented by Dr. Morten Middelfart, CTO Big Data Data that exists in such large amounts or in such unstructured form that it is difficult
STAŁE TRASY LOTNICTWA WOJSKOWEGO (MRT) MILITARY ROUTES (MRT)
AIP VFR POLAND VFR ENR 2.4-1 VFR ENR 2.4 STAŁE TRASY LOTNICTWA WOJSKOWEGO (MRT) MILITARY ROUTES (MRT) 1. INFORMACJE OGÓLNE 1. GENERAL 1.1 Konkretne przebiegi tras MRT wyznaczane są według punktów sieci
DETECTION OF MATERIAL INTEGRATED CONDUCTORS FOR CONNECTIVE RIVETING OF FUNCTION-INTEGRATIVE TEXTILE-REINFORCED THERMOPLASTIC COMPOSITES
Kompozyty 11: 2 (2011) 152-156 Werner A. Hufenbach, Frank Adam, Maik Gude, Ivonne Körner, Thomas Heber*, Anja Winkler Technische Universität Dresden, Institute of Lightweight Engineering and Polymer Technology
BLACKLIGHT SPOT 400W F
BLACKLIGHT SPOT 400W F2000339 USER MANUAL / INSTRUKCJA OBSŁUGI BLACKLIGHT SPOT 400W F2000339 Table of Contents 1 Introduction... 2 2 Safety information... 2 3 Product information... 2 3.1 Specification...
Has the heat wave frequency or intensity changed in Poland since 1950?
Has the heat wave frequency or intensity changed in Poland since 1950? Joanna Wibig Department of Meteorology and Climatology, University of Lodz, Poland OUTLINE: Motivation Data Heat wave frequency measures
CEE 111/211 Agenda Feb 17
CEE 111/211 Agenda Feb 17 Tuesday: SW for project work: Jetstream, MSP, Revit, Riuska, POP, SV On R: drive; takes time to install Acoustics today: \\cife server\files\classes\cee111\presentations Thursday:
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1. Fry #65, Zeno #67. like
SSW1.1, HFW Fry #20, Zeno #25 Benchmark: Qtr.1 I SSW1.1, HFW Fry #65, Zeno #67 Benchmark: Qtr.1 like SSW1.2, HFW Fry #47, Zeno #59 Benchmark: Qtr.1 do SSW1.2, HFW Fry #5, Zeno #4 Benchmark: Qtr.1 to SSW1.2,
Wprowadzenie do programu RapidMiner, część 2 Michał Bereta 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów
Wprowadzenie do programu RapidMiner, część 2 Michał Bereta www.michalbereta.pl 1. Wykorzystanie wykresu ROC do porównania modeli klasyfikatorów Zaimportuj dane pima-indians-diabetes.csv. (Baza danych poświęcona
Knovel Math: Jakość produktu
Knovel Math: Jakość produktu Knovel jest agregatorem materiałów pełnotekstowych dostępnych w formacie PDF i interaktywnym. Narzędzia interaktywne Knovel nie są stworzone wokół specjalnych algorytmów wymagających
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Patients price acceptance SELECTED FINDINGS
Patients price acceptance SELECTED FINDINGS October 2015 Summary With growing economy and Poles benefiting from this growth, perception of prices changes - this is also true for pharmaceuticals It may
PROGRAM STAŻU. Nazwa podmiotu oferującego staż / Company name IBM Global Services Delivery Centre Sp z o.o.
PROGRAM STAŻU Nazwa podmiotu oferującego staż / Company name IBM Global Services Delivery Centre Sp z o.o. Miejsce odbywania stażu / Legal address Muchoborska 8, 54-424 Wroclaw Stanowisko, obszar działania/
PORTS AS LOGISTICS CENTERS FOR CONSTRUCTION AND OPERATION OF THE OFFSHORE WIND FARMS - CASE OF SASSNITZ
Part-financed by EU South Baltic Programme w w w. p t m e w. p l PROSPECTS OF THE OFFSHORE WIND ENERGY DEVELOPMENT IN POLAND - OFFSHORE WIND INDUSTRY IN THE COASTAL CITIES AND PORT AREAS PORTS AS LOGISTICS
FORMULARZ REKLAMACJI Complaint Form
FORMULARZ REKLAMACJI Complaint Form *CZ. I PROSIMY WYPEŁNIAĆ DRUKOWANYMI LITERAMI PLEASE USE CAPITAL LETTERS I. DANE OSOBY SKŁADAJĄCEJ REKLAMACJĘ: *DANE OBOWIĄZKOWE I. COMPLAINANT S PERSONAL DATA: *MANDATORY
Estimation and planing. Marek Majchrzak, Andrzej Bednarz Wroclaw, 06.07.2011
Estimation and planing Marek Majchrzak, Andrzej Bednarz Wroclaw, 06.07.2011 Story points Story points C D B A E Story points C D 100 B A E Story points C D 2 x 100 100 B A E Story points C D 2 x 100 100
Streszczenie rozprawy doktorskiej
Doskonalenie pomiaru zawartości wody w produktach spożywczych z wykorzystaniem metody wagosuszarkowej bazującej na promieniowaniu IR mgr Sławomir Janas Streszczenie rozprawy doktorskiej Promotor pracy:
4. EKSPLOATACJA UKŁADU NAPĘD ZWROTNICOWY ROZJAZD. DEFINICJA SIŁ W UKŁADZIE Siła nastawcza Siła trzymania
3 SPIS TREŚCI Przedmowa... 11 1. WPROWADZENIE... 13 1.1. Budowa rozjazdów kolejowych... 14 1.2. Napędy zwrotnicowe... 15 1.2.1. Napęd zwrotnicowy EEA-4... 18 1.2.2. Napęd zwrotnicowy EEA-5... 20 1.3. Współpraca
Compressing the information contained in the different indexes is crucial for performance when implementing an IR system
4.2 Compression Compressing the information contained in the different indexes is crucial for performance when implementing an IR system on current hardware it is typically much faster to read compressed
Poland) Wydawnictwo "Gea" (Warsaw. Click here if your download doesn"t start automatically
Suwalski Park Krajobrazowy i okolice 1:50 000, mapa turystyczno-krajoznawcza =: Suwalki Landscape Park, tourist map = Suwalki Naturpark,... narodowe i krajobrazowe) (Polish Edition) Click here if your
www.irs.gov/form990. If "Yes," complete Schedule A Schedule B, Schedule of Contributors If "Yes," complete Schedule C, Part I If "Yes," complete Schedule C, Part II If "Yes," complete Schedule C, Part
Rev Źródło:
KAmduino UNO Rev. 20190119182847 Źródło: http://wiki.kamamilabs.com/index.php/kamduino_uno Spis treści Basic features and parameters... 1 Standard equipment... 2 Electrical schematics... 3 AVR ATmega328P
Discretization of continuous signals (M 19) Dyskretyzacja sygnałów ciągłych
SILESIAN UNIVESITY OF TECHNOLOGY FACULTY OF ENERGY AND ENVIRONMENTAL ENGINEERING INSTITUTE OF POWER ENGINEERING AND TURBOMACHINERY POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT
ITIL 4 Certification
4 Certification ITIL 3 Certification ITIL Master scheme ITIL Expert 5 Managing across the lifecycle 5 3 SS 3 SD 3 ST 3 SO 3 CS1 4 OSA 4 PPO 4 RCV 4 SOA Ścieżka lifecycle Ścieżka Capability 3 ITIL Practitioner
General Certificate of Education Ordinary Level ADDITIONAL MATHEMATICS 4037/12
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level www.xtremepapers.com *6378719168* ADDITIONAL MATHEMATICS 4037/12 Paper 1 May/June 2013 2 hours Candidates