Badanie prądnicy synchronicznej

Wielkość: px
Rozpocząć pokaz od strony:

Download "Badanie prądnicy synchronicznej"

Transkrypt

1 Badanie prądnicy synchronicznej 1) Próba biegu jałowego prądnicy synchronicznej 3-azowej Badania przeprowadza się w układzie połączeń pokazanych na Rys.1. Rys.1. Schemat połączeń do próby stanu jałowego prądnicy synchronicznej 3-azowej.

2 W pierwszej kolejności zgodnie ze schematem pokazanym na Rys.1 należy wykonać połączenia torów prądowych i napięciowych pomiędzy zaciskami wyjściowymi kolumny synchronizacyjnej, układem przetworników pomiarowych PS I i badaną prądnicą synchroniczną, a także połączyć obwód wzbudzenia prądnicy synchronicznej wykorzystując układ przetworników pomiarowych PS II. Zestaw przewodów pomiarowych należy pobrać u laboranta. Następnie należy załączyć komputer PC oraz zasilanie stołu laboratoryjnego. Logujemy się jako użytkownik labmasz. Po załadowaniu systemu operacyjnego załączamy przetwornik analogowocyrowy NI USB 6251, który zgłasza się komunikatem: Okno komunikatu należy skasować (Cancel). Następnie z poziomu pulpitu wywołujemy aplikację PS - pomiary (pojawia się okno wirtualnego przyrządu pomiarowego): Elementy wirtualnego przyrządu do badania prądnicy synchronicznej: 1 Okno woltomierza pomiar napięcia przewodowego prądnicy. 2 Okno amperomierza pomiar prądu azowego. Oba okna zostały powiększone w celu ułatwienia obserwacji z większej odległości. Poniżej prezentowane są wartości napięcia U, prądu I i mocy czynnej P obwodu wzbudzenia.

3 3 Okno prędkości obrotowej n wirnika. 4 Okno oscyloskopu przedstawiające przebiegi wartości chwilowych napięć azowych prądnicy synchronicznej lub (po przełączeniu zakładki) widmo amplitudowe napięcia azy A. Powyżej okna wyświetlane są kolejno wartości skuteczne napięć prądnicy: średniego napięcia przewodowego U śr (z trzech napięć przewodowych, w oknie oznaczonym U g ) i napięć azowych (U ph A, U ph B, U ph C). 5 Dodatkowe okno oscyloskopu, w którym w zależności od wykonywanej próby prezentowane są: chwilowe wartości prądów azowych prądnicy synchronicznej (lub po przełączeniu przycisku zakładki widmo prądu azy A) albo np. przy synchronizacji chwilowe wartości napięć przewodowych od strony sieci. Powyżej okna wyświetlane są odpowiednie wartości skuteczne. 6 Okno służące do prezentacji kolejnych punktów pomiarowych wyznaczanej charakterystyki (w tym przypadku): - U śr = (I ), 7 Panel Dane pomiarowe umożliwia sterowanie zapisem danych pomiarowych do pliku. Naciśnięcie przycisku Zapisz powoduje zapisywanie do pliku danych dotyczących jednego punktu charakterystyki (w tym przypadku są to: wartość średnia napięcia przewodowego U śr, napięcie wzbudzenia U, prąd wzbudzenia I, prędkość obrotowa n), Naciśniecie przycisku Ostatni (pod opisem Kasuj) powoduje skasowanie danych dotyczących ostatniego punktu charakterystyki, przycisk Wszystko umożliwia skasowanie wszystkich pomiarów dotyczących wyznaczanej charakterystyki, przycisk STOP powoduje zatrzymanie pomiarów. Powrót do wykonywania pomiarów bez utraty zapisanych wyników następuje przez przyciśniecie ikony strzałki na górnym pasku okna. W środku panelu znajduje się okienko pokazujące liczbę zapisanych pomiarów, czyli liczbę punktów wyznaczanej charakterystyki. Przycisk Drukuj służy do drukowania wyników pomiarów. Drukowanie wyników powinno być wykonane na końcu zajęć po wyznaczeniu wszystkich charakterystyk Wyznaczenie charakterystyki przy biegu jałowym prądnicy Napięcie wzbudzenia prądnicy synchronicznej regulowane (w zakresie U min ~ 0V - U max ~ 110V) podawane jest z autotransormatora. Należy zwrócić szczególną uwagę, aby w chwili rozpoczęcia pomiarów napięcie wzbudzenia ustawione było na wartość minimalną. Następnie załączamy układ przetworników pomiarowych PS I i PS II i uruchamiamy przyrząd wirtualny (kliknięcie myszką w strzałkę start na pasku górnym). W dalszej kolejności (po ustawieniu w pozycji min opornika regulacji prądu wzbudzenia R) załączamy napięcie zasilania napędowej maszyny prądu stałego i dokonujemy jej rozruchu. Rozruchu napędowej maszyny prądu stałego dokonywany jest przy włączonym oporniku rozruchowym, po osiągnięciu prędkości obrotowej ok obr/min należy zewrzeć opornik rozruchowy Rr przyciskiem znajdującym się na obudowie układu rozruchowego. Opornikiem R regulacji prądu wzbudzenia należy ustawić znamionową prędkość obrotową prądnicy synchronicznej. Uwaga! Z uwagi na występujący magnetyzm szczątkowy obwodu wzbudzenia prądnicy synchronicznej napięcie przewodowe przy braku prądu wzbudzenia może wynosić kilkadziesiąt woltów. Rozpoczynamy pomiary zwiększając prąd wzbudzenia do wartości maksymalnej, przy której osiągamy napięcie prądnicy równe 1,2 U n. Pomiary kontynuujemy zmniejszając prąd wzbudzenia I do zera. Uwaga! Napięcie wzbudzenia należy

4 zmieniać monotonicznie, jednokierunkowo, aby zapobiec zniekształceniu pomiarów przez lokalne pętle histerezy. Wyniki pomiarów (w następującej kolejności: wartość średnia napięcia przewodowego U śr, napięcie obwodu wzbudzenia U, prąd wzbudzenia I, prędkość obrotowa n) próby biegu jałowego prądnicy synchronicznej zapisywane są do pliku pom1_jal.txt. Opracowanie wyników pomiaru Po przeniesieniu danych pomiarowych do arkusza kalkulacyjnego należy na podstawie dwóch gałęzi krzywych wyznaczyć średnią charakterystykę biegu jałowego. Na podstawie uśrednionej charakterystyki, przedłużonej do przecięcia z osią odciętych należy wyznaczyć wartość prądu koercji. Po przesunięciu charakterystyki magnesowania o wartość prądu koercji należy wykreślić charakterystykę magnesowania bez uwzględnienia magnetyzmu szczątkowego. Z otrzymanej charakterystyki należy wyznaczyć wartość znamionowego prądu wzbudzenia przy biegu jałowym. 2) Próba zwarcia Badania przeprowadza się w układzie połączeń pokazanych na Rys.2. Układ pomiarowy należy zmodyikować. Za pomocą odpowiedniej zwory zwieramy zaciski wyjściowe kolumny synchronizacyjnej (zwory dostępne są u laboranta). Uruchomienie wirtualnego przyrządu przebiega identycznie jak w wypadku próby stanu jałowego silnika prądnicy synchronicznej. W oknie wirtualnego przyrządu należy wybrać opcję Próba zwarcia. Okno wirtualnego przyrządu jest nieco zmodyikowane zamiast napięcia prądnicy dokonujemy pomiaru prądu azowego (aktywne okno oscyloskopu 5). W oknie 6 prezentowana jest charakterystyka pomiarowa: - I z = (I ),

5 Rys.2. Schemat połączeń do próby zwarcia prądnicy synchronicznej 3-azowej. Uruchamiamy napędową maszynę prądu stałego (identycznie jak w wypadku próby biegu jałowego). Pomiaru dokonujemy zwiększając prąd wzbudzenia prądnicy synchronicznej aż do wartości, przy której osiągnięty zostanie prąd znamionowy. Wyniki pomiarów (w następującej kolejności: prąd I g, napięcie obwodu wzbudzenia prądnicy synchronicznej U, prąd wzbudzenia I, oraz prędkość obrotowa n) próby zwarcia zapisywane są do pliku pom2_zwa.txt. Opracowanie wyników pomiaru. Po przeniesieniu danych pomiarowych do arkusza kalkulacyjnego należy wykreślić charakterystykę ustalonego zwarcia prądnicy synchronicznej i w razie potrzeby wykreślić charakterystykę (podobnie jak w wypadku biegu jałowego) zwarcia ustalonego bez uwzględnienia magnetyzmu szczątkowego oraz uzasadnić jej przebieg.

6 3) Synchronizacja prądnicy synchronicznej z siecią sztywną Synchronizację przeprowadza się w układzie połączeń pokazanych na Rys.3. Rys.3. Schemat połączeń do synchronizacji prądnicy synchronicznej z siecią.

7 W pierwszej kolejności zgodnie ze schematem pokazanym na Rys.3 należy wykonać połączenia torów prądowych i napięciowych pomiędzy odłącznikiem napięcia sieci, układem przetworników pomiarowych PS II i zaciskami wejściowymi kolumny synchronizacyjnej oraz zaciskami wyjściowymi kolumny synchronizacyjnej, układem przetworników pomiarowych PS I i badaną prądnicą synchroniczną, a także połączyć obwód wzbudzenia prądnicy synchronicznej. Uruchomienie wirtualnego przyrządu przebiega identycznie jak w wypadku próby stanu jałowego silnika prądnicy synchronicznej. W oknie wirtualnego przyrządu należy wybrać opcję Synchronizacja. Okno wirtualnego przyrządu jest zmodyikowane w oknach oscyloskopów 4 i 5 prezentowane są chwilowe wartości napięć przewodowych od strony prądnicy synchronicznej i sieci. Synchronizacji dokonujemy za pomocą kolumny synchronizacyjnej, która pozwala na ocenę, czy spełnione zostały wszystkie cztery warunki: 1 zgodności następstwa az przebiegu napięć prądnicy i sieci, 2 równości częstotliwości napięć prądnicy i sieci, 3 równości skutecznych wartości napięć prądnicy i sieci, 4 równości kątów azowych napięć prądnicy i sieci. Powyższe warunki można zastąpić jednym warunkiem w odniesieniu do chwilowych przebiegów napięć prądnicy i sieci: Chwilowe wartości odpowiadających sobie napięć prądnicy i sieci powinny być równe. Okna oscyloskopów 4 i 5 umożliwiają obserwację spełnienia tego warunku. Po synchronizacji, gdy powyższe warunki zostały spełnione prąd prądnicy powinien być bliski zeru. Synchronizacja jest punktem wyjścia do wyznaczania charakterystyk eksploatacyjnych.

8 4) Charakterystyka obciążenia Pomiary przeprowadzamy po synchronizacji prądnicy synchronicznej z siecią w układzie połączeń pokazanych na Rys.3. Uruchomienie wirtualnego przyrządu przebiega identycznie jak w wypadku próby stanu jałowego silnika prądnicy synchronicznej. W oknie wirtualnego przyrządu należy wybrać opcję Charakterystyka obciążenia. Okno wirtualnego przyrządu jest zmodyikowane w oknach oscyloskopów 4 i 5 prezentowane są odpowiednio chwilowe wartości napięć azowych i prądów azowych prądnicy synchronicznej. Obok okna oscyloskopu prezentowane są dodatkowo wartości oprócz napięcia U, prądu I i mocy czynnej P obwodu wzbudzenia, także moc pozorna S, moc czynna P oraz moce czynne poszczególnych az i współczynnik mocy. W oddzielnym powiększonym oknie prezentowana jest wartość cosφ oraz jego charakter (występujące różnice pomiędzy wartością cosφ i współczynnika mocy wyjaśnione są w rozdziale Inormacje dodatkowe). W oknie 6 prezentowane są charakterystyki pomiarowe: - U g = (I ), I g = const., cosφ = const. zrealizowane dla trzech różnych wartości współczynnika cosφ: cosφ (poj.), cosφ = 1, cosφ (ind.). Charakterystyka obciążenia jest trudna do wykonania, gdyż wymaga jednoczesnej regulacji dwóch parametrów: prądu wzbudzenia i mocy czynnej zmieniając moment na wale prądnicy. Z tego powodu charakterystykę najłatwiej jest wykonać dla cosφ = 0 ind (moc czynna P = 0). Pomiarów dokonujemy w sposób następujący:

9 Tuż po synchronizacji regulujemy prąd wzbudzenia I tak, aby uzyskać daną wartość cosφ przy znamionowym prądzie I g prądnicy korygując w razie potrzeby moc czynną. W kolejnym kroku zmieniamy (zmniejszamy) moc czynną P, zmieniając moment obciążenia na wale i następnie zmniejszamy napięcie sieci za pomocą regulatora indukcyjnego i zmieniamy prąd wzbudzenia I tak, aby utrzymać daną wartość cosφ i znamionowy prąd I g prądnicy. Uwaga! Dla cosφ o charakterze pojemnościowym występują obszary niestabilnej pracy i możliwość wypadnięcia prądnicy synchronicznej z synchronizmu. Wyniki pomiarów (w następującej kolejności: wartość średnia napięcia przewodowego U g, prąd I g, moc czynna P i moc pozorna S, napięcie wzbudzenia U, prąd wzbudzenia I, prędkość obrotowa n, cosφ) próby obciążenia prądnicy synchronicznej dla trzech różnych współczynników mocy zapisywane są odpowiednio do plików pom3_obc_cos1.txt, pom3_obc_cos2.txt, pom3_obc_cos3.txt. Opracowanie wyników pomiaru. Po przeniesieniu danych pomiarowych do arkusza kalkulacyjnego należy wykreślić charakterystyki: - U g = (I ), dla I g = I gn, cosφ = const., oraz uzasadnić ich przebieg. Punktem wspólnym charakterystyk jest wartość prądu wzbudzenia dla danej wartości prądu I g wyznaczonych podczas próby zwarcia ustalonego. 5) Charakterystyka zewnętrzna Pomiary przeprowadzamy po synchronizacji prądnicy synchronicznej z siecią w układzie połączeń pokazanych na Rys.3. Uruchomienie wirtualnego przyrządu przebiega identycznie jak w wypadku próby stanu jałowego silnika prądnicy synchronicznej. W oknie wirtualnego przyrządu należy wybrać opcję Charakterystyka zewnętrzna. Okno wirtualnego przyrządu pozostaje identyczne jak w wypadku wyznaczania charakterystyki obciążenia. W oknie 6 prezentowane są charakterystyki pomiarowe: - U g = (I g ), I = const., cosφ = const. zrealizowane dla trzech różnych wartości współczynnika cosφ: cosφ (poj.), cosφ = 1, cosφ (ind.). Pomiary rozpoczynamy od stanu obciążenia, ustalając prąd wzbudzenia dla U g = U gn oraz I g = I gn oraz wybranego współczynnika mocy cosφ. Pomiarów dokonujemy zmniejszając moc czynną prądnicy synchronicznej i regulując napięcie prądnicy za pomocą regulatora indukcyjnego tak, aby utrzymać wybraną wartość współczynnika mocy. Wyniki pomiarów (w następującej kolejności: wartość średnia napięcia przewodowego U g, prąd I g, moc czynna P i moc pozorna S, napięcie wzbudzenia U, prąd wzbudzenia I, prędkość obrotowa n, cosφ) próby obciążenia prądnicy synchronicznej dla trzech różnych współczynników mocy zapisywane są odpowiednio do plików pom4_zew_cos1.txt, pom4_zew_cos2.txt, pom4_zew_cos3.txt. Opracowanie wyników pomiaru. Po przeniesieniu danych pomiarowych do arkusza kalkulacyjnego należy wykreślić charakterystyki:

10 oraz uzasadnić ich przebieg. - U g = (I g ), dla I g = const., cosφ = const., 6) Charakterystyka regulacyjna Pomiary przeprowadzamy po synchronizacji prądnicy synchronicznej z siecią w układzie połączeń pokazanych na Rys.3. Uruchomienie wirtualnego przyrządu przebiega identycznie jak w wypadku próby stanu jałowego silnika prądnicy synchronicznej. W oknie wirtualnego przyrządu należy wybrać opcję Charakterystyka regulacyjna. Okno wirtualnego przyrządu pozostaje identyczne jak w wypadku wyznaczania charakterystyki obciążenia. W oknie 6 prezentowane są charakterystyki pomiarowe: - I = (I g ), U g = const., cosφ = const. zrealizowane dla trzech różnych wartości współczynnika cosφ: cosφ (poj.), cosφ = 1, cosφ (ind.). Pomiary rozpoczynamy od stanu nieobciążonego (stan tuż po synchronizacji, I g = min), ustalając wybraną wartość cosφ poprzez regulację prądu wzbudzenia I g. Następnie zwiększając moc czynną P i należy tak regulować prąd wzbudzenia, aby utrzymać wybraną wartość współczynnika mocy. Wyniki pomiarów (w następującej kolejności: wartość średnia napięcia przewodowego U g, prąd I g, moc czynna P i moc pozorna S, napięcie wzbudzenia U, prąd wzbudzenia I, prędkość obrotowa n, cosφ) próby obciążenia prądnicy synchronicznej dla trzech różnych współczynników mocy zapisywane są odpowiednio do plików pom5_reg_cos1.txt, pom5_reg_cos2.txt, pom5_reg_cos3.txt. Opracowanie wyników pomiaru. Po przeniesieniu danych pomiarowych do arkusza kalkulacyjnego należy wykreślić charakterystyki: - I = (I g ), dla U g = const., cosφ = const., oraz uzasadnić ich przebieg. Inormacje dodatkowe Po zakończeniu sesji pomiarowej (pracy w laboratorium) należy wydrukować protokół z danymi pomiarowymi. W tym celu korzystamy z przycisku Drukuj w panelu sterowania zapisem danych pomiarowych. Uwaga! Pliki z danymi pomiarowymi zostaną wydrukowane tylko wtedy, gdy zarejestrowanych zostało co najmniej pięć punktów pomiarowych w danej sesji pomiarowej. Pojawia się okno:

11 które należy uzupełnić nazwiskami osób wykonujących ćwiczenie. Po wypełnieniu odpowiednich pól uruchamiamy drukowanie przyciskiem OK. Pojawia się podgląd wydruku do akceptacji. Wydrukowany protokół pomiarów jest do odbioru u laboranta. Po wylogowaniu wszystkie pliki z danymi pomiarowymi są kasowane. Dlatego też przed zamknięciem sesji pomiarowej należy je przenieść do bezpiecznej lokalizacji. Jest nią dowolna skrzynka pocztowa. Dostęp do plików pomiarowych (tylko poprzez pocztę ) uzyskuje się uruchamiając aplikację PS wysyłanie : Po uruchomieniu aplikacji (kliknięcie myszką w strzałkę start na pasku górnym) pojawia się okno z listą utworzonych podczas pracy w laboratorium plików pomiarowych (wraz z ich rozmiarem), a także ewentualnie plik arkusza kalkulacyjnego (Open Oice - Calc) z opracowanymi danymi pomiarowymi. Arkusz kalkulacyjny musi być umieszczony w tym samym katalogu co pliki z danymi pomiarowymi W polu adresat należy wpisać własny adres . Pomiary realizowane są za pomocą wirtualnego przyrządu w skład, którego wchodzą: a) Układ czujników/przetworników I/U oraz U/U zapewniających separację galwaniczną pomiędzy obwodem wejściowym (mierzonym prądem i napięciem) i wyjściowym (sygnałem pomiarowym). Maksymalna amplituda sygnału pomiarowego została dostosowana do zakresu napięciowego wejść przetwornika cyrowo-analogowego. Wymagania te spełniają przetworniki napięciowe i prądowe typu LEM. Schemat przetwornika napięcie/napięcie typu LV 25-P o napięciu znamionowym 10V 500V został przedstawiony na Rys.3, a schemat przetwornika prąd/napięcie typu LA 100-P o prądzie znamionowym 100 A został przedstawiony na Rys.4.

12 Rys.3. Woltomierz zrealizowany za pomocą przetwornika LV 25-P. Iw prąd strony wtórnej przetwornika. Sygnałem pomiarowym jest spadek napięcia na oporniku Rp. Rys.4. Amperomierz zrealizowany za pomocą przetwornika LA 100-P. Iw prąd strony wtórnej przetwornika. Sygnałem pomiarowym jest spadek napięcia na oporniku Rp. Trzy czujniki prądowe (o zmodyikowanym zakresie 0 30A AC) i trzy czujniki napięciowe (o zakresie podstawowym V AC) umieszczone są w jednej obudowie wyposażonej w układy zasilania przetworników, zestaw zacisków prądowych i napięciowych oraz zestaw gniazd wyjściowych BNC sygnału pomiarowego. Na Rys.5 przedstawione zostało rozmieszczenie zacisków prądowych i napięciowych oraz gniazd sygnału pomiarowego. Zaznaczone zostały pary zacisków tworzące tor pomiarowy odpowiednio prądowy i napięciowy skojarzony z właściwym gniazdem sygnału pomiarowego. Rys.5. Rozmieszczenie zacisków prądowych i napięciowych oraz gniazd sygnału pomiarowego

13 Dodatkowo w oddzielnej obudowie zostały umieszczone: jeden czujnik napięciowy (o zakresie podstawowym V AC) i prądowy (o zakresie podstawowym 0 25A AC) do pomiaru napięcia i prądu w obwodzie wzbudzenia oraz trzy czujniki napięciowe (o zakresie podstawowym V AC) do pomiaru napięcia sieci podczas synchronizacji. b) Przetwornik analogowo-cyrowy. Do pomiarów zastosowano przetwornik NI USB 6251 wyposażony w kartę przetwornika A/C o następujących danych technicznych: - magistrala przesyłu danych USB, - 16 wejść analogowych pojedynczych/8 wejść analogowych różnicowych, - maksymalna częstotliwość próbkowania 1, S/s, - maksymalny zakres napięć wejściowych przetwornika A/C ± 10 V, - rozdzielczość 16 bitów. Sygnał pomiarowy z gniazd BNC przetworników I/U oraz U/U podawany jest za pomocą kabli BNC na odpowiednie wejścia terminala BNC-211 współpracującego z przetwornikiem NI USB c) Oprogramowanie pomiarowe nadzorujące pracę przetwornika analogowo-cyrowego, odpowiedzialne za akwizycję danych pomiarowych, przetwarzanie danych pomiarowych i wizualizację pomiarów. Program pomiarowy (wirtualny przyrząd pomiarowy) został zrealizowany za pomocą oprogramowania narzędziowego LabView irmy National Instruments. W układzie pomiarowym mierzone są chwilowe wartości prądu azowego i napięcia azowego badanego silnika indukcyjnego. Na podstawie wartości chwilowych zarejestrowanych w czasie 1000 ms (a więc czasie trwania 50 okresów napięcia zasilającego) obliczana jest z deinicji odpowiednio wartość skuteczna prądów i napięć azowych zgodnie z zależnością: X t T x T t0 ( t)dt 1 N N n1 x ( n). (1) gdzie: T okres analizowanego sygnału, x (t) wartość chwilowa sygnału pomiarowego, N ilość próbek sygnału, x (n) zdyskretyzowany w czasie i amplitudzie sygnał pomiarowy. Na podstawie wartości skutecznych prądów i napięć azowych wyznaczana jest średnia wartość napięcia i prądu azowego: 2 U I śr śr U A U B U 3 I A I B IC 3 C. (2) Moc czynna pobierana przez silnik indukcyjny jest sumą mocy czynnych trzech az: P P P P 1 A B C, (3)

14 wyznaczanych zgodnie z zależnością: P 1 T T tt 1 p ( t)dt T T tt 1 u ( t) i ( t)dt N N n1 u ( n) i ( n). (4) gdzie: u, i odpowiednio wartość chwilowa napięcia i prądu azowego. Moc pozorna wyznaczana jest z zależności: S S S S U I U I U I 3( U I ) (5) 1 A B C A A B B C C śr śr Współczynnik mocy wyznaczany jest z zależności: P1 współczynnik mocy p (6) S 1 Natomiast współczynnik cosφ wyznaczany jest na podstawie kąta azowego pomiędzy podstawowymi harmonicznymi napięcia i prądu prądnicy. Jest on zgodny ze wskazaniami miernika na kolumnie synchronizacyjnej. Różnica pomiędzy wartością współczynnika mocy p i cosφ spowodowane jest obecnością wyższych harmonicznych w prądzie prądnicy. Instrukcja jest uzupełnieniem skryptu: Grzegorz Kamiński, Janusz Kosk, Włodzimierz Przyborowski Laboratorium Maszyn Elektrycznych Oicyna Wydawnicza Politechniki Warszawskiej Warszawa 2005 instrukcję opracował Adam Biernat, Warszawa, wrzesień 2012

Badanie silnika indukcyjnego 1-fazowego

Badanie silnika indukcyjnego 1-fazowego Badanie silnika indukcyjnego 1-azowego 1) Próba biegu jałowego silnika indukcyjnego 1-azowego Badania przeprowadza się w układzie połączeń pokazanych na Rys.1. Rys.1. Schemat połączeń do próby biegu jałowego

Bardziej szczegółowo

Badanie maszyny prądu stałego

Badanie maszyny prądu stałego Badanie maszyny prądu stałego Badania przeprowadza się w układzie połączeń pokazanych na Rys.1. Rys.1. Schemat połączeń do wyznaczania charakterystyk momentu rozruchowego. W pierwszej kolejności zgodnie

Bardziej szczegółowo

Zakład Zastosowań Elektroniki i Elektrotechniki

Zakład Zastosowań Elektroniki i Elektrotechniki Zakład Zastosowań Elektroniki i Elektrotechniki Laboratorium Wytwarzania energii elektrycznej Temat ćwiczenia: Badanie alternatora 52 BADANIE CHARAKTERYSTYK EKSPLOATACYJNYCH ALTERNATORÓW SAMO- CHODOWYCH

Bardziej szczegółowo

Badanie silnika indukcyjnego jednofazowego i transformatora

Badanie silnika indukcyjnego jednofazowego i transformatora Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych Ciężkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie M3 - protokół Badanie silnika indukcyjnego jednofazowego i transformatora Data

Bardziej szczegółowo

Zakład Zastosowań Elektroniki i Elektrotechniki

Zakład Zastosowań Elektroniki i Elektrotechniki Zakład Zastosowań Elektroniki i Elektrotechniki Laboratorium ytwarzania energii elektrycznej Temat ćwiczenia: Badanie prądnicy synchronicznej 4.2. BN LBOTOYJNE 4.2.1. Próba biegu jałowego prądnicy synchronicznej

Bardziej szczegółowo

Zespół B-D Elektrotechniki

Zespół B-D Elektrotechniki Zespół B-D Elektrotechniki Laboratorium Elektrotechniki i Elektroniki Samochodowej Temat ćwiczenia: BADANIE ALTERNATORA Opracowanie: dr hab. inż. S. DUER 1 5.1. Stanowisko laboratoryjne do badania alternatora

Bardziej szczegółowo

Badanie transformatora 3-fazowego

Badanie transformatora 3-fazowego adanie ransormaora 3-azowego ) Próba sanu jałowego ransormaora przy = N = cons adania przeprowadza się w układzie połączeń pokazanych na Rys.. Rys.. Schema połączeń do próby sanu jałowego ransormaora.

Bardziej szczegółowo

SILNIK INDUKCYJNY KLATKOWY

SILNIK INDUKCYJNY KLATKOWY SILNIK INDUKCYJNY KLATKOWY. Budowa i zasada działania silników indukcyjnych Zasadniczymi częściami składowymi silnika indukcyjnego są nieruchomy stojan i obracający się wirnik. Wewnętrzną stronę stojana

Bardziej szczegółowo

LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH

LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH -CEL- LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH PODSTAWOWE CHARAKTERYSTYKI I PARAMETRY SILNIKA RELUKTANCYJNEGO Z KLATKĄ ROZRUCHOWĄ (REL) Zapoznanie się z konstrukcją silników reluktancyjnych. Wyznaczenie

Bardziej szczegółowo

Badanie trójfazowych maszyn indukcyjnych: silnik klatkowy, silnik pierścieniowy

Badanie trójfazowych maszyn indukcyjnych: silnik klatkowy, silnik pierścieniowy Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych CięŜkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie M2 protokół Badanie trójfazowych maszyn indukcyjnych: silnik klatkowy, silnik pierścieniowy

Bardziej szczegółowo

Ćwiczenie M 1 - protokół. Badanie maszyn prądu stałego: silnika bocznikowego i prądnicy obcowzbudnej

Ćwiczenie M 1 - protokół. Badanie maszyn prądu stałego: silnika bocznikowego i prądnicy obcowzbudnej Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych CięŜkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie M 1 - protokół Badanie maszyn prądu stałego: silnika bocznikowego i prądnicy obcowzbudnej

Bardziej szczegółowo

Badanie silnika bezszczotkowego z magnesami trwałymi (BLCD)

Badanie silnika bezszczotkowego z magnesami trwałymi (BLCD) Badanie silnika bezszczotkowego z magnesami trwałymi (BLCD) Badane silniki BLCD są silnikami bezszczotkowymi prądu stałego (odpowiednikami odwróconego konwencjonalnego silnika prądu stałego z magnesami

Bardziej szczegółowo

BADANIE WIELOMASZYNOWEGO UKŁADU NAPĘDOWEGO Z OBCOWZBUDNYM SILNIKIEM PRĄDU STAŁEGO

BADANIE WIELOMASZYNOWEGO UKŁADU NAPĘDOWEGO Z OBCOWZBUDNYM SILNIKIEM PRĄDU STAŁEGO BADANIE WIELOMASZYNOWEGO UKŁADU NAPĘDOWEGO Z OBCOWZBUDNYM SILNIKIEM PRĄDU STAŁEGO Instrukcja obsługi stanowiska laboratoryjnego za pomocą komputera Instrukcja jest częścią pracy dyplomowej: Prowadzący:

Bardziej szczegółowo

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym? Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie

Bardziej szczegółowo

LV6. Pomiary mocy i energii w jednofazowych obwodach prądu przemiennego

LV6. Pomiary mocy i energii w jednofazowych obwodach prądu przemiennego LV6 Pomiary mocy i energii w jednofazowych obwodach prądu przemiennego Celem ćwiczenia jest zapoznanie z problematyką wyznaczania wartości mocy i energii z próbek sygnału zebranych w obwodzie pomiarowym

Bardziej szczegółowo

T 1000 PLUS Tester zabezpieczeń obwodów wtórnych

T 1000 PLUS Tester zabezpieczeń obwodów wtórnych T 1000 PLUS Tester zabezpieczeń obwodów wtórnych Przeznaczony do testowania przekaźników i przetworników Sterowany mikroprocesorem Wyposażony w przesuwnik fazowy Generator częstotliwości Wyniki badań i

Bardziej szczegółowo

EA3. Silnik uniwersalny

EA3. Silnik uniwersalny EA3 Silnik uniwersalny Program ćwiczenia 1. Oględziny zewnętrzne 2. Pomiar charakterystyk mechanicznych przy zasilaniu: a - napięciem sinusoidalnie zmiennym (z sieci), b - napięciem dwupołówkowo-wyprostowanym.

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego Ćwiczenie 5 Wydział Geoinżynierii, Górnictwa i Geologii LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Rodzaje transformatorów.

Bardziej szczegółowo

W3 Identyfikacja parametrów maszyny synchronicznej. Program ćwiczenia:

W3 Identyfikacja parametrów maszyny synchronicznej. Program ćwiczenia: W3 Identyfikacja parametrów maszyny synchronicznej Program ćwiczenia: I. Część pomiarowa 1. Rejestracja przebiegów prądów i napięć generatora synchronicznego przy jego trójfazowym, symetrycznym zwarciu

Bardziej szczegółowo

Badanie prądnicy synchronicznej

Badanie prądnicy synchronicznej POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Badanie prądnicy synchronicznej (E 18) Opracował: Dr inż. Włodzimierz OGULEWICZ

Bardziej szczegółowo

Ćwiczenie 1. Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym.

Ćwiczenie 1. Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym. Ćwiczenie 1 Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym. Środowisko symulacyjne Symulacja układu napędowego z silnikiem DC wykonana zostanie w oparciu o środowisko symulacyjne

Bardziej szczegółowo

Ćwiczenie 4 Badanie uogólnionego przetwornika pomiarowego

Ćwiczenie 4 Badanie uogólnionego przetwornika pomiarowego Ćwiczenie 4 Badanie uogólnionego przetwornika pomiarowego 1. Cel ćwiczenia Poznanie typowych układów pracy przetworników pomiarowych o zunifikowanym wyjściu prądowym. Wyznaczenie i analiza charakterystyk

Bardziej szczegółowo

Ćwiczenie: "Silnik prądu stałego"

Ćwiczenie: Silnik prądu stałego Ćwiczenie: "Silnik prądu stałego" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada

Bardziej szczegółowo

Ćwiczenie 5 Badanie sensorów piezoelektrycznych

Ćwiczenie 5 Badanie sensorów piezoelektrycznych Ćwiczenie 5 Badanie sensorów piezoelektrycznych 1. Cel ćwiczenia Poznanie podstawowych układów pracy sensorów piezoelektrycznych jako przetworników wielkości mechanicznych na elektryczne. Doświadczalne

Bardziej szczegółowo

Ćwiczenie EA1 Silniki wykonawcze prądu stałego

Ćwiczenie EA1 Silniki wykonawcze prądu stałego Akademia Górniczo-Hutnicza im.s.staszica w Krakowie KATEDRA MASZYN ELEKTRYCZNYCH Ćwiczenie EA1 Silniki wykonawcze prądu stałego Program ćwiczenia: A Silnik wykonawczy elektromagnetyczny 1. Zapoznanie się

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA LABORATORIUM MASZYNY ELEKTRYCZNE

POLITECHNIKA GDAŃSKA LABORATORIUM MASZYNY ELEKTRYCZNE POLITECHNIKA GDAŃSKA WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA ENERGOELEKTRONIKI I MASZYN ELEKTRYCZNYCH LABORATORIUM MASZYNY ELEKTRYCZNE ĆWICZENIE (PS) MASZYNY SYNCHRONICZNE BADANIE CHARAKTERYSTYK PRĄDNICY/GENERATORA

Bardziej szczegółowo

Ćwiczenie 8. BADANIE MASZYN PRĄDU STAŁEGO STANOWISKO I. Badanie silnika bocznikowego

Ćwiczenie 8. BADANIE MASZYN PRĄDU STAŁEGO STANOWISKO I. Badanie silnika bocznikowego Laboratorium elektrotechniki Ćwiczenie 8. BADANIE MASZYN PRĄDU STAŁEGO STANOWISKO I. Badanie silnika bocznikowego 0 V L L+ + Łącznik tablicowy V A A m R r R md Autotransformator E 0 V~ E A M B 0 0 V Bezdotykowy

Bardziej szczegółowo

BADANIE ELEMENTÓW RLC

BADANIE ELEMENTÓW RLC KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE BADANIE ELEMENTÓW RLC REV. 1.0 1. CEL ĆWICZENIA - zapoznanie się z systemem laboratoryjnym NI ELVIS II, - zapoznanie się z podstawowymi

Bardziej szczegółowo

SILNIK INDUKCYJNY STEROWANY Z WEKTOROWEGO FALOWNIKA NAPIĘCIA

SILNIK INDUKCYJNY STEROWANY Z WEKTOROWEGO FALOWNIKA NAPIĘCIA SILNIK INDUKCYJNY STEROWANY Z WEKTOROWEGO FALOWNIKA NAPIĘCIA Rys.1. Podział metod sterowania częstotliwościowego silników indukcyjnych klatkowych Instrukcja 1. Układ pomiarowy. Dane maszyn: Silnik asynchroniczny:

Bardziej szczegółowo

Uśrednianie napięć zakłóconych

Uśrednianie napięć zakłóconych Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Miernictwa Elektronicznego Uśrednianie napięć zakłóconych Grupa Nr ćwicz. 5 1... kierownik 2... 3... 4... Data Ocena I.

Bardziej szczegółowo

2.3. Praca samotna. Rys Uproszczony schemat zastępczy turbogeneratora

2.3. Praca samotna. Rys Uproszczony schemat zastępczy turbogeneratora E Rys. 2.11. Uproszczony schemat zastępczy turbogeneratora 2.3. Praca samotna Maszyny synchroniczne może pracować jako pojedynczy generator zasilający grupę odbiorników o wypadkowej impedancji Z. Uproszczony

Bardziej szczegółowo

Ćwiczenie EA5 Silnik 2-fazowy indukcyjny wykonawczy

Ćwiczenie EA5 Silnik 2-fazowy indukcyjny wykonawczy Akademia Górniczo-Hutnicza im.s.staszica w Krakowie KATEDRA MASZYN ELEKTRYCZNYCH Ćwiczenie EA5 Silnik 2-fazowy indukcyjny wykonawczy 1. Zapoznanie się z konstrukcją, zasadą działania i układami sterowania

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7. Pomiar mocy czynnej, biernej i cosφ

INSTRUKCJA DO ĆWICZENIA NR 7. Pomiar mocy czynnej, biernej i cosφ INSTRUKCJA DO ĆWICZENIA NR 7 Pomiar mocy czynnej, biernej i cosφ Wstęp Układy elektryczne w postaci szeregowego połączenia RL, podczas zasilania z sieci napięcia przemiennego, pobierają moc czynną, bierną

Bardziej szczegółowo

1. Opis aplikacji. 2. Przeprowadzanie pomiarów. 3. Tworzenie sprawozdania

1. Opis aplikacji. 2. Przeprowadzanie pomiarów. 3. Tworzenie sprawozdania 1. Opis aplikacji Interfejs programu podzielony jest na dwie zakładki. Wszystkie ustawienia znajdują się w drugiej zakładce, są przygotowane do ćwiczenia i nie można ich zmieniac bez pozwolenia prowadzącego

Bardziej szczegółowo

Przetworniki Elektromaszynowe st. n.st. sem. V (zima) 2016/2017

Przetworniki Elektromaszynowe st. n.st. sem. V (zima) 2016/2017 Kolokwium poprawkowe Wariant A Przetworniki Elektromaszynowe st. n.st. sem. V (zima 016/017 Transormatory Transormator trójazowy ma następujące dane znamionowe: 60 kva 50 Hz HV / LV 15 750 ± x,5% / 400

Bardziej szczegółowo

Maszyny Elektryczne i Transformatory st. n. st. sem. III (zima) 2018/2019

Maszyny Elektryczne i Transformatory st. n. st. sem. III (zima) 2018/2019 Kolokwium poprawkowe Wariant A Maszyny Elektryczne i Transormatory st. n. st. sem. III (zima) 018/019 Transormator Transormator trójazowy ma następujące dane znamionowe: S 00 kva 50 Hz HV / LV 15,75 ±x,5%

Bardziej szczegółowo

Ćwiczenie: "Silnik indukcyjny"

Ćwiczenie: Silnik indukcyjny Ćwiczenie: "Silnik indukcyjny" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada

Bardziej szczegółowo

MASZYNA SYNCHRONICZNA. WSPÓŁPRACA Z SIECIĄ.

MASZYNA SYNCHRONICZNA. WSPÓŁPRACA Z SIECIĄ. ĆWICZENIE S2 MASZYNA SYNCHRONICZNA. WSPÓŁPRACA Z SIECIĄ. Program ćwiczenia: 1. Zapoznanie się z układem. 2. Rozruch asynchroniczny. 3. Samosynchronizacja maszyny z siecią elektroenergetyczną. 4. Wybieg.

Bardziej szczegółowo

Przetwarzanie energii elektrycznej w fotowoltaice. Ćwiczenie 12 Metody sterowania falowników

Przetwarzanie energii elektrycznej w fotowoltaice. Ćwiczenie 12 Metody sterowania falowników Przetwarzanie energii elektrycznej w fotowoltaice Ćwiczenie 12 Metody sterowania falowników wer. 1.1.2, 2016 opracowanie: Łukasz Starzak Politechnika Łódzka, Katedra Mikroelektroniki i Technik Informatycznych

Bardziej szczegółowo

Pomiary mocy i energii elektrycznej

Pomiary mocy i energii elektrycznej olitechnika Rzeszowska Zakład Metrologii i ystemów omiarowych omiary mocy i energii elektrycznej Grupa Nr ćwicz. 1 1... kierownik... 3... 4... Data Ocena I. Cel ćwiczenia Celem ćwiczenia jest poznanie

Bardziej szczegółowo

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz.

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz. Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II WYZNACZANIE WŁAŚCIWOŚCI STATYCZNYCH I DYNAMICZNYCH PRZETWORNIKÓW Grupa: Nr. Ćwicz. 9 1... kierownik 2...

Bardziej szczegółowo

1. Opis. 2. Wymagania sprzętowe:

1. Opis. 2. Wymagania sprzętowe: 1. Opis Aplikacja ARSOFT-WZ2 umożliwia konfigurację, wizualizację i rejestrację danych pomiarowych urządzeń produkcji APAR wyposażonych w interfejs komunikacyjny RS232/485 oraz protokół MODBUS-RTU. Aktualny

Bardziej szczegółowo

Pomiar mocy czynnej, biernej i pozornej

Pomiar mocy czynnej, biernej i pozornej Pomiar mocy czynnej, biernej i pozornej 1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z różnymi metodami pomiaru mocy w obwodach prądu przemiennego.. Wprowadzenie: Wykonując pomiary z wykorzystaniem

Bardziej szczegółowo

Wymagania edukacyjne: Maszyny elektryczne. Klasa: 2Tc TECHNIK ELEKTRYK. Ilość godzin: 1. Wykonała: Beata Sedivy

Wymagania edukacyjne: Maszyny elektryczne. Klasa: 2Tc TECHNIK ELEKTRYK. Ilość godzin: 1. Wykonała: Beata Sedivy Wymagania edukacyjne: Maszyny elektryczne Klasa: 2Tc TECHNIK ELEKTRYK Ilość godzin: 1 Wykonała: Beata Sedivy Ocena Ocenę niedostateczną otrzymuje uczeń który Ocenę dopuszczającą otrzymuje uczeń który:

Bardziej szczegółowo

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą.

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą. Ćwiczenie nr 9 Pomiar rezystancji metodą porównawczą. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne poznanie różnych metod pomiaru rezystancji, a konkretnie zapoznanie się z metodą porównawczą. 2. Dane

Bardziej szczegółowo

Ćwiczenie nr.14. Pomiar mocy biernej prądu trójfazowego. Q=UIsinϕ (1)

Ćwiczenie nr.14. Pomiar mocy biernej prądu trójfazowego. Q=UIsinϕ (1) 1 Ćwiczenie nr.14 Pomiar mocy biernej prądu trójfazowego 1. Zasada pomiaru Przy prądzie jednofazowym moc bierna wyraża się wzorem: Q=UIsinϕ (1) Do pomiaru tej mocy stosuje się waromierze jednofazowe typu

Bardziej szczegółowo

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl

Bardziej szczegółowo

Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi"

Ćwiczenie: Obwody ze sprzężeniami magnetycznymi Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:

Bardziej szczegółowo

Zespół B-D Elektrotechniki. Laboratorium Silników i układów przeniesienia

Zespół B-D Elektrotechniki. Laboratorium Silników i układów przeniesienia Zespół B-D Elektrotechniki Laboratorium Silników i układów przeniesienia napędów Temat ćwiczenia: Badanie czujników i nastawników komputerowego układu zapłonowego w systemie MOTRONIC Opracowanie: dr hab.

Bardziej szczegółowo

Pracę każdej prądnicy w sposób jednoznaczny określają następujące wielkości:

Pracę każdej prądnicy w sposób jednoznaczny określają następujące wielkości: Temat: Prądnice prądu stałego obcowzbudne i samowzbudne. Pracę każdej prądnicy w sposób jednoznaczny określają następujące wielkości: U I(P) I t n napięcie twornika - prąd (moc) obciążenia - prąd wzbudzenia

Bardziej szczegółowo

POMIARY MOCY (OBWODY JEDNO- I TRÓJFAZOWE). POMIARY PRĄDÓW I NAPIĘĆ W OBWODACH TRÓJFAZOWYCH

POMIARY MOCY (OBWODY JEDNO- I TRÓJFAZOWE). POMIARY PRĄDÓW I NAPIĘĆ W OBWODACH TRÓJFAZOWYCH POMIRY MOCY (OBWODY JEDNO- I TRÓJFZOWE). POMIRY PRĄDÓW I NPIĘĆ W OBWODCH TRÓJFZOWYCH. Pomiary mocy w obwodach jednofazowych W obwodach prądu stałego moc określamy jako iloczyn napięcia i prądu stałego,

Bardziej szczegółowo

Przetwarzanie AC i CA

Przetwarzanie AC i CA 1 Elektroniki Elektroniki Elektroniki Elektroniki Elektroniki Katedr Przetwarzanie AC i CA Instrukcja do ćwiczenia laboratoryjnego opracował: Łukasz Buczek 05.2015 1. Cel ćwiczenia 2 Celem ćwiczenia jest

Bardziej szczegółowo

Temat: ŹRÓDŁA ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO

Temat: ŹRÓDŁA ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO Temat: ŹRÓDŁA ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1 Źródła energii elektrycznej prądu przemiennego: 1. prądnice synchroniczne 2. prądnice asynchroniczne Surowce energetyczne: węgiel kamienny i brunatny

Bardziej szczegółowo

Technik elektryk 311[08] Zadanie praktyczne

Technik elektryk 311[08] Zadanie praktyczne 1 Technik elektryk 311[08] Zadanie praktyczne Pracujesz w firmie zajmującej się naprawami urządzeń elektrycznych w siedzibie klienta. Otrzymałeś zlecenie z następującym opisem: Stolarz uruchomił pilarkę

Bardziej szczegółowo

Ćwiczenie 7 PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH

Ćwiczenie 7 PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH Ćwiczenie 7 PRMETRY MŁOSYGNŁO TRNZYSTORÓW BIPOLRNYCH Wstęp Celem ćwiczenia jest wyznaczenie niektórych parametrów małosygnałowych hybrydowego i modelu hybryd tranzystora bipolarnego. modelu Konspekt przygotowanie

Bardziej szczegółowo

Ćwiczenie 15. Sprawdzanie watomierza i licznika energii

Ćwiczenie 15. Sprawdzanie watomierza i licznika energii Ćwiczenie 15 Sprawdzanie watomierza i licznika energii Program ćwiczenia: 1. Sprawdzenie błędów podstawowych watomierza analogowego 2. Sprawdzanie jednofazowego licznika indukcyjnego 2.1. Sprawdzenie prądu

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE. Układ LEONARDA.

POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE. Układ LEONARDA. POLITECHNIK ŚLĄK YDZIŁ INŻYNIERII ŚRODOIK I ENERETYKI INTYTUT ZYN I URZĄDZEŃ ENERETYCZNYCH LBORTORIU ELEKTRYCZNE Układ LEONRD. (E 20) Opracował: Dr inż. łodzimierz OULEICZ Cel ćwiczenia. Celem ćwiczenia

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

Zespól B-D Elektrotechniki

Zespól B-D Elektrotechniki Zespól B-D Elektrotechniki Laboratorium Elektroniki i Elektrotechniki Samochodowej Temat ćwiczenia: Badanie sondy lambda i przepływomierza powietrza w systemie Motronic Opracowanie: dr hab inż S DUER 39

Bardziej szczegółowo

BADANIE SILNIKA SKOKOWEGO

BADANIE SILNIKA SKOKOWEGO Politechnika Warszawska Instytut Maszyn Elektrycznych Laboratorium Maszyn Elektrycznych Malej Mocy BADANIE SILNIKA SKOKOWEGO Warszawa 00. 1. STANOWISKO I UKŁAD POMIAROWY. W skład stanowiska pomiarowego

Bardziej szczegółowo

Instrukcja użytkownika ARSoft-WZ1

Instrukcja użytkownika ARSoft-WZ1 05-090 Raszyn, ul Gałczyńskiego 6 tel (+48) 22 101-27-31, 22 853-48-56 automatyka@apar.pl www.apar.pl Instrukcja użytkownika ARSoft-WZ1 wersja 3.x 1. Opis Aplikacja ARSOFT-WZ1 umożliwia konfigurację i

Bardziej szczegółowo

Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302)

Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302) Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302) 1. Elementy elektroniczne stosowane w ćwiczeniach Elementy elektroniczne będące przedmiotem pomiaru, lub służące do zestawienia

Bardziej szczegółowo

Ćwiczenie 7: WYKONANIE INSTALACJI kontroli dostępu jednego Przejścia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 7: WYKONANIE INSTALACJI kontroli dostępu jednego Przejścia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U INSTALACJA URZĄDZEŃ ELEKTRONICZNYCH Ćwiczenie 7: WYKONANIE INSTALACJI kontroli dostępu jednego Przejścia Opracował mgr inż.

Bardziej szczegółowo

st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE

st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Układem

Bardziej szczegółowo

Wirtualne przyrządy kontrolno-pomiarowe

Wirtualne przyrządy kontrolno-pomiarowe Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Wirtualne przyrządy kontrolno-pomiarowe dr inż.. Roland PAWLICZEK Laboratorium komputerowe Mechatroniki Cel zajęć ęć: Przyrząd pomiarowy:

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół

Bardziej szczegółowo

Podstawy budowy wirtualnych przyrządów pomiarowych

Podstawy budowy wirtualnych przyrządów pomiarowych Podstawy budowy wirtualnych przyrządów pomiarowych Problemy teoretyczne: Pomiar parametrów napięciowych sygnałów za pomocą karty kontrolno pomiarowej oraz programu LabVIEW (prawo Shanona Kotielnikowa).

Bardziej szczegółowo

Zasilanie silnika indukcyjnego poprzez układ antyrównoległy

Zasilanie silnika indukcyjnego poprzez układ antyrównoległy XL SESJA STUDENCKICH KÓŁ NAUKOWYCH Zasilanie silnika indukcyjnego poprzez układ antyrównoległy Wykonał: Paweł Pernal IV r. Elektrotechnika Opiekun naukowy: prof. Witold Rams 1 Wstęp. Celem pracy było przeanalizowanie

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 11

Instrukcja do ćwiczenia laboratoryjnego nr 11 Instrukcja do ćwiczenia laboratoryjnego nr 11 Temat: Charakterystyki i parametry tyrystora Cel ćwiczenia. Celem ćwiczenia jest poznanie właściwości elektrycznych tyrystora. I. Wymagane wiadomości. 1. Podział

Bardziej szczegółowo

Przetwarzanie A/C i C/A

Przetwarzanie A/C i C/A Przetwarzanie A/C i C/A Instrukcja do ćwiczenia laboratoryjnego opracował: Łukasz Buczek 05.2015 Rev. 204.2018 (KS) 1 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przetwornikami: analogowo-cyfrowym

Bardziej szczegółowo

PROGRAM W ŚRODOWISKU LABVIEW DO POMIARU I OBLICZEŃ W LABORATORIUM MASZYN ELEKTRYCZNYCH

PROGRAM W ŚRODOWISKU LABVIEW DO POMIARU I OBLICZEŃ W LABORATORIUM MASZYN ELEKTRYCZNYCH XLIII SESJA STUDENCKICH KÓŁ NAUKOWYCH PROGRAM W ŚRODOWISKU LABVIEW DO POMIARU I OBLICZEŃ W LABORATORIUM MASZYN ELEKTRYCZNYCH Wykonali: Michał Górski, III rok Elektrotechnika Maciej Boba, III rok Elektrotechnika

Bardziej szczegółowo

UKŁADY PROSTOWNICZE 0.47 / 5W 0.47 / 5W D2 C / 5W

UKŁADY PROSTOWNICZE 0.47 / 5W 0.47 / 5W D2 C / 5W UKŁADY PROSTOWNICZE. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z budową i właściwościami podstawowych układów prostowniczych: prostownika jednopołówkowego, dwupołówkowego z dzielonym uzwojeniem

Bardziej szczegółowo

Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia

Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia MIKROSYSTEMY - laboratorium Ćwiczenie 3 Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia Zadania i cel ćwiczenia. W ćwiczeniu zostaną

Bardziej szczegółowo

BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO

BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO Temat ćwiczenia: BEZDOTYKOWY CZUJNIK ULTRADŹWIĘKOWY POŁOŻENIA LINIOWEGO 1. Wprowadzenie Ultradźwiękowy bezdotykowy czujnik położenia liniowego działa na zasadzie pomiaru czasu powrotu impulsu ultradźwiękowego,

Bardziej szczegółowo

WZMACNIACZ OPERACYJNY

WZMACNIACZ OPERACYJNY 1. OPIS WKŁADKI DA 01A WZMACNIACZ OPERACYJNY Wkładka DA01A zawiera wzmacniacz operacyjny A 71 oraz zestaw zacisków, które umożliwiają dołączenie elementów zewnętrznych: rezystorów, kondensatorów i zwór.

Bardziej szczegółowo

SILNIK INDUKCYJNY KLATKOWY

SILNIK INDUKCYJNY KLATKOWY SILNIK INDUKCYJNY KLATKOWY 1. Budowa i zasada działania silników indukcyjnych Zasadniczymi częściami składowymi silnika indukcyjnego są nieruchomy stojan i obracający się wirnik. Wewnętrzną stronę stojana

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

Ćwiczenie: "Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia"

Ćwiczenie: Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia Ćwiczenie: "Pomiary mocy w układach trójfazowych dla różnych charakterów obciążenia" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską

Bardziej szczegółowo

INSTRUKCJA DO OPROGRAMOWANIA KOMPUTEROWEGO

INSTRUKCJA DO OPROGRAMOWANIA KOMPUTEROWEGO INSTRUKCJA DO OPROGRAMOWANIA KOMPUTEROWEGO DLA LEKKIEJ PŁYTY DO BADAŃ DYNAMICZNYCH HMP LFG WYMAGANE MINIMALNE PARAMETRY TECHNICZNE: SPRZĘT: - urządzenie pomiarowe HMP LFG 4 lub HMP LFG Pro wraz z kablem

Bardziej szczegółowo

Opracować model ATP-EMTP silnika indukcyjnego i przeprowadzić analizę jego rozruchu.

Opracować model ATP-EMTP silnika indukcyjnego i przeprowadzić analizę jego rozruchu. PRZYKŁAD C5 Opracować model ATP-EMTP silnika indukcyjnego i przeprowadzić analizę jego rozruchu. W charakterze przykładu rozpatrzmy model silnika klatkowego, którego parametry są następujące: Moc znamionowa

Bardziej szczegółowo

Ćwiczenie: "Prądnica prądu przemiennego"

Ćwiczenie: Prądnica prądu przemiennego Ćwiczenie: "Prądnica prądu przemiennego" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:

Bardziej szczegółowo

Badanie obwodów rozgałęzionych prądu stałego z jednym źródłem. Pomiar mocy w obwodach prądu stałego

Badanie obwodów rozgałęzionych prądu stałego z jednym źródłem. Pomiar mocy w obwodach prądu stałego Badanie obwodów rozgałęzionych prądu stałego z jednym źródłem. Pomiar mocy w obwodach prądu stałego I. Prawa Kirchoffa Celem ćwiczenia jest zapoznanie się z rozpływami prądów w obwodach rozgałęzionych

Bardziej szczegółowo

Ćwiczenie 4: Eksploatacja systemu kontroli dostępu jednego Przejścia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 4: Eksploatacja systemu kontroli dostępu jednego Przejścia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U Eksploatacja URZĄDZEŃ ELEKTRONICZNYCH Ćwiczenie 4: Eksploatacja systemu kontroli dostępu jednego Przejścia Opracował mgr inż.

Bardziej szczegółowo

Wirtualne przyrządy pomiarowe

Wirtualne przyrządy pomiarowe Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Wirtualne przyrządy pomiarowe dr inż.. Roland PAWLICZEK Laboratorium Mechatroniki Cel zajęć ęć: Zapoznanie się ze strukturą układu pomiarowego

Bardziej szczegółowo

Przywracanie parametrów domyślnych. Przycisnąć przycisk STOP przez 5 sekund. Wyświetlanie naprzemienne Numer parametru Wartość parametru

Przywracanie parametrów domyślnych. Przycisnąć przycisk STOP przez 5 sekund. Wyświetlanie naprzemienne Numer parametru Wartość parametru Zadanie 1 Przywracanie parametrów domyślnych. Przycisnąć przycisk STOP przez 5 sekund. 5 Sekund = nie GOTOWY Wyświetlanie naprzemienne Numer parametru Wartość parametru 1 1 2009 Eaton Corporation. All

Bardziej szczegółowo

Trójfazowe silniki indukcyjne. 1. Wyznaczenie charakterystyk rozruchowych prądu stojana i momentu:

Trójfazowe silniki indukcyjne. 1. Wyznaczenie charakterystyk rozruchowych prądu stojana i momentu: A3 Trójfazowe silniki indukcyjne Program ćwiczenia. I. Silnik pierścieniowy 1. Wyznaczenie charakterystyk rozruchowych prądu stojana i momentu: a - bez oporów dodatkowych w obwodzie wirnika, b - z oporami

Bardziej szczegółowo

Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej

Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej Politechnika Łódzka Instytut Systemów Inżynierii Elektrycznej Laboratorium komputerowych systemów pomiarowych Ćwiczenie 8 Wykorzystanie modułów FieldPoint w komputerowych systemach pomiarowych 1. Wprowadzenie

Bardziej szczegółowo

Technik elektronik 311[07] Zadanie praktyczne

Technik elektronik 311[07] Zadanie praktyczne 1 Technik elektronik 311[07] Zadanie praktyczne Mała firma elektroniczna wyprodukowała tani i prosty w budowie prototypowy generator funkcyjny do zastosowania w warsztatach amatorskich. Podstawowym układem

Bardziej szczegółowo

Układy regulacji i pomiaru napięcia zmiennego.

Układy regulacji i pomiaru napięcia zmiennego. Układy regulacji i pomiaru napięcia zmiennego. 1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z metodami regulacji napięcia zmiennego, stosowanymi w tym celu układami elektrycznymi, oraz metodami

Bardziej szczegółowo

Badanie silnika skokowego

Badanie silnika skokowego Badanie silnika skokowego Badany silnik skokowy jest silnikiem reluktancyjnym z użłobkowanym wirnikiem wykonanym ze stali magnetycznie miękkiej (wirnik bierny). Dane znamionowe silnika skokowego: Typ:

Bardziej szczegółowo

Laboratorium Komputerowe Systemy Pomiarowe

Laboratorium Komputerowe Systemy Pomiarowe Jarosław Gliwiński, Łukasz Rogacz Laboratorium Komputerowe Systemy Pomiarowe ćw. Programowanie wielofunkcyjnej karty pomiarowej w VEE Data wykonania: 15.05.08 Data oddania: 29.05.08 Celem ćwiczenia była

Bardziej szczegółowo

Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO

Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO Ć w i c z e n i e POMIAY W OBWODACH PĄDU STAŁEGO. Wiadomości ogólne.. Obwód elektryczny Obwód elektryczny jest to układ odpowiednio połączonych elementów przewodzących prąd i źródeł energii elektrycznej.

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PĄDU SINUSOIDLNEGO

Bardziej szczegółowo

Laboratorium Komputerowe Systemy Pomiarowe

Laboratorium Komputerowe Systemy Pomiarowe Jarosław Gliwiński, Łukasz Rogacz Laboratorium Komputerowe Systemy Pomiarowe ćw. Zastosowania wielofunkcyjnej karty pomiarowej Data wykonania: 06.03.08 Data oddania: 19.03.08 Celem ćwiczenia było poznanie

Bardziej szczegółowo

Ćwiczenie 5: Pomiar parametrów i charakterystyk scalonych Stabilizatorów Napięcia i prądu REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 5: Pomiar parametrów i charakterystyk scalonych Stabilizatorów Napięcia i prądu REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 5: Pomiar parametrów i charakterystyk scalonych Stabilizatorów

Bardziej szczegółowo

Ćwiczenie 21. Badanie właściwości dynamicznych obiektów II rzędu. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:

Ćwiczenie 21. Badanie właściwości dynamicznych obiektów II rzędu. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia: Ćwiczenie Badanie właściwości dynamicznych obiektów II rzędu Program ćwiczenia:. Pomiary metodą skoku jednostkowego a. obserwacja charakteru odpowiedzi obiektu dynamicznego II rzędu w zależności od współczynnika

Bardziej szczegółowo

Badanie obwodów z prostownikami sterowanymi

Badanie obwodów z prostownikami sterowanymi Ćwiczenie nr 9 Badanie obwodów z prostownikami sterowanymi 1. Cel ćwiczenia Poznanie układów połączeń prostowników sterowanych; prostowanie jedno- i dwupołówkowe; praca tyrystora przy obciążeniu rezystancyjnym,

Bardziej szczegółowo

Badanie charakterystyki prądowo-napięciowej opornika, żarówki i diody półprzewodnikowej z wykorzystaniem zestawu SONDa

Badanie charakterystyki prądowo-napięciowej opornika, żarówki i diody półprzewodnikowej z wykorzystaniem zestawu SONDa Badanie charakterystyki prądowo-napięciowej opornika, żarówki i diody półprzewodnikowej z wykorzystaniem zestawu SONDa Celem doświadczenia jest wyznaczenie charakterystyk prądowo-napięciowych oraz zależności

Bardziej szczegółowo

Parametryzacja przetworników analogowocyfrowych

Parametryzacja przetworników analogowocyfrowych Parametryzacja przetworników analogowocyfrowych wersja: 05.2015 1. Cel ćwiczenia Celem ćwiczenia jest zaprezentowanie istoty działania przetworników analogowo-cyfrowych (ADC analog-to-digital converter),

Bardziej szczegółowo

Ćwiczenie nr 65. Badanie wzmacniacza mocy

Ćwiczenie nr 65. Badanie wzmacniacza mocy Ćwiczenie nr 65 Badanie wzmacniacza mocy 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów wzmacniaczy oraz wyznaczenie charakterystyk opisujących ich właściwości na przykładzie wzmacniacza

Bardziej szczegółowo