LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH
|
|
- Daria Nawrocka
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Ćwiczenie nr 1 oraz nr 2 Zapoznanie z Laboratorium oraz szkolenie BHP. Zasady posługiwania się przyrządami pomiarowymi. Podstawowe obwody elektryczne. Elementy R, C. Z tą instrukcją studenci przychodzą na pierwsze zajęcia (Ćw. nr 1). Obowiązuje ona także do Ćwiczenia nr 2 w zakresie znajomości poznanego sprzętu pomiarowego oraz parametrów elementów biernych R, C. Dostępna jest na stronie: 1 Ustalenia organizacyjne Obecność na pierwszym terminie zajęć (ćw. nr 1) jest bezwzględnie obowiązkowa ze względu na szkolenie BHP. Bez zaliczenia szkolenia nie można uczestniczyć w dalszych zajęciach. Kierownik Laboratorium: dr inż. Waldemar Oleszkiewicz, p. 206, C-2 Opiekun Laboratorium: Piotr Nowacki, p. 413a, C-2, tel Przebieg ćwiczeń i warunki zaliczenie laboratorium A. Organizacja grupy - studenci wykonują ćwiczenia w Laboratorium (sala 218 oraz sala 413, C-2) w zespołach 2-osobowych. Grupa studencka wykonuje ćwiczenie wg numeracji zgodnej z programem Laboratorium Przyrządów Półprzewodnikowych (LPP) w terminie oraz w sali zgodnie z harmonogramem zajęć. B. Realizacja programu Laboratorium 1. Studenta obowiązuje, po uprzednim przygotowaniu się, wykonanie i zaliczenie wszystkich ćwiczeń tematycznych (od nr 1 do nr 14) określonych programem LPP. Instrukcje do ćwiczeń udostępnione są na stronie 2. Student nie może w semestrze przekroczyć dwóch nieobecności. Przekroczenie tej liczby wymagać będzie (w sytuacjach szczególnych i udokumentowanych) zgody Kierownika Laboratorium na uzupełnienie zaległości i kontynuację zajęć w semestrze. 3. Sprawdzenie stopnia przygotowania do zajęć odbywać się będzie w postaci kartkówek bądź odpowiedzi ustnych. Oceniana też będzie poprawność oraz sprawność wykonania ćwiczenia. 1
2 4. Grupa ćwiczeniowa wykonuje jedno sprawozdanie oddawane w terminie zajęć (papier formatu A3 - papier kancelaryjny, z nagłówkiem wg. wzoru dostępnego w laboratorium). Sprawozdanie powinno zawierać: zapis wyników pomiarów wykreślonych w czasie trwania laboratorium i opisanych zależności funkcyjnych (typ badanego elementu, właściwy opis osi wykresu z podaniem wielkości mierzonych i ich jednostek}, wyniki obliczeń wykonanych na polecenie prowadzącego zajęcia (dokumentowane podpisem) z przedstawieniem sposobu obliczania oraz określeniem na wykresach przedziałów zmian wartości mierzonych, które są w nich wykorzystywane, ocenę pomiarów i wnioski odnoszące się do poprawności wykonania pomiarów, właściwości badanych elementów (z uwzględnieniem danych katalogowych badanych elementów). Sprawozdanie, po ocenie przez prowadzącego, jest udostępnione do wglądu studentom w terminie następnych zajęć, po czym przechowywane jest przez Prowadzącego przez dwa kolejne semestry. 5. Odrabianie ćwiczeń nie zrealizowanych możliwe jest tylko w tygodniu odróbczym. Terminy zajęć odróbczych określone zostaną w tygodniu poprzedzającym ostatnie zajęcia kursowe w semestrze. Zapisy na terminy odróbcze prowadzić będzie pan Piotr Nowacki w p. 413a, C-2. Na zajęcia odróbcze zapisani zostaną studenci, którzy otrzymają kartę zaliczenia od Prowadzącego zajęcia. 6. W czasie trwania ostatnich zajęć kursowych przeprowadzona zostanie wśród studentów, zgodnie z zaleceniem Dziekana Wydziału, anonimowa ankieta dotycząca oceny zajęć. Student zgodnie z obowiązującymi na uczelni procedurami winien/może ocenić kurs/zajęcia wypełniając elektroniczną ankietę oceny kursu. C. Zasady porządkowe obowiązujące w Laboratorium. Studenta wykonującego pomiary w Laboratorium obowiązuje przestrzeganie przepisów BHP związanych z obsługą urządzeń elektrycznych. Informacje dotyczące uszkodzeń bądź nieprawidłowości w funkcjonowaniu urządzeń studenci zgłaszają prowadzącemu zajęcia. Urządzenia uszkodzone należy odstawić na miejsce oznaczone Urządzenia uszkodzone D. Do dyspozycji studentów wykonujących ćwiczenia pozostają: urządzenia do sprawdzenia poprawności działania badanych elementów (zaleca się sprawdzanie elementów przed zmontowaniem układu pomiarowego), podręczny katalog elementów elektronicznych, instrukcje obsługi urządzeń wykorzystywanych w pomiarach (wydawane przez prowadzącego; instrukcje w wersji anglojęzycznej udostępnione przez producenta), stanowisko do wylutowywania bądź wlutowywania elementów (po operacji lutowania na płytce pomiarowej przez studentów płytka powinna być koniecznie skontrolowana przez prowadzącego zajęcia). Studenci zobowiązani są do posiadania na każdych zajęciach laboratoryjnych papieru milimetrowego, papieru do drukarki oraz papieru z podziałką w układzie logarytmicznym oraz logarytmiczno-liniowym (wzorzec na stronie LPP bądź przygotowany samodzielnie). Studenci pozostawiają prowadzącemu zajęcia uzyskane wyniki pomiarów (nawet cząstkowe) przy zestawionym układzie i włączonym stanowisku pomiarowym. 2
3 Po wykonaniu pomiarów grupa laboratoryjna zobowiązana jest do pozostawienia porządku na stanowisku tj.: rozłączenia układów pomiarowych, wyłączenia zasilania urządzeń, ułożenia przewodów (wg ich kolorów) w uchwytach, Prowadzący odbiera wykonane sprawozdania przy stanowisku pomiarowym sprawdzając czy pozostawiono porządek i czy zostało ono wyłączone. 2 Tematyka ćwiczeń Poszczególne ćwiczenia poświęcone są badaniu parametrów typowych półprzewodnikowych elementów elektronicznych i optoelektronicznych oraz układów zbudowanych na tych elementach. Charakteryzacja (opis) elementu elektronicznego polega najczęściej na przedstawieniu jego charakterystyki prądowo-napięciowej, oznaczanej jako I-U lub I=f(U), a także określeniu parametrów (dopuszczalnych, typowych), które są ważne z punktu widzenia zastosowania danego elementu w układach. W kolejnych ćwiczeniach, będą mierzone parametry układów prostowniczych i stabilizacyjnych oraz charakterystyki częstotliwościowe układów wzmacniających a także charakterystyki przełączania układów cyfrowych. 3 Przyrządy pomiarowe Stanowiska pomiarowe w laboratorium zestawione są z typowych przyrządów pomiarowych i urządzeń, z których działaniem i obsługą należy się bezwzględnie zapoznać. Do podstawowych przyrządów należą: - zasilacze napięcia stałego pracujące ze stabilizacją napięcia lub prądu - multimetry cyfrowe, z możliwością pomiaru wartości: I, U, R - źródła sygnałów zmiennych generatory - oscyloskopy cyfrowe połączone z drukarkami Niektóre ćwiczenia prowadzone są z pomocą zestawów komputerowych z magistralą GPIB do zbierania i obróbki danych pomiarowych. 4 Test kompetencji Po odbytych zajęciach w Laboratorium przyrządów półprzewodnikowych (kurs LPP I kod ETD003077L, kurs LPP II kod ETD004081L) studenci, na zakończenie cyklu kształcenia, zobowiązani są zaliczyć test kompetencji. Celem testu jest sprawdzenie w jakim stopniu studenci opanowali wiedzę dotyczącą znajomości zagadnień określonych w kartach kursów. Test ma za zadanie sprawdzenie znajomości i opanowania ogólnych umiejętności pomiarowych przez studentów oraz wiedzy z zakresu BHP obowiązujących w laboratoriach. Wymagane zagadnienia i umiejętności ogólne zostaną podane studentom do wiadomości w czasie trwania semestru. Niezaliczenie testu kompetencji wpływać będzie na ocenę końcową kursu LPP II. 5 Pomiary charakterystyki prądowo-napięciowej Pomiar charakterystyki I-U danego elementu polega na wymuszeniu przepływu prądu przez element poprzez przyłożenie do elementu napięcia. Wykonując, w określony sposób, sekwencję pomiarów otrzymuje się zbiór odpowiadających sobie wartości prądów i napięć tworzące punkty charakterystyki I-U. Pomiar można wykonać w sposób dyskretny poprzez ustalanie konkretnych wartości prądu lub napięcia i odczytywanie tej drugiej (napięcia lub prądu) lub w sposób ciągły korzystając z zasilacza umożliwiającego narost napięcia lub prądu w sposób z góry ustalony. Charakterystyki I-U - jak mówimy popularnie - zdejmuje się umieszczając badany element w układzie pomiarowym, który z reguły zawiera zasilacz (źródło napięcia lub prądu), rezystory pomocnicze ( np. 3
4 ograniczające prąd w obwodzie) oraz mierniki prądu i napięcia. W zależności od stosowanej metody pomiarowej wykorzystuje się różnego typu zasilacze oraz przyrządy pomiarowe. Na przykład: przyrządem do pomiaru napięcia może być woltomierz cyfrowy bądź oscyloskop. Zastosowanie programu komputerowego pozwala na automatyczne zdejmowanie charakterystyk I-U za pomocą mierników połączonych magistralą GPiB. W kolejnych punktach zostaną omówione metody pomiaru charakterystyk I-U stosowane podczas ćwiczeń. Pamiętaj o tym, że wykonując pomiary należy bezwzględnie PRZESTRZEGAĆ PRZEPISÓW BHP związanych z obsługą urządzeń elektrycznych. oraz REGULAMINU LABORATORIUM 5.1 Metoda techniczna pomiaru charakterystyk prądowo-napięciowych Prostą metodą wykorzystywaną do pomiaru charakterystyk prądowo-napięciowych jest metoda techniczna. Polega ona na wykonaniu szeregu pomiarów prądów i napięć dla kolejnych punktów charakterystyki, a następnie naniesieniu wyników tych pomiarów na wykres I-U. Jako źródło zasilania układu pomiarowego używa się zasilacza laboratoryjnego z regulowanym napięciem wyjściowym, z możliwością ustawienia ograniczenia prądowego (np. zasilacz Agilent E3631A). Schemat układu pomiarowego, stosowanego w tej metodzie, przedstawiono na rys. 1. Zastosowane mierniki prądu i napięcia to multimetry cyfrowe. 1k ma Zasilacz badany element? V Rys. 1. Schemat układu do pomiaru charakterystyki I-U metodą techniczną Szeregowo włączony do obwodu rezystor 1 k ułatwia płynne wymuszenie przepływu przez badany element prądu o wymaganym natężeniu. Jednocześnie rezystor ogranicza prąd w obwodzie dla danego napięcia zasilacza, przez co zmniejsza prawdopodobieństwo przypadkowych uszkodzeń elementu badanego wynikających z nieprawidłowości zestawienia układu pomiarowego. Odpowiednią wartość natężenia prądu uzyskuje się przez regulację napięcia zasilacza laboratoryjnego. Wartość natężenia prądu płynącego w układzie będzie wynikała ze spadku napięcia na rezystorze 1 k. Należy zwrócić uwagę na nominalną moc rezystora. Najczęściej stosowane w tym układzie są rezystory o mocy 1 W. Wówczas, uwaga: nie wolno przekroczyć 1 W mocy traconej w rezystorze. Wiadomo, że dla rezystora moc, P: 2 P I R I max P R max 1W ,032 A 32mA 30 ma 4
5 Wynika z tego, że w czasie pomiarów konieczne jest ustawienie ograniczenia prądowego w zasilaczu na 30 ma, lub mniej, gdy badany element wymaga ograniczenia prądowego na niższym poziomie. Jeżeli potrzebne jest zbadanie charakterystyki dla większych wartości natężenia prądu niż 30 ma, można zamienić rezystor na 100 (zastanówmy się, jaki będzie wówczas dopuszczalny prąd w obwodzie?) lub usunąć z układu rezystor, a wymagane natężenie prądu uzyskać przez odpowiednie ustawienie ograniczenia prądowego w zasilaczu pracującym stale w trybie ograniczenia prądowego. 5.2 Program komputerowy REJESTRATOR Program Rejestrator służy do obsługi układu pomiarowego z multimetrami komunikującymi się magistralą GPiB z komputerem. Układ pomiarowy przedstawiony jest na rys. 2. W tym wypadku elementem mierzonym jest dioda. Instrukcja obsługi programu Rejestrator XY dostępna jest na stronie internetowej Laboratorium w zakładce tematy ćwiczeń. ma Zasilacz badan y element V Rys. 2. Schemat układu do pomiaru charakterystyki I-U diody w kierunku przewodzenia za pomocą programu Rejestrator 6 Elemety elektroniczne bierne: rezystory i kondensatory (R, C) Podana będzie charakterystyka elementów biernych stosowanych w laboratorium. 6.1 Rezystory Rezystory (oporniki) to najczęściej spotykane elementy bierne w układach. Wykonywane są w różnych odmianach, przeważnie jako: - warstwowe metalowe cienka warstwa naparowanego metalu (np. CrNi) na korpusie ceramicznym, może być nacinana w celu zwiększenia długości ścieżki rezystywnej - rezystory węglowe - cienka warstwa grafitu na korpusie ceramicznym, - grubowarstwowe rezystywna warstwa cermetowa (cermet - mieszanina ceramiki i tlenków metali) nakładana np. metodą sitodruku na korpusy ceramiczne. W ten sposób wytwarzane są także rezystory miniaturowe do montażu powierzchniowego. - rezystory nawijane drutowe - szczególnie wytrzymałe dla dużych mocy. Rezystor jest elementem liniowym, tzn jego charakterystyka I-U jest prostą, co oznacza, że rezystancja (oporność) jest stała i nie zależy od wartości prądu, napięcia czy innych czynników. Innymi słowy, niezależnie od warunków, spełnione jest prawo Ohma: U = R I R = U/I [ =V/A] W innym przypadku mamy do czynienia z rezystorami nieliniowymi, np.: fotorezystory, termistory, warystory. Elementy te będą również badane w czasie ćwiczeń. Podstawowe parametry oporników to: rezystancja nominalna, tolerancja (maksymalna odchyłka od rezystancji nominalnej wyrażona w procentach), moc dopuszczalna, napięcie graniczne (dopuszczalne), temperaturowy współczynnik rezystancji (TWR), który określa zmiany rezystancji zachodzące pod wpływem temperatury. 5
6 Rezystory produkuje się masowo i klasyfikuje w standardowych szeregach wartości rezystancji i związanych z nimi określonych tolerancjach. n Wartości znamionowe rezystancji ułożone są w szeregi (E) z dzielnikiem: q = 10, gdzie n = 6, 12, 24, 48, 96, 192; n oznacza liczbę wartości nominalnych w ramach jednej dekady uzyskanych przez kolejne dzielenie, poczynając od 10/q, 10/q 2, 10/q 3 itd. Przykładowo, szeregowi o oznaczeniu E12 odpowiadają wielkości: n = 12, q = 1,21 i wartości nominalne: 1 1,2 1,5 1,8 2,2 2,7 3,3 3,9 4,7 5,6 6,8 8,2 10 wyrażające liczbę jednostek (, k lub M ) oraz tolerancja: ±10% (zwróćmy uwagę jaki jest możliwy maksymalny rozrzut sąsiadujących wartości nominalnych dla tej tolerancji). Biorąc pod uwagę zakres wymaganych wartości rezystorów do różnych zastosowań od 10 do 100 M, daje to siedem dekad, czyli 84 wartości oferowanych oporników w tym typoszeregu. Szereg E48 będzie miał 48 nominalnych wartości w ramach jednej dekady, a tolerancję ±2%, (Jaka tolerancja będzie dla szeregu E96?). Istnieje też szereg R40 gdzie n = 40. Typowe moce nominalne to 0,125 W, 0,25 W, 0,5 W, 1 W oraz 2 W. Ze względu na różną moc nominalną rezystory maja różne gabaryty. Oznaczenia (cechy) na rezystorach o dużych rozmiarach nanoszone są za pomocą symboli np.: 120 = 120, 15k = 15k, 1k1 = 1,1k, 1M =1M, ale 0R1 = 0,1 oraz 0E5 = 0,5. Na rezystorach o małych gabarytach zazwyczaj nanosi się kody paskowe w postaci 3 lub 4 barwnych pasków. Pierwsze dwa paski oznaczają dwie znaczące cyfry wartości, trzeci pasek mnożnik wartości, a czwarty oznacza tolerancję. Poniżej, w tabeli 1., podano znaczenie barw pasków. Tabela 1. Kody paskowe oznaczeń rezystorów kolor paska cyfra mnożnik tolerancja [ %] czarny brązowy czerwony pomarańcz żółty zielony ,5 niebieski ,25 fioletowy ,1 szary biały złoty srebrny Osobnym rodzajem rezystorów są rezystory regulowane: potencjometry lub reostaty, posiadające trzy wyprowadzenia, jedno podłączone do ślizgacza przesuwanego po ścieżce rezystywnej. 6.2 Kondensatory Kondensator składa się z dwóch przewodzących płytek (okładek) i dielektryka wypełniającego przestrzeń między płytkami. Właściwością kondensatora jest zdolność ładowania go ładunkiem elektrycznym pod wpływem przyłożonego napięcia. Pojemność kondensatora C wyraża się wzorem: C = Q/U, jednostka pojemności to farad [F = C/V] (kulomb/wolt) 6
7 Pojemności kondensatorów spotykanych w układach elektronicznych są dużo mniejsze niż 1 F, i wyrażane są zazwyczaj w pf, nf oraz F. Szeregi wartości nominalnych kondensatorów ułożone są podobnie do omówionych dla rezystorów. Do najważniejszych parametrów kondensatorów, oprócz wartości znamionowej pojemności, należą: dopuszczalne napięcie pracy (dla większych napięć grozi przebicie), tolerancja, stratność (tg ) oraz temperaturowy współczynnik pojemności (TWC). Wyróżnia się wiele typów kondensatorów związanych z konstrukcją i zastosowanym rodzajem dielektryka (od którego bierze się ich nazwa): - Kondensatory z tworzywa sztucznego (stała dielektryczna 2-3); dielektryk w postaci folii poliestrowej, polistyrenowej, poliwęglanowej (te mają szczególnie małą stratność i dobrą stabilność): elektrody z folii metalowej lub plastikowej metalizowanej. Najczęściej mają konstrukcję zwijanego rulonu folii dzięki czemu uzyskuje się duże pojemności (zakres od 10 pf do 100 F) oraz wysokie napięcia pracy do 1000 V. Popularne bo tanie w produkcji. - Kondensatory papierowe, historycznie bardzo popularne, obecnie stosowane wyłącznie jako odkłócające, a to dzięki właściwości samoregeneracji (odporność papieru na przebicia impulsowe) - Kondensatory ceramiczne produkowane z jednej lub wielu płytek ceramicznych. Stosowana ceramika dzieli się na trzy klasy: klasa 1 o małej stałej dielektrycznej, pojemności od 0,47 pf do 560 pf, klasa 2 - o dużej stałej dielektrycznej, pojemności od 10 pf do 10 F, klasa 3 ceramika z materiałów ferroelektrycznych o ekstremalnie wysokiej stałej dielektrycznej; pojemności nawet do 100 mf, ale niskie napięcia pracy. - Kondensatory mikowe (mika to minerał pozwalający łupać się na cienkie płatki) o bardzo dobrych właściwościach: mała stratność, wysoka stabilność, wysokie napięcia pracy. Są jednak duże i stosunkowo drogie. Powyższe typy kondensatorów są niepolaryzowalne, to znaczy biegunowość podłączenia nie odgrywa roli. Inaczej jest z kondensatorami elektrolitycznymi. - Kondensatory elektrolityczne (elektrolity) o elektrodach aluminiowych lub tantalowych. Jedna z elektrod (anoda) jest pokryta tlenkiem, a przestrzeń pomiędzy elektrodami jest wypełniona elektrolitem. Konieczne jest więc zachowanie biegunowości kondensatora. Obudowa kondensatora połączona jest do wyprowadzenia bieguna ujemnego (katody). W przypadku odwrotnego podłączenie istnieje groźba rozerwania obudowy ze względu na gazowanie elektrolitu. Kondensatory aluminiowe osiągają bardzo duże pojemności, nawet do 500 mf, ale mają niskie napięcia pracy, duże wymiary i ulegają starzeniu (ich parametry pogarszają się z upływem czasu). Nowsze rozwiązania to tzw elektrolity suche wytrzymałe na zmiany temperatur i odporne dużo bardziej na starzenie. Wytwarzane o pojemnościach do 2200 F. Natomiast kondensatory elektrolityczne tantalowe mają dużo lepsze parametry od aluminiowych: wyższe napięcia przebicia, mniejsze upływności i stratność oraz znacznie mniejsze wymiary (większa stała dielektryczna). Produkowane w zakresie pojemności do 1000 F. Obecnie można spotkać kondensatory o bardzo dużych, dawniej nie spotykanych, pojemnościach rzędu 1000 Faradów i jednocześnie małych gabarytach. Są to tzw. ultrakondensatory, gdzie zastosowano nanotechnologię do wytworzenia porowatego dielektryka. Dzięki temu efektywna powierzchnia okładek jest bardzo duża. Mimo że napięcia pracy są niskie, rzędu 2-3V, przy odpowiednich połączeniach ultrakondensatory mogą służyć do magazynowania energii, zastępując akumulatory. 7
LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH
LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Termin wprowadzający Zapoznanie z Laboratorium oraz szkolenie BHP Z tą instrukcją studenci przychodzą już na pierwsze zajęcia. Dostępna jest na stronie: http://156.17.46.1/lpp
Wydział Elektroniki Mikrosystemów i Fotoniki
Wydział Elektroniki Mikrosystemów i Fotoniki Opracował zespół: Marek Panek, Waldemar Oleszkiewicz, Iwona Zborowska-Lindert, Bogdan Paszkiewicz, Małgorzata Kramkowska, Beata Ściana, Zdzisław Synowiec, Bogusław
LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH
LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Termin wprowadzający Zapoznanie z Laboratorium oraz szkolenie BHP Z tą instrukcją studenci przychodzą już na pierwsze zajęcia. Dostępna jest na stronie: http://156.17.46.1/lpp/,
Kondensatory. Konstrukcja i właściwości
Kondensatory Konstrukcja i właściwości Zbigniew Usarek, 2018 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Podstawowe techniczne parametry
Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego:
Sprawozdanie z laboratorium elektroniki w Zakładzie Systemów i Sieci Komputerowych Temat ćwiczenia: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Sprawozdanie Rok: Grupa: Zespół:
Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji
Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 1 Temat: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Katedra Architektury Komputerów i Telekomunikacji
LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne
LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne ZADANIE D1 Cztery identyczne diody oraz trzy oporniki o oporach nie różniących się od siebie o więcej niż % połączono szeregowo w zamknięty obwód elektryczny.
Badanie diod półprzewodnikowych i elektroluminescencyjnych (LED)
Temat ćwiczenia: Badanie diod półprzewodnikowych i elektroluminescencyjnych (LED) - - ` Symbol studiów (np. PK10): data wykonania ćwiczenia - godzina wykonania ćwiczenia. Nazwisko i imię*: 1 Pluton/Grupa
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 (EZ1C500 055) BADANIE DIOD I TRANZYSTORÓW Białystok 2006
ELEMENTY ELEKTRONICZNE
KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE DIODY REV. 2.0 1. CEL ĆWICZENIA - pomiary charakterystyk stałoprądowych diod prostowniczych, świecących oraz stabilizacyjnych - praktyczne
LABORATORIUM PODSTAW ELEKTRONIKI MATERIAŁY POMOCNICZE SERIA PIERWSZA
LABORATORIUM PODSTAW ELEKTRONIKI MATERIAŁY POMOCNICZE SERIA PIERWSZA 1. Lutowanie lutowania ołowiowe i bezołowiowe, przebieg lutowania automatycznego (strefy grzania i przebiegi temperatur), narzędzia
Sprzęt i architektura komputerów
Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Sprzęt i architektura komputerów Laboratorium Temat:Pomiary podstawowych wielkości elektryczych: prawa Ohma i Kirchhoffa Katedra Architektury
Temat: Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych
INSTYTUT SYSTEMÓW INŻYNIERII ELEKTRYCZNEJ POLITECHNIKI ŁÓDZKIEJ WYDZIAŁ: KIERUNEK: ROK AKADEMICKI: SEMESTR: NR. GRUPY LAB: SPRAWOZDANIE Z ĆWICZEŃ W LABORATORIUM METROLOGII ELEKTRYCZNEJ I ELEKTRONICZNEJ
Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia
Wrocław, 21.03.2017 r. Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Podczas testu kompetencji studenci powinni wykazać się znajomością zagadnień określonych w kartach kursów
Kondensator. Kondensator jest to układ dwóch przewodników przedzielonych
Kondensatory Kondensator Kondensator jest to układ dwóch przewodników przedzielonych dielektrykiem, na których zgromadzone są ładunki elektryczne jednakowej wartości ale o przeciwnych znakach. Budowa Najprostsze
Podstawy użytkowania i pomiarów za pomocą MULTIMETRU
Podstawy użytkowania i pomiarów za pomocą MULTIMETRU Spis treści Informacje podstawowe...2 Pomiar napięcia...3 Pomiar prądu...5 Pomiar rezystancji...6 Pomiar pojemności...6 Wartość skuteczna i średnia...7
Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302)
Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302) 1. Elementy elektroniczne stosowane w ćwiczeniach Elementy elektroniczne będące przedmiotem pomiaru, lub służące do zestawienia
OPORNIKI POŁĄCZONE SZEREGOWO: W połączeniu szeregowym rezystancja zastępcza jest sumą poszczególnych wartości:
REZYSTOR Opornik (rezystor) najprostszy, rezystancyjny element bierny obwodu elektrycznego. Jest elementem liniowym: spadek napięcia jest wprost proporcjonalny do prądu płynącego przez opornik. Przy przepływie
BADANIE ELEMENTÓW RLC
KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE BADANIE ELEMENTÓW RLC REV. 1.0 1. CEL ĆWICZENIA - zapoznanie się z systemem laboratoryjnym NI ELVIS II, - zapoznanie się z podstawowymi
WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTRYCE I ELEKTRONICE
WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTRYCE I ELEKTRONICE Klasa: 2Tc Technik mechatronik Program: 311410 (KOWEZIU ) Wymiar: 4h tygodniowo Na ocenę dopuszczającą uczeń: Zna
Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne
Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 3 Temat: Diody półprzewodnikowe i elementy reaktancyjne SPIS TREŚCI Spis treści... 2 1. Cel ćwiczenia... 3 2. Wymagania...
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 BADANIE TRANZYSTORÓW BIAŁYSTOK 2015 1. CEL I ZAKRES
E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA
E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany
Ćw. III. Dioda Zenera
Cel ćwiczenia Ćw. III. Dioda Zenera Zapoznanie się z zasadą działania diody Zenera. Pomiary charakterystyk statycznych diod Zenera. Wyznaczenie charakterystycznych parametrów elektrycznych diod Zenera,
2.3. Bierne elementy regulacyjne rezystory, Rezystancja znamionowa Moc znamionowa, Napięcie graniczne Zależność rezystancji od napięcia
2.3. Bierne elementy regulacyjne 2.3.1. rezystory, Rezystory spełniają w laboratorium funkcje regulacyjne oraz dysypacyjne (rozpraszają energię obciążenia) Parametry rezystorów. Rezystancja znamionowa
LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STDIA DZIENNE e LABOATOIM PZYZĄDÓW PÓŁPZEWODNIKOWYCH Ćwiczenie nr Pomiar częstotliwości granicznej f T tranzystora bipolarnego Wykonując
Ćwiczenie nr 34. Badanie elementów optoelektronicznych
Ćwiczenie nr 34 Badanie elementów optoelektronicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elementami optoelektronicznymi oraz ich podstawowymi parametrami, a także doświadczalne sprawdzenie
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej
WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTROTECHNICE I ELEKTRONICE
WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTROTECHNICE I ELEKTRONICE Klasa: 1 i 2 ZSZ Program: elektryk 741103 Wymiar: kl. 1-3 godz. tygodniowo, kl. 2-4 godz. tygodniowo Klasa
Laboratorum 4 Dioda półprzewodnikowa
Laboratorum 4 Dioda półprzewodnikowa Marcin Polkowski (251328) 19 kwietnia 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Opis ćwiczenia 2 3 Wykonane pomiary 3 3.1 Dioda krzemowa...............................................
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra utomatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIK ENS1C300 022 WYBRNE ZSTOSOWNI DIOD PÓŁPRZEWODNIKOWYCH BIŁYSTOK
Badanie półprzewodnikowych elementów bezzłączowych
Instrukcja do ćwiczenia: Badanie półprzewodnikowych elementów bezzłączowych (wersja robocza) Laboratorium Elektroenergetyki 1 1. Cel ćwiczenia. Celem ćwiczenia jest: Poznanie podstawowych właściwości i
Laboratorium Metrologii
Laboratorium Metrologii Ćwiczenie nr 3 Oddziaływanie przyrządów na badany obiekt I Zagadnienia do przygotowania na kartkówkę: 1 Zdefiniować pojęcie: prąd elektryczny Podać odpowiednią zależność fizyczną
BADANIE DIOD PÓŁPRZEWODNIKOWYCH
BAANE O PÓŁPZEWONKOWYCH nstytut izyki Akademia Pomorska w Słupsku Cel i ćwiczenia. Celem ćwiczenia jest: - zapoznanie się z przebiegiem charakterystyk prądowo-napięciowych diod różnych typów, - zapoznanie
Laboratorium Podstaw Elektrotechniki i Elektroniki
Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 2 OBWODY NIELINIOWE PRĄDU
Skrócony opis dostępnych na stanowiskach studenckich makiet laboratoryjnych oraz zestawu elementów do budowy i badań układów elektronicznych
POLITECHNIKA WROCŁAWSKA Wydział Elektryczny Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Podstaw Elektroniki bud. A-5 s.211 (a,b) Skrócony opis dostępnych na stanowiskach studenckich makiet
Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE
Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych
Dioda półprzewodnikowa
COACH 10 Dioda półprzewodnikowa Program: Coach 6 Projekt: na MN060c CMA Coach Projects\PTSN Coach 6\ Elektronika\dioda_2.cma Przykład wyników: dioda2_2.cmr Cel ćwiczenia - Pokazanie działania diody - Wyznaczenie
Wyznaczanie charakterystyki prądowo-napięciowej wybranych elementów 1
Wyznaczanie charakterystyki prądowo-napięciowej wybranych elementów 1 Andrzej Koźmic, Natalia Kędroń 2 Cel ogólny: Wyznaczenie charakterystyki prądowo-napięciowej opornika i żarówki Cele operacyjne: uczeń,
WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW
POLTECHNKA WARSZAWSKA NSTYTUT RADOELEKTRONK ZAKŁAD RADOKOMUNKACJ WECZOROWE STUDA ZAWODOWE LABORATORUM OBWODÓW SYGNAŁÓW Ćwiczenie 1 Temat: OBWODY PRĄDU STAŁEGO Opracował: mgr inż. Henryk Chaciński Warszawa
NIEZBĘDNY SPRZĘT LABORATORYJNY
Temat: Własności diody p-n Cel ćwiczenia Ćwiczenie 30 Zrozumienie właściwości diod ze złączem p-n. Poznanie własności diod każdego typu. Nauka testowania parametrów diod każdego typu za pomocą różnych
Przykładowe zadanie egzaminacyjne dla kwalifikacji E.20 w zawodzie technik elektronik
1 Przykładowe zadanie egzaminacyjne dla kwalifikacji E.20 w zawodzie technik elektronik Znajdź usterkę oraz wskaż sposób jej usunięcia w zasilaczu napięcia stałego 12V/4A, wykonanym w oparciu o układ scalony
LABORATORIUM Miernictwa elementów optoelektronicznych
Ćw. 4. Wydział Elektroniki Mikrosystemów i Fotoniki LABORATORIUM Miernictwa elementów optoelektronicznych Pomiary częstotliwościowe detektorów opis ćwiczenia Opracował zespół: pod kierunkiem Damiana Radziewicza
ELEMENTY ELEKTRONICZNE TS1C300 018
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENY ELEKONICZNE S1C300 018 BIAŁYSOK 2013 1. CEL I ZAKES ĆWICZENIA LABOAOYJNEGO
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 Kod: ES1C400 026 BADANIE WYBRANYCH DIOD I TRANZYSTORÓW BIAŁYSTOK
ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI
1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności
ELEMENTY ELEKTRONICZNE TS1C
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki nstrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENTY ELEKTRONCZNE TS1C300 018 BAŁYSTOK 013 1. CEL ZAKRES ĆWCZENA LABORATORYJNEGO
Ćwiczenie nr 65. Badanie wzmacniacza mocy
Ćwiczenie nr 65 Badanie wzmacniacza mocy 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów wzmacniaczy oraz wyznaczenie charakterystyk opisujących ich właściwości na przykładzie wzmacniacza
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.
Projekt efizyka. Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Prawa Kirchhoffa. Ćwiczenie wirtualne
Projekt efizyka Multimedialne środowisko nauczania fizyki dla szkół ponadgimnazjalnych. Prawa Kirchhoffa Ćwiczenie wirtualne Marcin Zaremba 2015-03-31 Projekt współfinansowany przez Unię Europejską w ramach
Ćwiczenie: "Pomiary rezystancji przy prądzie stałym"
Ćwiczenie: "Pomiary rezystancji przy prądzie stałym" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.
ZSME E. Karol Kalinowski kl. 1e 2010 / 2011
ZSME E T K Karol Kalinowski kl. 1e 2010 / 2011 Slajd 1: Historia kondensatorów Odkrycie kondensatora przypisuje się Pieterowi van Musschenbroekowi w styczniu 1746 roku w Lejdzie (Holandia). Nastąpiło ono
Instrukcja do ćwiczenia laboratoryjnego nr 7
Instrukcja do ćwiczenia laboratoryjnego nr 7 Temat: Badanie właściwości elektrycznych półprzewodnikowych przyrządów optoelektronicznych.. Cel ćwiczenia: Poznanie budowy, zasady działania, charakterystyk
Technik elektronik 311[07] Zadanie praktyczne
1 Technik elektronik 311[07] Zadanie praktyczne Mała firma elektroniczna wyprodukowała tani i prosty w budowie prototypowy generator funkcyjny do zastosowania w warsztatach amatorskich. Podstawowym układem
Badanie elementów składowych monolitycznych układów scalonych II
1 Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE Ćwiczenie nr 14 LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Badanie elementów składowych monolitycznych układów scalonych
METROLOGIA EZ1C
Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METOLOGI Kod przedmiotu: EZ1C 300 016 POMI EZYSTNCJI METODĄ
WYDZIAŁ.. LABORATORIUM FIZYCZNE
W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się
POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych
POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych Studia... Kierunek... Grupa dziekańska... Zespół... Nazwisko i Imię 1.... 2.... 3.... 4.... Laboratorium...... Ćwiczenie
Ćwiczenie nr 254. Badanie ładowania i rozładowywania kondensatora. Ustawiony prąd ładowania I [ ma ]: t ł [ s ] U ł [ V ] t r [ s ] U r [ V ] ln(u r )
Nazwisko... Data... Wydział... Imię... Dzień tyg.... Godzina... Ćwiczenie nr 254 Badanie ładowania i rozładowywania kondensatora Numer wybranego kondensatora: Numer wybranego opornika: Ustawiony prąd ładowania
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu
Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Laboratorium Elektryczne Montaż Maszyn i Urządzeń Elektrycznych Instrukcja Laboratoryjna: Badanie ogniwa galwanicznego. Opracował: mgr inż.
Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym
Ćwiczenie 1 Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym Wprowadzenie Celem ćwiczenia jest sprawdzenie podstawowych praw elektrotechniki w obwodach prądu stałego. Badaniu
ELEMENTY ELEKTRONICZNE
KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE DIODY REV. 1.2 1. CEL ĆWICZENIA - pomiary charakterystyk stałoprądowych diod prostowniczych, świecących oraz stabilizacyjnych - praktyczne
Badanie bezzłączowych elementów elektronicznych
Temat ćwiczenia: Badanie bezzłączowych elementów elektronicznych - - ` Symbol studiów (np. PK10): data wykonania ćwiczenia - Dzień tygodnia: godzina wykonania ćwiczenia Lp. Nazwisko i imię*: 1 Pluton/Grupa
TRANZYSTORY BIPOLARNE
Instrukcja do ćwiczenia laboratoryjnego TRANZYSTORY BIPOLARNE Instrukcję opracował: dr inż. Jerzy Sawicki Wymagania, znajomość zagadnień: 1. Tranzystory bipolarne rodzaje, typowe parametry i charakterystyki,
Własności i zastosowania diod półprzewodnikowych
Własności i zastosowania diod półprzewodnikowych 1. zas trwania: 6h 2. el ćwiczenia Badanie charakterystyk prądowo-napięciowych różnych typów diod półprzewodnikowych. Montaż i badanie wybranych układów,
LVI OLIMPIADA FIZYCZNA (2006/2007). Stopień III, zadanie doświadczalne D
LI OLIMPIADA FIZYCZNA (26/27). Stopień III, zadanie doświadczalne D Źródło: Autor: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej. Andrzej ysmołek Komitet Główny Olimpiady Fizycznej,
Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą.
Ćwiczenie nr 9 Pomiar rezystancji metodą porównawczą. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne poznanie różnych metod pomiaru rezystancji, a konkretnie zapoznanie się z metodą porównawczą. 2. Dane
Pomiar podstawowych wielkości elektrycznych
Instytut Fizyki ul. Wielkopolska 15 70-451 Szczecin 1 Pracownia Elektroniki. Pomiar podstawowych wielkości elektrycznych........ (Oprac. dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia:
CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zastosowaniem diod i wzmacniacza operacyjnego
WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA: Celem ćwiczenia
Laboratorium Podstaw Elektrotechniki i Elektroniki
Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PĄDU SINUSOIDLNEGO
PRAWO OHMA DLA PRĄDU PRZEMIENNEGO
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa
Laboratorium Podstaw Pomiarów
Laboratorium Podstaw Pomiarów Dokumentowanie wyników pomiarów protokół pomiarowy Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik
Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO
Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO
Państwowa Wyższa Szkoła Zawodowa
Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 2 PRWO OHM. BDNIE DWÓJNIKÓW LINIOWYCH I NIELINIOWYCH . Cel ćwiczenia. - Zapoznanie się z właściwościami
DIODY PÓŁPRZEWODNIKOWE
Instrukcja do ćwiczenia laboratoryjnego DIODY PÓŁPRZEWODNIKOWE Instrukcję opracował: dr inż. Jerzy Sawicki Wymagania i wiedza konieczna do wykonania ćwiczenia: 1. Znajomość instrukcji do ćwiczenia, w tym
Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU
REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza
ĆWICZENIE nr 5. Pomiary rezystancji, pojemności, indukcyjności, impedancji
Politechnika Łódzka Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych WWW.DSOD.PL LABORATORIUM METROLOGII ELEKTRONICZNEJ ĆWICZENIE nr 5 Pomiary rezystancji, pojemności, indukcyjności, impedancji
STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych
STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych Wstęp Celem ćwiczenia jest zapoznanie się z problemami związanymi z projektowaniem, realizacją i pomiarami
Elementy i obwody nieliniowe
POLTCHNKA ŚLĄSKA WYDZAŁ NŻYNR ŚRODOWSKA NRGTYK NSTYTT MASZYN RZĄDZŃ NRGTYCZNYCH LABORATORM LKTRYCZN lementy i obwody nieliniowe ( 3) Opracował: Dr inż. Włodzimierz OGLWCZ 3 1. Cel ćwiczenia Celem ćwiczenia
Instrukcja do ćwiczenia laboratoryjnego nr 13
Instrukcja do ćwiczenia laboratoryjnego nr 13 Temat: Charakterystyki i parametry dyskretnych półprzewodnikowych przyrządów optoelektronicznych Cel ćwiczenia. Celem ćwiczenia jest poznanie budowy, zasady
Ćwiczenie nr 123: Dioda półprzewodnikowa
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 123: Dioda półprzewodnikowa
Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych"
Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki.
Ćwiczenie 15 Temat: Zasada superpozycji, twierdzenia Thevenina i Nortona Cel ćwiczenia
Ćwiczenie 15 Temat: Zasada superpozycji, twierdzenia Thevenina i Nortona Cel ćwiczenia Sprawdzenie zasady superpozycji. Sprawdzenie twierdzenia Thevenina. Sprawdzenie twierdzenia Nortona. Czytanie schematów
Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie
Uniwersytet Pedagogiczny im. Komisji Edukacji Narodowej w Krakowie Laboratorium elektroniki Ćwiczenie nr 1 Temat: PRZYRZĄDY POMIAROWE Rok studiów Grupa Imię i nazwisko Data Podpis Ocena 1. Wprowadzenie
LABORATORIUM INŻYNIERII MATERIAŁOWEJ
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Protokół
Badanie charakterystyk elementów półprzewodnikowych
Badanie charakterystyk elementów półprzewodnikowych W ramach ćwiczenia student poznaje praktyczne właściwości elementów półprzewodnikowych stosowanych w elektronice przez badanie charakterystyk diody oraz
SENSORY i SIECI SENSOROWE
SKRYPT DO LABORATORIUM SENSORY i SIECI SENSOROWE ĆWICZENIE 1: Pętla prądowa 4 20mA Osoba odpowiedzialna: dr hab. inż. Piotr Jasiński Gdańsk, 2018 1. Informacje wstępne Cele ćwiczenia: Celem ćwiczenia jest
Laboratorium Podstaw Pomiarów
Laboratorium Podstaw Pomiarów Ćwiczenie 5 Pomiary rezystancji Instrukcja Opracował: dr hab. inż. Grzegorz Pankanin, prof. PW Instytut Systemów Elektronicznych Wydział Elektroniki i Technik Informacyjnych
Temat: Elementy elektroniczne stosowane w urządzeniach techniki komputerowej
Temat: Elementy elektroniczne stosowane w urządzeniach techniki komputerowej W układach elektronicznych występują: Rezystory Rezystor potocznie nazywany opornikiem jest jednym z najczęściej spotykanych
SPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ
Laboratorium Podstaw Elektroniki Marek Siłuszyk Ćwiczenie M 4 SPWDZENE PW OHM POM EZYSTNCJ METODĄ TECHNCZNĄ opr. tech. Mirosław Maś niwersytet Przyrodniczo - Humanistyczny Siedlce 2013 1. Wstęp Celem ćwiczenia
Ćwiczenie 4 Pomiar prądu i napięcia stałego
Ćwiczenie 4 Pomiar prądu i napięcia stałego Instrukcja do ćwiczenia laboratoryjnego opracowali: Łukasz Śliwczyński Witold Skowroński Karol Salwik ver. 3, 05.2019 1. Cel ćwiczenia Zapoznanie się z metodami
KIT ZR-01 Zasilacz stabilizowany V, 1.5A
KIT ZR-01 Zasilacz stabilizowany 1.2...30V, 1.5A Zestaw do samodzielnego montaŝu 1) MontaŜ elementów na płytce rys.1 rys.2 MontaŜ elementów na płytce naleŝy zacząć od wlutowania rezystora (R1=220Ω). Rezystor
R 1. Układy regulacji napięcia. Pomiar napięcia stałego.
kłady regulacji napięcia. Pomiar napięcia stałego.. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z metodami regulacji napięcia stałego, stosowanymi w tym celu układami elektrycznymi, oraz metodami
st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE
Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Układem
Pomiar rezystancji metodą techniczną
Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja
Ćwiczenie 6 BADANIE STABILNOŚCI TEMPERATUROWEJ KONDENSATORÓW I CEWEK. Laboratorium Inżynierii Materiałowej
Ćwiczenie 6 BADANIE STABILNOŚCI TEMPERATUROWEJ KONDENSATORÓW I CEWEK Laboratorium Inżynierii Materiałowej 1. CEL ĆWICZENIA Celem ćwiczenia jest zbadanie stabilności cieplnej indukcyjnych oraz doświadczalne
Laboratorium Podstaw Elektrotechniki i Elektroniki
Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1) Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDLNEGO
Dioda półprzewodnikowa OPRACOWANIE: MGR INŻ. EWA LOREK
Dioda półprzewodnikowa OPRACOWANIE: MGR INŻ. EWA LOREK Budowa diody Dioda zbudowana jest z dwóch warstw półprzewodników: półprzewodnika typu n (nośnikami prądu elektrycznego są elektrony) i półprzewodnika