LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH"

Transkrypt

1 LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Termin wprowadzający Zapoznanie z Laboratorium oraz szkolenie BHP Z tą instrukcją studenci przychodzą już na pierwsze zajęcia. Dostępna jest na stronie: oraz w punkcie ksero w budynkuc-1. 1 Ustalenia organizacyjne Obecność na pierwszym terminie zajęć jest bezwzględnie obowiązkowa ze względu na szkolenie BHP. Bez zaliczenia szkolenia nie można uczestniczyć w dalszych zajęciach. Kierownik Laboratorium: dr inż. Waldemar Oleszkiewicz, p. 206, C-2 Opiekun Laboratorium: Ryszard Ciechanowski, p. 413, C Przebieg ćwiczeń i warunki zaliczenie laboratorium A. Organizacja grupy - studenci wykonują ćwiczenia w Laboratorium (sala 218 oraz sala 413, C-2) w zespołach 2-osobowych. W terminie określonym harmonogramem grupa studencka wykonuje ćwiczenie wg numeracji zgodnej z programem Laboratorium Przyrządów Półprzewodnikowych oraz w sali zgodnie z harmonogramem. B. Realizacja programu Laboratorium 1. Studenta obowiązuje, po uprzednim przygotowaniu się, wykonanie i zaliczenie ośmiu ćwiczeń określonych programem LPP. Instrukcje do ćwiczeń udostępnione są na stronie laboratorium Student nie może w semestrze przekroczyć dwóch nieobecności. Przekroczenie tej liczby wymagać będzie (w sytuacjach szczególnych i udokumentowanych) zgody Dziekana na kontynuację zajęć w semestrze. 3. Sprawdzenie stopnia przygotowania do zajęć odbywać się będzie w postaci kartkówek bądź odpowiedzi ustnych. Oceniana też będzie poprawność oraz sprawność wykonania ćwiczenia. 4. Grupa ćwiczeniowa wykonuje jedno sprawozdanie oddawane w terminie zajęć (papier formatu A3 - papier kancelaryjny, opieczętowany pieczątką dostępną w laboratorium). Sprawozdanie powinno zawierać: zapis wyników pomiarów wykreślonych w czasie trwania laboratorium i opisanych zależności funkcyjnych (typ badanego elementu, właściwy opis osi wykresu z podaniem wielkości mierzonych i ich jednostek}, 1

2 wyniki obliczeń wykonanych na polecenie prowadzącego zajęcia (dokumentowane podpisem) z przedstawieniem sposobu obliczania oraz określeniem na wykresach przedziałów zmian wartości mierzonych, które są w nich wykorzystywane, ocenę pomiarów i wnioski odnoszące się do poprawności wykonania pomiarów, właściwości badanych elementów (z uwzględnieniem danych katalogowych badanych elementów). Sprawozdanie, po ocenie przez prowadzącego, jest udostępnione do wglądu studentom w terminie następnych zajęć, po czym przechowywane jest przez Prowadzącego do końca semestru. 5. Odrabianie ćwiczeń nie zrealizowanych możliwe jest tylko w tygodniu odróbczym. Terminy zajęć odróbczych określone zostaną w tygodniu poprzedzającym ostatnie zajęcia kursowe w semestrze. Zapisy na terminy odróbcze prowadzić będzie pan Ryszard Ciechanowski. 6. W czasie trwania ostatnich zajęć kursowych przeprowadzona zostanie wśród studentów, zgodnie z zaleceniem Dziekana Wydziału, anonimowa ankieta dotycząca oceny zajęć. C. Zasady porządkowe obowiązujące w Laboratorium. Studenta wykonującego pomiary w Laboratorium Przyrządów Półprzewodnikowych obowiązuje przestrzeganie przepisów BHP związanych z obsługą urządzeń elektrycznych. Informacje dotyczące uszkodzeń bądź nieprawidłowości w funkcjonowaniu urządzeń studenci zgłaszają prowadzącemu zajęcia. Urządzenia uszkodzone należy odstawić na miejsce oznaczone Urządzenia uszkodzone D. Do dyspozycji studentów wykonujących ćwiczenia pozostają: urządzenia do sprawdzenia poprawności działania badanych elementów (zaleca się sprawdzanie elementów przed zmontowaniem układu pomiarowego), podręczny katalog elementów elektronicznych, instrukcje obsługi urządzeń wykorzystywanych w pomiarach (wydawane przez prowadzącego), stanowisko do wylutowywania bądź wlutowywania elementów (po operacji lutowania na płytce pomiarowej przez studentów płytka powinna być koniecznie skontrolowana przez prowadzącego zajęcia). Studenci zobowiązani są do posiadania papieru milimetrowego, papieru do drukarki oraz papieru z podziałką w układzie logarytmicznym oraz logarytmiczno-liniowym (wzorzec A4 do skopiowania dostępny w punktach ksero C-1, C-5), na każdych zajęciach laboratoryjnych. Studenci zgłaszają prowadzącemu zajęcia uzyskane wyniki pomiarów (nawet cząstkowe) przy zestawionym układzie i włączonym stanowisku pomiarowym. Po wykonaniu pomiarów grupa laboratoryjna zobowiązana jest do pozostawienia porządku na stanowisku tj.: rozłączenia układów pomiarowych, wyłączenia zasilania urządzeń, ułożenia przewodów (wg ich kolorów) w uchwytach, Prowadzący odbiera wykonane sprawozdania przy stanowisku pomiarowym sprawdzając czy pozostawiono porządek i czy zostało ono wyłączone. 2

3 1.2 Tematyka ćwiczeń Poszczególne ćwiczenia poświęcone są badaniu parametrów typowych przyrządów półprzewodnikowych (elementów elektronicznych i optoelektronicznych) oraz układów scalonych. Charakteryzacja (opis) elementu elektronicznego polega najczęściej na przedstawieniu jego charakterystyki prądowo-napięciowej, oznaczanej jako I-U lub I=f(U), a także określeniu parametrów (dopuszczalnych, typowych), które są ważne z punktu widzenia zastosowania danego elementu w układach. Oprócz elementarnych charakterystyk I-U, w kolejnych ćwiczeniach, będą mierzone także charakterystyki częstotliwościowe i parametry układów wzmacniających oraz charakterystyki przełączania elementów i układów cyfrowych. 2 Przyrządy pomiarowe Stanowiska pomiarowe w laboratorium zestawione są z typowych przyrządów pomiarowych i urządzeń, z których działaniem i obsługą należy się bezwzględnie zapoznać. Do podstawowych przyrządów należą: - zasilacze napięcia stałego pracujące ze stabilizacją napięcia lub prądu - multimetry cyfrowe, z możliwością pomiaru wartości: I, U, R - źródła sygnałów zmiennych generatory - charakterografy, czyli regulowane zasilacze kalibrowane współpracujące z oscyloskopem - oscyloskopy cyfrowe połączone z drukarkami do kopiowania obrazu ekranu Niektóre ćwiczenia prowadzone są z pomocą zestawów komputerowych z magistralą GPIB do zbierania i obróbki danych pomiarowych. 3 Pomiary charakterystyki prądowo-napięciowej Pomiar charakterystyki I-U danego elementu polega na wymuszeniu przepływu prądu przez element poprzez przyłożenie do elementu napięcia. Wykonując, w określony sposób, sekwencję pomiarów otrzymuje się zbiór odpowiadających sobie wartości prądów i napięć tworzące punkty charakterystyki I-U. Pomiar można wykonać w sposób dyskretny poprzez ustalanie konkretnych wartości prądu lub napięcia i odczytywanie tej drugiej (napięcia lub prądu) lub w sposób ciągły korzystając z zasilacza dającego narost napięcia lub prądu w z góry ustalony sposób. Charakterystyki I-U - jak mówimy popularnie - zdejmuje się umieszczając badany element w układzie pomiarowym, który z reguły zawiera zasilacz (źródło napięcia lub prądu), rezystory pomocnicze ( np. ograniczające prąd w obwodzie) oraz mierniki prądu i napięcia. W zależności od stosowanej metody pomiarowej wykorzystuje się różne zasilacze oraz przyrządy pomiarowe. Na przykład: przyrządem do pomiaru napięcia może być woltomierz cyfrowy, ale także oscyloskop lub rejestrator przebiegu napięciowego. Wykonując pomiary PRZESTRZEGAJ PRZEPISÓW BHP związanych z obsługą urządzeń elektrycznych. W kolejnych punktach zostaną omówione metody pomiaru charakterystyk I-U stosowane podczas ćwiczeń. 3

4 3.1 Metoda techniczna pomiaru charakterystyk prądowo-napięciowych Prostą metodą wykorzystywaną do pomiaru charakterystyk prądowo-napięciowych jest metoda techniczna. Polega ona na wykonaniu szeregu pomiarów prądów i napięć dla kolejnych punktów charakterystyki, a następnie naniesieniu wyników tych pomiarów na wykres I-U. Jako źródło zasilania układu pomiarowego używa się zasilacza laboratoryjnego z regulowanym napięciem wyjściowym, z możliwością ustawienia ograniczenia prądowego (np. zasilacz P317). Schemat układu pomiarowego, stosowanego w tej metodzie, przedstawiono na rys.1. Zastosowane mierniki prądu i napięcia to multimetry cyfrowe. 1kW ma Zasilacz P317 badany element? V Rys. 1: Schemat układu do pomiaru charakterystyki I-U metodą techniczną. Szeregowo włączony do obwodu rezystor 1 kw ułatwia płynne wymuszenie przepływu przez badany element prądu o wymaganym natężeniu. Jednocześnie rezystor ogranicza prąd w obwodzie dla danego napięcia zasilacza, przez co zmniejsza prawdopodobieństwo przypadkowych uszkodzeń elementu badanego wynikających z nieprawidłowości zestawienia układu pomiarowego. Odpowiednią wartość natężenia prądu uzyskuje się przez regulację napięcia zasilacza laboratoryjnego. Wartość natężenia prądu płynącego w układzie będzie wynikała ze spadku napięcia na rezystorze 1 kw. Należy zwrócić uwagę na nominalną moc rezystora. Najczęściej stosowane w tym układzie są rezystory o mocy 1 W. Wówczas uwaga: nie wolno przekroczyć 1 W mocy traconej w rezystorze. Wiadomo, że dla rezystora moc, P: 2 P = I R Ţ I max = P R max = 1W 1000W = 0,032 A = 30 ma Wynika z tego, że w czasie pomiarów konieczne jest ustawienie ograniczenia prądowego w zasilaczu na 30 ma, lub mniej, gdy badany element wymaga ograniczenia prądowego na niższym poziomie. Jeżeli potrzebne jest zbadanie charakterystyki dla większych wartości natężenia prądu niż 30 ma, można zamienić rezystor na 100 W (zastanówmy się, jaki będzie wówczas dopuszczalny prąd w obwodzie?) lub usunąć z układu rezystor, a wymagane natężenie prądu uzyskać przez odpowiednie ustawienie ograniczenia prądowego w zasilaczu pracującym stale w trybie ograniczenia prądowego. 4

5 3.2 Charakterograf Charakterograf wykorzystywany jest do szybkiego zestawiania układu pomiaru charakterystyk prądowo-napięciowych wszelkiego rodzaju dwu- i trój-zaciskowych elementów elektronicznych takich jak diody, tranzystory bipolarne i polowe, triaki, itp. Można oczywiście mierzyć także charakterystyki rezystorów. Mierzona charakterystyka I-U odczytywana jest z ekranu podłączonego oscyloskopu pracującego w trybie X-Y. Charakterograf zasilany jest napięciem sieciowym 230 V, 50 Hz. Wbudowany autotransformator z prostownikiem umożliwia uzyskanie narastającego napięcia przemiatającego (połówka sinusoidy 50 Hz) o regulowanej amplitudzie (napięcie anody, kolektora, drenu), a wewnętrzny generator podaje narastające napięcie schodkowe na zacisk sterowany przyrządu (bazę lub bramkę tranzystora). Spadek napięcia na elemencie badanym mierzy się bezpośrednio na wejściu X oscyloskopu. Ponieważ oscyloskop posiada jedynie wejścia napięciowe, pomiar prądu elementu badanego musi się odbywać metodą pośrednią, przy użyciu wbudowanego, wewnątrz charakterografu, rezystora pomiarowego. Prąd płynący przez rezystor włączony szeregowo z elementem badanym wywołuje wynikający z prawa Ohma spadek napięcia, który można mierzyć oscyloskopem w torze Y. Zdjęcie płyty czołowej charakterografu wraz z opisem przełączników przedstawiono na rys. 2: Rys. 2. Widok płyty czołowej charakterografu. Opis w tekscie. 5

6 Procedura uruchomienia układu pomiarowego wygląda następująco: - Zasilanie wyłączone: przełącznik 5 POWER OFF, wejście odłączone: przełącznik 2c - pozycja środkowa OFF - Wejścia oscyloskopu łączymy przewodami koncentrycznymi zakończonymi wtykami bananowymi z gniazdkami 1a (kanał-y) oraz 1b (kanał X). - Badany element podłączamy do zacisków wejściowych 2 charakterografu (za pomocą przewodów do gniazdek radiowych lub bezpośrednio do podstawki tranzystorowej). Zwracamy uwagę na opis: E,B,C dla tranzystorów bipolarnych oraz S,G,D dla tranzystorów polowych. Są dwa zestawy zacisków wejściowych 2a oraz 2b załączane alternatywnie przełącznikiem 2c; w pozycji środkowej obydwa wejścia są odłączone. - Za pomocą przełącznika 3 wybieramy odpowiednią polaryzację badanego elementu Towarzyszy temu odpowiednie ustawienie przełącznika 7 (TRANS FET). Poniżej podano właściwe ustawienia dla różnych mierzonych przyrządów: tranzystor bipolarny npn, tranzystor MOSFET kanał-n normalne wyłączony (kanał wzbogacany), dioda dla kierunku przewodzenia; ustawić: 3 - pozycja NPN, 7 - pozycja TRANS (wówczas zarówno na zaciski C,D jak i B,G podawane jest napięcie dodatnie) tranzystor bipolarny pnp, tranzystor MOSFET kanał-p normalne wyłączony (kanał wzbogacany), dioda dla kierunku zaporowego; ustawić: 3 - pozycja PNP, 7 - pozycja TRANS (wówczas zarówno na zaciski C,D jak i B,G podawane jest napięcie ujemne) tranzystor polowy JFET kanał-n, tranzystor MOSFET kanał-n normalne załączony (kanał zubożany); ustawić: 3 - pozycja NPN, 7 - pozycja FET (wówczas na zaciski C,D podawane jest napięcie dodatnie, a na zaciski B,G podawane jest napięcie ujemne) tranzystor polowy JFET kanał-p, tranzystor MOSFET kanał-p normalne załączony (kanał zubożany); ustawić: 3 - pozycja PNP, 7 - pozycja FET (wówczas na zaciski C,D podawane jest napięcie ujemne, a na zaciski B,G podawane jest napięcie dodatnie) dioda dla obserwacji kompletnej charakterystyki (kierunek zaporowy i k. przewodzenia); ustawić: 3 pozycja DIODE, 7 pozycja TRANS - Za pomocą przełącznika 6 wybieramy odpowiednią wartość ograniczenia prądowego: 100 ma - pozycja SIGNAL (z ang. tranzystor sygnałowy czyli małych sygnałów, inaczej małej mocy) lub 500 ma - pozycja POWER (tranzystor mocy) - Przełącznikiem 8 ustawiamy krok wymuszenia napięciowego bramki (FET) lub prądowego bazy (tr. bipolarny). Istnieje możliwość polaryzacji zewnętrznej poprzez gniazdo- EXT. BIAS - Przełącznikiem 9 ustawiamy maksymalne napięcie (anody, kolektora, drenu) które będzie podawane na element badany. Wskazane jest początkowe ustawienie na minimalne napięcie 5V. USTAWIENIE ZBYT DUŻEGO NAPIĘCIA GROZI ZNISZCZENIEM ELEMENTU BADANEGO. Jednocześnie zwracamy uwagę na ustawienie potencjometru 4. Służy on do płynnej regulacji czułości toru X oscyloskopu. Czułość tę (mierzoną w V/cm) należy każdorazowo ustawić na wymaganym dla danego pomiaru poziomie biorąc pod uwagę nastaw przełącznika 9 oraz nastaw czułości kanału X oscyloskopu. - Czułość prądową w torze Y, wynikająca z wartości wbudowanych rezystorów pomiarowych (100 W dla SIGNAL, 10 W dla POWER) przedstawiono Tabeli 1: 6

7 Tabela 1 Czułości prądowe toru Y. Ustawiona czułość Przełącznik 6 w pozycji: toru Y oscyloskopu SIGNAL POWER 50 mv/cm 0,5 ma/cm 5 ma/cm 0,1 V/cm 1 ma/cm 10 ma/cm 0,2 V/cm 2 ma/cm 20 ma/cm 0,5 V/cm 5 ma/cm 50 ma/cm Przykładowo: wybierając ustawienie przełącznika SIGNAL, przez element badany oraz szeregowo połączony rezystor 100 W płynie prąd pomiarowy o natężeniu 1mA. Na rezystorze uzyskujemy spadek napięcia równy 100 W x 1 ma = 100 mv. Ustawiając czułość wejścia Y oscyloskopu na 50 mv/cm uzyskujemy odchylenie plamki w pionie o 2 cm (2 działki). Wynikowa czułość prądowa toru Y w takiej konfiguracji wynosi więc 0,5 ma/cm. - Przystępując do pomiarów włączamy zasilanie: przełącznik 5 POWER-ON (zapala się kontrolka 5a) oraz wejście z podłączonym elementem badanym: przełącznik 2c na A lub B. 3.3 Rejestrator Rejestrator jest urządzeniem zapisującym przebiegi zmian napięcia podawanego na dwa wejścia rejestratora: X oraz Y. Zapis za pomocą pisaka dokonywany jest w układzie współrzędnych Y-X. Jeśli chcemy zmierzyć i wyrysować charakterystykę prądowonapięciową elementu elektronicznego (np. diody), to możemy posłużyć się układem przedstawionym na rys.3. Ponieważ rejestrator, podobnie jak oscyloskop, posiada jedynie wejścia napięciowe pomiar prądu elementu badanego musi się odbywać metodą pośrednią, przy użyciu rezystora pomiarowego (analogicznie jak w przypadku omówionym dla charakterografu). Prąd I płynący przez rezystor R, włączony szeregowo z elementem badanym D, wywołuje spadek napięcia Uy, który jest mierzony na wejściu Y rejestratora. W zależności od spodziewanej wartości prądu dobieramy wartość rezystora R oraz czułość napięciową wejścia Y. Na przykład: w zakresie wartości prądu kilku ma, stosując rezystor R=10 W i czułość wejścia 10 mv/cm uzyskujemy czułość prądową przebiegu 1 ma/cm na osi Y wykresu charakterystyki I-U. Natomiast spadek napięcia U x na elemencie badanym D mierzony jest bezpośrednio na wejściu X rejestratora. Konieczny jest dobór właściwej czułości napięciowej wejścia X (na przykład 50 mv/cm dla diody spolaryzowanej w kierunku przewodzenia). Rys.3. Układ do pomiaru charakterystyki I-U diody z wykorzystaniem rejestratora. 7

8 3.4 Wykorzystanie multimetru VC-10T, 1321 lub 1331 jako źródła prądowego Większość multimetrów cyfrowych (np. VC-10T, 1321, 1331) pracując w trybie pomiaru rezystancji (czyli jako omomierz) mierzy i pokazuje na wyświetlaczu spadek napięcia na badanym elemencie wywołany przepływem prądu ze źródła prądowego wbudowanego w multimetr. Oprócz funkcji pomiaru rezystancji można tę cechę przyrządu wykorzystać do pomiaru charakterystyk prądowo-napięciowych dla bardzo małych prądów. Multimetry VC-10T, 1321 i 1331 posiadają wewnętrzne źródło prądowe o wydajności zależnej od wybranego zakresu pomiarowego rezystancji; patrz tabela 2. Tabela 2. Wartości natężenia źródła prądowego multimetrów cyfrowych. Zakres omomierza 200 W 2 kw 20 kw 200 kw 1 MW 2 MW 20 MW VC-10T 10 ma 1 ma 100 ma 10 ma 1 ma ma 1 ma 100 ma 10 ma 1 ma 100 na ma 1 ma 100 ma 10 ma 1 ma 100 na Badany element podłączany jest pomiędzy zaciski HI ( W w miernikach 1321, 1331) i LO (odpowiednio: N ). Przepływający prąd wywołuje na badanym elemencie spadek napięcia o polaryzacji przeciwnej, niż wynikałoby to z oznaczeń zacisków multimetru, czyli: + na zacisku LO ( N ), ľ na zacisku HI ( W ). Liczba wyświetlana przez multimetr odpowiada napięciu mierzonemu na badanym elemencie, wyrażonemu w miliwoltach, przy czym należy brać pod uwagę jedynie cyfry, a nie przecinek, np. wyświetlana wartość 12,34 oznacza, że spadek napięcia na badanym elemencie, przy natężeniu prądu wynikającym z wybranego zakresu pomiarowego, wynosi 1234 mv, wyświetlana wartość 0076 oznacza spadek napięcia 76 mv. Ponieważ dla tych multimetrów, pracujących w trybie pomiaru rezystancji, zakres prawidłowo wskazywanych napięć wynosi 0 2,999 V nadają się one do pomiaru spadku napięcia na półprzewodnikowych złączach p-n spolaryzowanych w kierunku przewodzenia. Przekroczenie zakresu wskazań woltomierza, 2999 mv (a praktycznie wyświetlenie liczby 3000) oznacza, że źródło prądowe nie zapewnia ustalonej dla danego zakresu wartości prądu. 4 Rezystory i kondensatory 4.1 Rezystory Rezystory (oporniki) to najczęściej spotykane elementy bierne w układach. Wykonywane są w różnych odmianach, przeważnie jako: - warstwowe metalowe cienka warstwa naparowanego metalu (np. CrNi) na korpusie ceramicznym, może być nacinana w celu zwiększenia długości ścieżki rezystywnej - rezystory węglowe - cienka warstwa grafitu na korpusie ceramicznym, - grubowarstwowe rezystywna warstwa cermetowa (cermet - mieszanina ceramiki i tlenków metali) nakładana np. metodą sitodruku na korpusy ceramiczne. W ten sposób wytwarzane są także rezystory miniaturowe do montażu powierzchniowego. - rezystory nawijane drutowe - szczególnie wytrzymałe dla dużych mocy. 8

9 Rezystor jest elementem liniowym, tzn jego charakterystyka I-U jest prostą, co oznacza, że rezystancja (oporność) jest stała i nie zależy od wartości prądu, napięcia czy innych czynników. Innymi słowy, niezależnie od warunków, spełnione jest prawo Ohma: R = U/I [W =V/A] W innym przypadku mamy do czynienia z rezystorami nieliniowymi, np.: fotorezystory, termistory, warystory. Elementy te będą również badane w czasie ćwiczeń. Podstawowe parametry oporników to: rezystancja nominalna, tolerancja (maksymalna odchyłka od rezystancji nominalnej wyrażona w procentach), moc dopuszczalna, napięcie graniczne (dopuszczalne), temperaturowy współczynnik rezystancji (TWR), który określa zmiany rezystancji zachodzące pod wpływem temperatury. Rezystory produkuje się masowo i klasyfikuje w standardowych szeregach wartości rezystancji i związanych z nimi określonych tolerancjach. Wartości znamionowe rezystancji ułożone są w szeregi (E) z dzielnikiem : q= 10, gdzie n=6,12,24,48,96,192; n oznacza liczbę wartości nominalnych w ramach jednej dekady uzyskanych przez kolejne dzielenie, poczynając od 10/q, 10/q 2, 10/q 3 itd. Przykładowo, szeregowi o oznaczeniu E12 odpowiadają wielkości: n=12, q=1,21 i wartości nominalne: 1 1,2 1,5 1,8 2,2 2,7 3,3 3,9 4,7 5,6 6,8 8,2 10 wyrażające liczbę jednostek (W, kw lub MW) oraz tolerancja: ±10% (zwróćmy uwagę jaki jest możliwy maksymalny rozrzut sąsiadujących wartości nominalnych dla tej tolerancji). Biorąc pod uwagę zakres wymaganych wartości rezystorów do różnych zastosowań od 10 W do 100 MW, daje to siedem dekad, czyli 84 wartości oferowanych oporników w tym typoszeregu. Szereg E48 będzie miał 48 nominalnych wartości w ramach jednej dekady, a tolerancję ±5%, (Jaka tolerancja będzie dla szeregu E96?). Istnieje też szereg R40 gdzie n=40. Typowe moce nominalne to 0,125 W, 0,25 W, 0,5 W, 1 W oraz 2 W. Ze względu na różną moc nominalną rezystory maja różne gabaryty. Oznaczenia (cechy) na rezystorach o dużych rozmiarach nanoszone są za pomocą symboli np.: 120 = 120W, 15k = 15kW, 1k1 = 1,1kW, 1M =1MW, ale 0R1 = 0,1W oraz 0E5 = 0,5W. Na małych opornikach zazwyczaj nanosi się kody paskowe w postaci 3 lub 4 barwnych pasków. Pierwsze dwa paski oznaczają dwie znaczące cyfry wartości, trzeci pasek mnożnik wartości, a czwarty oznacza tolerancję. Poniżej, w tabeli 2, podano znaczenie barw pasków. Tabela 2. Kody paskowe oznaczeń rezystorów kolor paska cyfra mnożnik tolerancja [± %] czarny brązowy czerwony pomarańcz żółty zielony ,5 niebieski ,25 fioletowy ,1 szary biały złoty srebrny

10 Osobnym rodzajem rezystorów są rezystory regulowane: potencjometry lub reostaty, posiadające trzy wyprowadzenia, jedno podłączone do ślizgacza przesuwanego po ścieżce rezystywnej. 4.2 Kondensatory Kondensator składa się z dwóch przewodzących płytek (okładek) i dielektryka wypełniającego przestrzeń między płytkami. Właściwością kondensatora jest zdolność ładowania go ładunkiem elektrycznym pod wpływem przyłożonego napięcia. Pojemność kondensatora C wyraża się wzorem: C = Q/U, jednostka pojemności to farad [F = C/V] (kulomb/wolt) Pojemności kondensatorów spotykanych w układach elektronicznych są dużo mniejsze niż 1 F, i wyrażane są zazwyczaj w pf, nf oraz mf. Szeregi wartości nominalnych kondensatorów ułożone są podobnie do omówionych dla rezystorów. Do najważniejszych parametrów kondensatorów, oprócz wartości znamionowej pojemności, należą: dopuszczalne napięcie pracy (dla większych grozi przebicie), tolerancja, stratność (tgd) oraz temperaturowy współczynnik pojemności (TWC). Wyróżnia się wiele typów kondensatorów związanych z konstrukcją i zastosowanym rodzajem dielektryka (od którego bierze się ich nazwa): - Kondensatory z tworzywa sztucznego (stała dielektryczna 2-3); dielektryk w postaci folii poliestrowej, polistyrenowej, poliwęglanowej (te mają szczególnie małą stratność i dobrą stabilność): elektrody z folii metalowej lub plastikowej metalizowanej. Najczęściej mają konstrukcję zwijanego rulonu folii dzięki czemu uzyskuje się duże pojemności (zakres od 10 pf do 100 mf) oraz wysokie napięcia pracy do 1000 V. Popularne bo tanie w produkcji. - Kondensatory papierowe, historycznie bardzo popularne, obecnie stosowane wyłącznie jako k. odkłócające, a to dzięki właściwości samoregeneracji (odporność papieru na przebicia impulsowe) - Kondensatory ceramiczne produkowane z jednej lub wielu płytek ceramicznych. Stosowana ceramika dzieli się na trzy klasy: klasa 1 o małej stałej dielektrycznej, pojemności od 0,47 pf do 560 pf, klasa 2 - o dużej stałej dielektrycznej, pojemności od 10 pf do 10 mf, klasa 3 ceramika z materiałów ferroelektrycznych o ekstremalnie wysokiej stałej dielektrycznej; pojemności nawet do 100 mf, ale niskie napięcia pracy. - Kondensatory mikowe (mika to minerał pozwalający łupać się na cienkie płatki) o bardzo dobrych właściwościach: mała stratność, wysoka stabilność, wysokie napięcia pracy. Są jednak duże i stosunkowo drogie. Powyższe typy kondensatorów są niepolaryzowalne, to znaczy biegunowość podłączenia nie odgrywa roli. Inaczej jest z kondensatorami elektrolitycznymi. - Kondensatory elektrolityczne (elektrolity) o elektrodach aluminiowych lub tantalowych. Jedna z elektrod (anoda) jest pokryta tlenkiem, a przestrzeń pomiędzy elektrodami jest wypełniona elektrolitem. Konieczne jest więc zachowanie biegunowości kondensatora. Obudowa kondensatora połączona jest do wyprowadzenia bieguna ujemnego (katody). W przypadku odwrotnego podłączenie istnieje groźba rozerwania obudowy ze względu na gazowanie elektrolitu. Kondensatory aluminiowe osiągają bardzo duże pojemności, nawet do 500 mf, ale mają niskie napięcia pracy, duże wymiary i ulegają starzeniu (ich parametry pogarszają się z upływem czasu). Nowsze rozwiązania to tzw elektrolity suche wytrzymałe na zmiany temperatur i odporne dużo bardziej na starzenie. Wytwarzane o pojemnościach do 2200 mf. Natomiast kondensatory elektrolityczne tantalowe mają dużo lepsze parametry od aluminiowych: wyższe napięcia przebicia, mniejsze upływności i stratność oraz znacznie mniejsze wymiary (większa stała dielektryczna). Produkowane w zakresie pojemności do 1000 mf. 10

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Termin wprowadzający Zapoznanie z Laboratorium oraz szkolenie BHP Z tą instrukcją studenci przychodzą już na pierwsze zajęcia. Dostępna jest na stronie: http://156.17.46.1/lpp

Bardziej szczegółowo

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Ćwiczenie nr 1 oraz nr 2 Zapoznanie z Laboratorium oraz szkolenie BHP. Zasady

Bardziej szczegółowo

Wydział Elektroniki Mikrosystemów i Fotoniki

Wydział Elektroniki Mikrosystemów i Fotoniki Wydział Elektroniki Mikrosystemów i Fotoniki Opracował zespół: Marek Panek, Waldemar Oleszkiewicz, Iwona Zborowska-Lindert, Bogdan Paszkiewicz, Małgorzata Kramkowska, Beata Ściana, Zdzisław Synowiec, Bogusław

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 BADANIE TRANZYSTORÓW BIAŁYSTOK 2015 1. CEL I ZAKRES

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 (EZ1C500 055) BADANIE DIOD I TRANZYSTORÓW Białystok 2006

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 11

Instrukcja do ćwiczenia laboratoryjnego nr 11 Instrukcja do ćwiczenia laboratoryjnego nr 11 Temat: Charakterystyki i parametry tyrystora Cel ćwiczenia. Celem ćwiczenia jest poznanie właściwości elektrycznych tyrystora. I. Wymagane wiadomości. 1. Podział

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 Kod: ES1C400 026 BADANIE WYBRANYCH DIOD I TRANZYSTORÓW BIAŁYSTOK

Bardziej szczegółowo

Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302)

Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302) Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302) 1. Elementy elektroniczne stosowane w ćwiczeniach Elementy elektroniczne będące przedmiotem pomiaru, lub służące do zestawienia

Bardziej szczegółowo

Podstawy użytkowania i pomiarów za pomocą MULTIMETRU

Podstawy użytkowania i pomiarów za pomocą MULTIMETRU Podstawy użytkowania i pomiarów za pomocą MULTIMETRU Spis treści Informacje podstawowe...2 Pomiar napięcia...3 Pomiar prądu...5 Pomiar rezystancji...6 Pomiar pojemności...6 Wartość skuteczna i średnia...7

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE TS1C

ELEMENTY ELEKTRONICZNE TS1C Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki nstrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENTY ELEKTRONCZNE TS1C300 018 BAŁYSTOK 013 1. CEL ZAKRES ĆWCZENA LABORATORYJNEGO

Bardziej szczegółowo

LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne

LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne ZADANIE D1 Cztery identyczne diody oraz trzy oporniki o oporach nie różniących się od siebie o więcej niż % połączono szeregowo w zamknięty obwód elektryczny.

Bardziej szczegółowo

Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia

Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Wrocław, 21.03.2017 r. Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Podczas testu kompetencji studenci powinni wykazać się znajomością zagadnień określonych w kartach kursów

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 4

Instrukcja do ćwiczenia laboratoryjnego nr 4 Instrukcja do ćwiczenia laboratoryjnego nr 4 Temat: Badanie własności przełączających diod półprzewodnikowych Cel ćwiczenia. Celem ćwiczenia jest poznanie własności przełączających złącza p - n oraz wybranych

Bardziej szczegółowo

Badanie diod półprzewodnikowych i elektroluminescencyjnych (LED)

Badanie diod półprzewodnikowych i elektroluminescencyjnych (LED) Temat ćwiczenia: Badanie diod półprzewodnikowych i elektroluminescencyjnych (LED) - - ` Symbol studiów (np. PK10): data wykonania ćwiczenia - godzina wykonania ćwiczenia. Nazwisko i imię*: 1 Pluton/Grupa

Bardziej szczegółowo

Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji

Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 1 Temat: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Katedra Architektury Komputerów i Telekomunikacji

Bardziej szczegółowo

Skrócony opis dostępnych na stanowiskach studenckich makiet laboratoryjnych oraz zestawu elementów do budowy i badań układów elektronicznych

Skrócony opis dostępnych na stanowiskach studenckich makiet laboratoryjnych oraz zestawu elementów do budowy i badań układów elektronicznych POLITECHNIKA WROCŁAWSKA Wydział Elektryczny Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Podstaw Elektroniki bud. A-5 s.211 (a,b) Skrócony opis dostępnych na stanowiskach studenckich makiet

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI MATERIAŁY POMOCNICZE SERIA PIERWSZA

LABORATORIUM PODSTAW ELEKTRONIKI MATERIAŁY POMOCNICZE SERIA PIERWSZA LABORATORIUM PODSTAW ELEKTRONIKI MATERIAŁY POMOCNICZE SERIA PIERWSZA 1. Lutowanie lutowania ołowiowe i bezołowiowe, przebieg lutowania automatycznego (strefy grzania i przebiegi temperatur), narzędzia

Bardziej szczegółowo

Badanie charakterystyk elementów półprzewodnikowych

Badanie charakterystyk elementów półprzewodnikowych Badanie charakterystyk elementów półprzewodnikowych W ramach ćwiczenia student poznaje praktyczne właściwości elementów półprzewodnikowych stosowanych w elektronice przez badanie charakterystyk diody oraz

Bardziej szczegółowo

Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym

Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym Ćwiczenie 1 Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym Wprowadzenie Celem ćwiczenia jest sprawdzenie podstawowych praw elektrotechniki w obwodach prądu stałego. Badaniu

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI Ćwiczenie nr 4 Temat ćwiczenia: Badanie wzmacniacza UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTUT TECHNIKI 1. 2. 3. Imię i Nazwisko 1 szerokopasmowego RC 4. Data wykonania

Bardziej szczegółowo

BADANIE DIOD PÓŁPRZEWODNIKOWYCH

BADANIE DIOD PÓŁPRZEWODNIKOWYCH BAANE O PÓŁPZEWONKOWYCH nstytut izyki Akademia Pomorska w Słupsku Cel i ćwiczenia. Celem ćwiczenia jest: - zapoznanie się z przebiegiem charakterystyk prądowo-napięciowych diod różnych typów, - zapoznanie

Bardziej szczegółowo

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STDIA DZIENNE e LABOATOIM PZYZĄDÓW PÓŁPZEWODNIKOWYCH Ćwiczenie nr Pomiar częstotliwości granicznej f T tranzystora bipolarnego Wykonując

Bardziej szczegółowo

Dioda półprzewodnikowa

Dioda półprzewodnikowa mikrofalowe (np. Gunna) Dioda półprzewodnikowa Dioda półprzewodnikowa jest elementem elektronicznym wykonanym z materiałów półprzewodnikowych. Dioda jest zbudowana z dwóch różnie domieszkowanych warstw

Bardziej szczegółowo

Sprzęt i architektura komputerów

Sprzęt i architektura komputerów Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Sprzęt i architektura komputerów Laboratorium Temat:Pomiary podstawowych wielkości elektryczych: prawa Ohma i Kirchhoffa Katedra Architektury

Bardziej szczegółowo

Przykładowe zadanie egzaminacyjne dla kwalifikacji E.20 w zawodzie technik elektronik

Przykładowe zadanie egzaminacyjne dla kwalifikacji E.20 w zawodzie technik elektronik 1 Przykładowe zadanie egzaminacyjne dla kwalifikacji E.20 w zawodzie technik elektronik Znajdź usterkę oraz wskaż sposób jej usunięcia w zasilaczu napięcia stałego 12V/4A, wykonanym w oparciu o układ scalony

Bardziej szczegółowo

Systemy i architektura komputerów

Systemy i architektura komputerów Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Systemy i architektura komputerów Laboratorium nr 4 Temat: Badanie tranzystorów Spis treści Cel ćwiczenia... 3 Wymagania... 3 Przebieg ćwiczenia...

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 7

Instrukcja do ćwiczenia laboratoryjnego nr 7 Instrukcja do ćwiczenia laboratoryjnego nr 7 Temat: Badanie właściwości elektrycznych półprzewodnikowych przyrządów optoelektronicznych.. Cel ćwiczenia: Poznanie budowy, zasady działania, charakterystyk

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 9

Instrukcja do ćwiczenia laboratoryjnego nr 9 Instrukcja do ćwiczenia laboratoryjnego nr 9 Temat: Charakterystyki i parametry tranzystorów PNFET Cel ćwiczenia. Celem ćwiczenia jest poznanie charakterystyk statycznych oraz parametrów tranzystorów PNFET.

Bardziej szczegółowo

Ćwiczenie nr 34. Badanie elementów optoelektronicznych

Ćwiczenie nr 34. Badanie elementów optoelektronicznych Ćwiczenie nr 34 Badanie elementów optoelektronicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elementami optoelektronicznymi oraz ich podstawowymi parametrami, a także doświadczalne sprawdzenie

Bardziej szczegółowo

Kondensatory. Konstrukcja i właściwości

Kondensatory. Konstrukcja i właściwości Kondensatory Konstrukcja i właściwości Zbigniew Usarek, 2018 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Podstawowe techniczne parametry

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 10

Instrukcja do ćwiczenia laboratoryjnego nr 10 Instrukcja do ćwiczenia laboratoryjnego nr 10 Temat: Charakterystyki i parametry tranzystorów MIS Cel ćwiczenia. Celem ćwiczenia jest poznanie charakterystyk statycznych i parametrów tranzystorów MOS oraz

Bardziej szczegółowo

Badanie bezzłączowych elementów elektronicznych

Badanie bezzłączowych elementów elektronicznych Temat ćwiczenia: Badanie bezzłączowych elementów elektronicznych - - ` Symbol studiów (np. PK10): data wykonania ćwiczenia - Dzień tygodnia: godzina wykonania ćwiczenia Lp. Nazwisko i imię*: 1 Pluton/Grupa

Bardziej szczegółowo

BADANIE ELEMENTÓW RLC

BADANIE ELEMENTÓW RLC KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE BADANIE ELEMENTÓW RLC REV. 1.0 1. CEL ĆWICZENIA - zapoznanie się z systemem laboratoryjnym NI ELVIS II, - zapoznanie się z podstawowymi

Bardziej szczegółowo

Ćw. III. Dioda Zenera

Ćw. III. Dioda Zenera Cel ćwiczenia Ćw. III. Dioda Zenera Zapoznanie się z zasadą działania diody Zenera. Pomiary charakterystyk statycznych diod Zenera. Wyznaczenie charakterystycznych parametrów elektrycznych diod Zenera,

Bardziej szczegółowo

Badanie elementów składowych monolitycznych układów scalonych II

Badanie elementów składowych monolitycznych układów scalonych II 1 Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE Ćwiczenie nr 14 LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Badanie elementów składowych monolitycznych układów scalonych

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra utomatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIK ENS1C300 022 WYBRNE ZSTOSOWNI DIOD PÓŁPRZEWODNIKOWYCH BIŁYSTOK

Bardziej szczegółowo

Ćwiczenie 7 PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH

Ćwiczenie 7 PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH Ćwiczenie 7 PRMETRY MŁOSYGNŁO TRNZYSTORÓW BIPOLRNYCH Wstęp Celem ćwiczenia jest wyznaczenie niektórych parametrów małosygnałowych hybrydowego i modelu hybryd tranzystora bipolarnego. modelu Konspekt przygotowanie

Bardziej szczegółowo

Ćw. 0: Wprowadzenie do programu MultiSIM

Ćw. 0: Wprowadzenie do programu MultiSIM Ćw. 0: Wprowadzenie do programu MultiSIM Wstęp Celem ćwiczenia jest zapoznanie się z programem MultiSIM przeznaczonym do analiz i symulacji działania układów elektronicznych. Zaznajamianie się z tym programem

Bardziej szczegółowo

Rozwiązanie zadania opracowali: H. Kasprowicz, A. Kłosek

Rozwiązanie zadania opracowali: H. Kasprowicz, A. Kłosek Treść zadania praktycznego Rozwiązanie zadania opracowali: H. Kasprowicz, A. Kłosek Opracuj projekt realizacji prac związanych z uruchomieniem i sprawdzeniem działania zasilacza impulsowego małej mocy

Bardziej szczegółowo

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Badanie tranzystorów unipolarnych typu JFET i MOSFET

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE. Badanie tranzystorów unipolarnych typu JFET i MOSFET Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej TIA ZIENNE LAORATORIM PRZYRZĄÓW PÓŁPRZEWONIKOWYCH Ćwiczenie nr 8 adanie tranzystorów unipolarnych typu JFET i MOFET I. Zagadnienia

Bardziej szczegółowo

Budowa. Metoda wytwarzania

Budowa. Metoda wytwarzania Budowa Tranzystor JFET (zwany też PNFET) zbudowany jest z płytki z jednego typu półprzewodnika (p lub n), która stanowi tzw. kanał. Na jego końcach znajdują się styki źródła (ang. source - S) i drenu (ang.

Bardziej szczegółowo

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany

Bardziej szczegółowo

Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego:

Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego: Sprawozdanie z laboratorium elektroniki w Zakładzie Systemów i Sieci Komputerowych Temat ćwiczenia: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Sprawozdanie Rok: Grupa: Zespół:

Bardziej szczegółowo

Dioda półprzewodnikowa

Dioda półprzewodnikowa COACH 10 Dioda półprzewodnikowa Program: Coach 6 Projekt: na MN060c CMA Coach Projects\PTSN Coach 6\ Elektronika\dioda_2.cma Przykład wyników: dioda2_2.cmr Cel ćwiczenia - Pokazanie działania diody - Wyznaczenie

Bardziej szczegółowo

PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH

PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH L B O R T O R I U M ELEMENTY ELEKTRONICZNE PRMETRY MŁOSYGNŁOWE TRNZYSTORÓW BIPOLRNYCH REV. 1.0 1. CEL ĆWICZENI - celem ćwiczenia jest zapoznanie się z metodami pomiaru i wyznaczania parametrów małosygnałowych

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 1. Połączenia szeregowe oraz równoległe elementów RC Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWICZENIE Połączenia szeregowe oraz równoległe elementów C. CEL ĆWICZENIA Celem ćwiczenia jest praktyczno-analityczna ocena wartości

Bardziej szczegółowo

Vgs. Vds Vds Vds. Vgs

Vgs. Vds Vds Vds. Vgs Ćwiczenie 18 Temat: Wzmacniacz JFET i MOSFET w układzie ze wspólnym źródłem. Cel ćwiczenia: Wzmacniacz JFET w układzie ze wspólnym źródłem. Zapoznanie się z konfiguracją polaryzowania tranzystora JFET.

Bardziej szczegółowo

Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych"

Ćwiczenie: Właściwości wybranych elementów układów elektronicznych Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

Tranzystory bipolarne

Tranzystory bipolarne TRANZYSTORY IPOLARN Tranzystory bipolarne 1. el ćwiczenia elem ćwiczenia jest ugruntowanie wiadomości dotyczącyc zasad działania i właściwości tranzystorów bipolarnyc. Podstawowa część ćwiczenia poświęcona

Bardziej szczegółowo

Ćwiczenie nr 123: Dioda półprzewodnikowa

Ćwiczenie nr 123: Dioda półprzewodnikowa Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 123: Dioda półprzewodnikowa

Bardziej szczegółowo

WZMACNIACZ NAPIĘCIOWY RC

WZMACNIACZ NAPIĘCIOWY RC WZMACNIACZ NAPIĘCIOWY RC 1. WSTĘP Tematem ćwiczenia są podstawowe właściwości jednostopniowego wzmacniacza pasmowego z tranzystorem bipolarnym. Zadaniem ćwiczących jest dokonanie pomiaru częstotliwości

Bardziej szczegółowo

Ćwiczenie 10 Temat: Własności tranzystora. Podstawowe własności tranzystora Cel ćwiczenia

Ćwiczenie 10 Temat: Własności tranzystora. Podstawowe własności tranzystora Cel ćwiczenia Ćwiczenie 10 Temat: Własności tranzystora. Podstawowe własności tranzystora Cel ćwiczenia Poznanie podstawowych własności tranzystora. Wyznaczenie prądów tranzystorów typu n-p-n i p-n-p. Czytanie schematów

Bardziej szczegółowo

ELEKTRONIKA WYPOSAŻENIE LABORATORIUM DYDAKTYCZNEGO

ELEKTRONIKA WYPOSAŻENIE LABORATORIUM DYDAKTYCZNEGO ELEKTRONIKA WYPOSAŻENIE LABORATORIUM DYDAKTYCZNEGO POMOC DYDAKTYCZNA DLA STUDENTÓW WYDZIAŁU ELEKTRYCZNEGO SERIA: PODSTAWY ELEKTRONIKI TEMAT: ZASILACZ LABORATORYJNY ZASILACZ LABORATORYJNY CZĘSTO W JEDNYM

Bardziej szczegółowo

Ćwiczenie 17 Temat: Własności tranzystora JFET i MOSFET. Cel ćwiczenia

Ćwiczenie 17 Temat: Własności tranzystora JFET i MOSFET. Cel ćwiczenia Ćwiczenie 17 Temat: Własności tranzystora JFET i MOSFET. Cel ćwiczenia Poznanie budowy i zasady pracy tranzystora JFET. Pomiar charakterystyk tranzystora JFET. Czytanie schematów elektronicznych. Przestrzeganie

Bardziej szczegółowo

Badanie półprzewodnikowych elementów bezzłączowych

Badanie półprzewodnikowych elementów bezzłączowych Instrukcja do ćwiczenia: Badanie półprzewodnikowych elementów bezzłączowych (wersja robocza) Laboratorium Elektroenergetyki 1 1. Cel ćwiczenia. Celem ćwiczenia jest: Poznanie podstawowych właściwości i

Bardziej szczegółowo

Ćwiczenie: "Pomiary rezystancji przy prądzie stałym"

Ćwiczenie: Pomiary rezystancji przy prądzie stałym Ćwiczenie: "Pomiary rezystancji przy prądzie stałym" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

Ćwiczenie - 3. Parametry i charakterystyki tranzystorów

Ćwiczenie - 3. Parametry i charakterystyki tranzystorów Spis treści Ćwiczenie - 3 Parametry i charakterystyki tranzystorów 1 Cel ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Tranzystor bipolarny................................. 2 2.1.1 Charakterystyki statyczne

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 5

Instrukcja do ćwiczenia laboratoryjnego nr 5 Instrukcja do ćwiczenia laboratoryjnego nr 5 Temat: Charakterystyki statyczne tranzystorów bipolarnych Cel ćwiczenia. Celem ćwiczenia jest poznanie charakterystyk prądowonapięciowych i wybranych parametrów

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA ENS1C300 022 BADANIE TRANZYSTORÓW BIAŁYSTOK 2013 1. CEL I ZAKRES

Bardziej szczegółowo

strona 1 MULTIMETR CYFROWY M840D INSTRUKCJA OBSŁUGI

strona 1 MULTIMETR CYFROWY M840D INSTRUKCJA OBSŁUGI strona 1 MULTIMETR CYFROWY M840D INSTRUKCJA OBSŁUGI 1. WPROWADZENIE. Prezentowany multimetr cyfrowy jest zasilany bateryjnie. Wynik pomiaru wyświetlany jest w postaci 3 1 / 2 cyfry. Miernik może być stosowany

Bardziej szczegółowo

Instrukcja obsługi miernika uniwersalnego MU-02D

Instrukcja obsługi miernika uniwersalnego MU-02D Instrukcja obsługi miernika uniwersalnego MU-02D 1. Informacje ogólne Miernik MU-02D umożliwia pomiary napięć stałych (do 1000V) i przemiennych (do 750V), natężenia prądu stałego (do 10A), oporności (do

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 13

Instrukcja do ćwiczenia laboratoryjnego nr 13 Instrukcja do ćwiczenia laboratoryjnego nr 13 Temat: Charakterystyki i parametry dyskretnych półprzewodnikowych przyrządów optoelektronicznych Cel ćwiczenia. Celem ćwiczenia jest poznanie budowy, zasady

Bardziej szczegółowo

Kondensator. Kondensator jest to układ dwóch przewodników przedzielonych

Kondensator. Kondensator jest to układ dwóch przewodników przedzielonych Kondensatory Kondensator Kondensator jest to układ dwóch przewodników przedzielonych dielektrykiem, na których zgromadzone są ładunki elektryczne jednakowej wartości ale o przeciwnych znakach. Budowa Najprostsze

Bardziej szczegółowo

Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne

Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech. Elektronika. Laboratorium nr 3. Temat: Diody półprzewodnikowe i elementy reaktancyjne Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 3 Temat: Diody półprzewodnikowe i elementy reaktancyjne SPIS TREŚCI Spis treści... 2 1. Cel ćwiczenia... 3 2. Wymagania...

Bardziej szczegółowo

Pracownia pomiarów i sterowania Ćwiczenie 1 Pomiar wielkości elektrycznych z wykorzystaniem instrumentów NI ELVIS II

Pracownia pomiarów i sterowania Ćwiczenie 1 Pomiar wielkości elektrycznych z wykorzystaniem instrumentów NI ELVIS II Małgorzata Marynowska Uniwersytet Wrocławski, I rok Fizyka doświadczalna II stopnia Prowadzący: dr M. Grodzicki Data wykonania ćwiczenia: 03.03.2015, 10.03.2015 Pracownia pomiarów i sterowania Ćwiczenie

Bardziej szczegółowo

ZASILACZ DC AX-3003L-3 AX-3005L-3. Instrukcja obsługi

ZASILACZ DC AX-3003L-3 AX-3005L-3. Instrukcja obsługi ZASILACZ DC AX-3003L-3 AX-3005L-3 Instrukcja obsługi W serii tej znajdują się dwukanałowe i trzykanałowe regulowane zasilacze DC. Trzykanałowe zasilacze posiadają wyjście o dużej dokładności, z czego dwa

Bardziej szczegółowo

STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych

STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych Wstęp Celem ćwiczenia jest zapoznanie się z problemami związanymi z projektowaniem, realizacją i pomiarami

Bardziej szczegółowo

Przyrządy półprzewodnikowe część 5 FET

Przyrządy półprzewodnikowe część 5 FET Przyrządy półprzewodnikowe część 5 FET r inż. Bogusław Boratyński Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika Wrocławska 2011 Literatura i źródła rysunków G. Rizzoni, Fundamentals of Electrical

Bardziej szczegółowo

A-7. Tranzystor unipolarny JFET i jego zastosowania

A-7. Tranzystor unipolarny JFET i jego zastosowania A-7. Tranzystor unipolarny JFET i jego zastosowania 1 Zakres ćwiczenia 1.1 Pomiar charakterystyk statycznych tranzystora JFET. 1.2 Projekt, montaż i badanie układu: 1.2.1 sterowanego dzielnika napięcia,

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 13

Instrukcja do ćwiczenia laboratoryjnego nr 13 Instrukcja do ćwiczenia laboratoryjnego nr 13 Temat: Charakterystyki i parametry dyskretnych półprzewodnikowych przyrządów optoelektronicznych Cel ćwiczenia. Celem ćwiczenia jest poznanie budowy, zasady

Bardziej szczegółowo

INSTRUKCJA OBSŁUGI M-320 #02905 KIESZONKOWY MULTIMETR CYFROWY

INSTRUKCJA OBSŁUGI M-320 #02905 KIESZONKOWY MULTIMETR CYFROWY INSTRUKCJA OBSŁUGI M-320 #02905 KIESZONKOWY MULTIMETR CYFROWY! 1. WSTĘP Instrukcja obsługi dostarcza informacji dotyczących bezpieczeństwa i sposobu użytkowania, parametrów technicznych oraz konserwacji

Bardziej szczegółowo

Pomiar rezystancji metodą techniczną

Pomiar rezystancji metodą techniczną Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja

Bardziej szczegółowo

Ćwiczenie 6: Lokalizacja usterek we wzmacniaczu napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 6: Lokalizacja usterek we wzmacniaczu napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 6: Lokalizacja usterek we wzmacniaczu napięcia Opracował

Bardziej szczegółowo

NIEZBĘDNY SPRZĘT LABORATORYJNY

NIEZBĘDNY SPRZĘT LABORATORYJNY Temat: Własności diody p-n Cel ćwiczenia Ćwiczenie 30 Zrozumienie właściwości diod ze złączem p-n. Poznanie własności diod każdego typu. Nauka testowania parametrów diod każdego typu za pomocą różnych

Bardziej szczegółowo

Elementy elektroniczne i przyrządy pomiarowe

Elementy elektroniczne i przyrządy pomiarowe Elementy elektroniczne i przyrządy pomiarowe Cel ćwiczenia. Nabycie umiejętności posługiwania się miernikami uniwersalnymi, oscyloskopem, generatorem, zasilaczem, itp. Nabycie umiejętności rozpoznawania

Bardziej szczegółowo

Własności i zastosowania diod półprzewodnikowych

Własności i zastosowania diod półprzewodnikowych Własności i zastosowania diod półprzewodnikowych 1. zas trwania: 6h 2. el ćwiczenia Badanie charakterystyk prądowo-napięciowych różnych typów diod półprzewodnikowych. Montaż i badanie wybranych układów,

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

Ćwiczenie 4 Pomiar prądu i napięcia stałego

Ćwiczenie 4 Pomiar prądu i napięcia stałego Ćwiczenie 4 Pomiar prądu i napięcia stałego Instrukcja do ćwiczenia laboratoryjnego opracowali: Łukasz Śliwczyński Witold Skowroński Karol Salwik ver. 3, 05.2019 1. Cel ćwiczenia Zapoznanie się z metodami

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTROTECHNICE I ELEKTRONICE

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTROTECHNICE I ELEKTRONICE WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTROTECHNICE I ELEKTRONICE Klasa: 1 i 2 ZSZ Program: elektryk 741103 Wymiar: kl. 1-3 godz. tygodniowo, kl. 2-4 godz. tygodniowo Klasa

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE. Układy polaryzacji i stabilizacji punktu pracy tranzystora

ELEMENTY ELEKTRONICZNE. Układy polaryzacji i stabilizacji punktu pracy tranzystora Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENTY ELEKTRONICZNE TS1C300 018 Układy polaryzacji i stabilizacji punktu

Bardziej szczegółowo

Zastosowania nieliniowe wzmacniaczy operacyjnych

Zastosowania nieliniowe wzmacniaczy operacyjnych UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Zastosowania nieliniowe wzmacniaczy operacyjnych Laboratorium Układów Elektronicznych Poznań 2008 1. Cel i zakres ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

Ćwiczenie nr 4 Tranzystor bipolarny (npn i pnp)

Ćwiczenie nr 4 Tranzystor bipolarny (npn i pnp) Ćwiczenie nr 4 Tranzystor bipolarny (npn i pnp) Tranzystory są to urządzenia półprzewodnikowe, które umożliwiają sterowanie przepływem dużego prądu, za pomocą prądu znacznie mniejszego. Tranzystor bipolarny

Bardziej szczegółowo

DPS-3203TK-3. Zasilacz laboratoryjny 3kanałowy. Instrukcja obsługi

DPS-3203TK-3. Zasilacz laboratoryjny 3kanałowy. Instrukcja obsługi DPS-3203TK-3 Zasilacz laboratoryjny 3kanałowy Instrukcja obsługi Specyfikacje Model DPS-3202TK-3 DPS-3203TK-3 DPS-3205TK-3 MPS-6005L-2 Napięcie wyjściowe 0~30V*2 0~30V*2 0~30V*2 0~60V*2 Prąd wyjściowy

Bardziej szczegółowo

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Bardziej szczegółowo

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PRZYRZĄDY POMIAROWE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Przyrządy pomiarowe Ogólny podział: mierniki, rejestratory, detektory, charakterografy.

Bardziej szczegółowo

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH

LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE e LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Ćwiczenie nr 3 Pomiary wzmacniacza operacyjnego Wykonując pomiary PRZESTRZEGAJ

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie E9 Badanie transformatora E9.1. Cel ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. W ćwiczeniu przykładając zmienne napięcie do uzwojenia pierwotnego

Bardziej szczegółowo

DIODY PÓŁPRZEWODNIKOWE

DIODY PÓŁPRZEWODNIKOWE Instrukcja do ćwiczenia laboratoryjnego DIODY PÓŁPRZEWODNIKOWE Instrukcję opracował: dr inż. Jerzy Sawicki Wymagania i wiedza konieczna do wykonania ćwiczenia: 1. Znajomość instrukcji do ćwiczenia, w tym

Bardziej szczegółowo

METROLOGIA EZ1C

METROLOGIA EZ1C Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METOLOGI Kod przedmiotu: EZ1C 300 016 POMI EZYSTNCJI METODĄ

Bardziej szczegółowo

Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia

Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia Ćwiczenie 24 Temat: Układy bramek logicznych pomiar napięcia i prądu. Cel ćwiczenia Poznanie własności i zasad działania różnych bramek logicznych. Zmierzenie napięcia wejściowego i wyjściowego bramek

Bardziej szczegółowo

Tranzystor. C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6 \Elektronika\Tranzystor_cz2b.cmr

Tranzystor. C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6 \Elektronika\Tranzystor_cz2b.cmr Tranzystor Program: Coach 6 Projekt: komputer H : C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6 \Elektronika\Tranzystor_cz1.cmr C:\Program Files (x86)\cma\coach6\full.en\cma

Bardziej szczegółowo

MULTIMETR CYFROWY TES 2360 #02970 INSTRUKCJA OBSŁUGI

MULTIMETR CYFROWY TES 2360 #02970 INSTRUKCJA OBSŁUGI MULTIMETR CYFROWY TES 2360 #02970 INSTRUKCJA OBSŁUGI 1. SPECYFIKACJE 1.1. Specyfikacje ogólne. Zasada pomiaru: przetwornik z podwójnym całkowaniem; Wyświetlacz: LCD, 3 3 / 4 cyfry; Maksymalny odczyt: 3999;

Bardziej szczegółowo

7. Tyrystory. Tyrystor SCR (Silicon Controlled Rectifier)

7. Tyrystory. Tyrystor SCR (Silicon Controlled Rectifier) 7. Tyrystory 1 Tyrystory są półprzewodnikowymi przyrządami mocy pracującymi jako łączniki dwustanowe to znaczy posiadające stan włączenia (charakteryzujący się małą rezystancją) i stan wyłączenia (o dużej

Bardziej szczegółowo

Laboratorium Metrologii

Laboratorium Metrologii Laboratorium Metrologii Ćwiczenie nr 3 Oddziaływanie przyrządów na badany obiekt I Zagadnienia do przygotowania na kartkówkę: 1 Zdefiniować pojęcie: prąd elektryczny Podać odpowiednią zależność fizyczną

Bardziej szczegółowo

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH

Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STUDIA DZIENNE LABORATORIUM PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH Wydział lektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej STDA DZNN LABORATORM PRZYRZĄDÓW PÓŁPRZWODNKOWYCH Ćwiczenie nr 1 Badanie tranzystora jednozłączowego Wykonując pomiary PRZSTRZGAJ przepisów

Bardziej szczegółowo

Technik elektronik 311[07] Zadanie praktyczne

Technik elektronik 311[07] Zadanie praktyczne 1 Technik elektronik 311[07] Zadanie praktyczne Mała firma elektroniczna wyprodukowała tani i prosty w budowie prototypowy generator funkcyjny do zastosowania w warsztatach amatorskich. Podstawowym układem

Bardziej szczegółowo

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą.

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą. Ćwiczenie nr 9 Pomiar rezystancji metodą porównawczą. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne poznanie różnych metod pomiaru rezystancji, a konkretnie zapoznanie się z metodą porównawczą. 2. Dane

Bardziej szczegółowo

Temat: Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Temat: Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych INSTYTUT SYSTEMÓW INŻYNIERII ELEKTRYCZNEJ POLITECHNIKI ŁÓDZKIEJ WYDZIAŁ: KIERUNEK: ROK AKADEMICKI: SEMESTR: NR. GRUPY LAB: SPRAWOZDANIE Z ĆWICZEŃ W LABORATORIUM METROLOGII ELEKTRYCZNEJ I ELEKTRONICZNEJ

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: UKŁADY ELEKTRONICZNE 2 (TS1C500 030) Tranzystor w układzie wzmacniacza

Bardziej szczegółowo

E104. Badanie charakterystyk diod i tranzystorów

E104. Badanie charakterystyk diod i tranzystorów E104. Badanie charakterystyk diod i tranzystorów Cele: Wyznaczenie charakterystyk dla diod i tranzystorów. Dla diod określa się zależność I d =f(u d ) prądu od napięcia i napięcie progowe U p. Dla tranzystorów

Bardziej szczegółowo