2. Reprezentacje danych wielowymiarowych sposoby sobie radzenia z nimi. a. Wprowadzenie, aspekt psychologiczny, wady statystyki

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "2. Reprezentacje danych wielowymiarowych sposoby sobie radzenia z nimi. a. Wprowadzenie, aspekt psychologiczny, wady statystyki"

Transkrypt

1 1. Wstęp 2. Reprezentacje danych wielowymiarowych sposoby sobie radzenia z nimi a. Wprowadzenie, aspekt psychologiczny, wady statystyki b. Metody graficzne i. Wykres 1.zmiennej ii. Rzut na 2 współrzędne iii. Radarowy wykresy iv. Metody wykorzystujące osie WSP. v. Predyspozycje człowieka vi. Dendrogramy c. Redukcja wymiarowości i. Pca ii. Lda iii. Fda iv. MDS v. Analiza skl.niezależnych vi. Filtry vii. Som (16_gramacki) viii. Relacyjne mapy perspektyw (16_gramacki) 3. Zagadnienia poruszane w mojej pracy a. Dystanse b. Klasterzacja i. Opis ogólny ii. K-means iii. Veronoi iv. Prezentacje danych za pomocą trójkątów, czyli.

2 Ogólne metody prezentacji ze zwróceniem uwagi na graficzne, 2. Dane wielowymiarowe Mini opis Metody graficzne Jednym z najbardziej popularnych sposobów reprezentacji danych są metody graficzne. Pozwalają one, w stosunkowo łatwy dla odbiorcy sposób, zaprezentować różnego typu cechy, zależności, przez co znalazły szerokie zastosowanie w bardzo wielu dziedzinach. Technik tych jest wiele, więc postaram się przybliżyć chodź kilka z nich. Wykres jednej zmiennej Jest to bardzo popularna metoda reprezentacji danych jednowymiarowych pozwalająca na wizualizację rozkładu danej cechy, wartości średniej, odchylenia standardowego itp. Najpopularniejszą grupę stanowią tu histogramy. Histogramy składają się z grupy ułożonych obok siebie prostokątów reprezentujących dany przedział liczbowy, których wysokości określona jest liczebnością występowania danego przedziału. Aby zbudować tego rodzaju wykres powinniśmy ustalić ilość oraz wielkość przedziałów, a następnie zliczyć ilość elementów w danym przedziale. Następnie na osi poziomej oznaczamy odpowiednie przedziały, a na pionowej ich liczebność. [TU BĘDZIE RYSUNEK DO DANYCH, KTÓRE BĘDĘ WYKORZYSTYWAŁ RÓWNIEZ W INNYCH PRZYKLADACH] Na przedstawionym tu histogramie widzimy..

3 Rzut na 2. Osie Metody te pozwalają na reprezentacje na jednym wykresie dwóch cech. Dzięki nim możemy wyszukiwać zależności między poszczególnymi współrzędnymi, próbując odnaleźć związków między nimi. Za przykład mogą posłużyć nam wykresy rozproszone (ang. scatterplot) Dane są tu przedstawiane jako zbiór punktów, których położenie jest uzależnione od wartości danej cechy umieszczonej na jednej osi i wartości drugiej cechy na kolejnej osi. Metoda ta pozwala, w niektórych przypadkach, na znalezienie cech redundantnych czy klasteryzacje zbioru. [RYSUNEK POJEDYNCZY] Dla dużego zbioru cech możemy stworzyć macierz wykresów rozproszonych, co pozwala nam na sprawne określenie, które cechy mogą być istotne, skorelowane czy redundantne. [RYSUNEK MACIERZY] Wykres radarowy Technika ta pozwala nam na zaprezentowanie wielu cech danego obiektu na jednym rysunku przypominającym gwiazdę (ang. star. Każda, brana przez nas cecha stanowi oddzielny promień gwiazdy. Wykresy tego typu znakomicie nadają się do porównywania zbioru obiektów mających te same cechy. Możemy w tedy w dość łatwy sposób porównać je ze sobą, oczywiści jeśli liczba cech nie będzie zbyt duża. [RYSUNEK MACIERZY Z STAR PLOTAMI] Współrzędne równoległe Jest to metoda, w której dane cechy są reprezentowane przez równoległe do siebie osie współrzędnych, a wartości danych cech są odkładane na nich. [JAKIŚ PUNKT W KILKU WYMIARACH] Sposób bardzo dobrze nadaje się do prezentacji pojedynczych wektorów lecz przy większej ilości danych linie mogą się nakładać, przecinać przez co wykres staje się nie czytelny. [RYSUNEK KULI] Twarze Chernoffa Metoda ta należy do grupy metod wykorzystujących naturalne predyspozycje człowieka do zwracania uwagi na elementy dobrze przez nas rozpoznawalne takie jak w tym przypadku twarz. Poszczególne cechy przedstawione są jako elementy głowy człowieka takie jak oczy, uszy, usta, brwi itp. w zależności od ilości potrzebnych nam elementów. Zważywszy, że naturalnym dla człowieka jest kontakt z wieloma innymi przedstawicielami naszego gatunku, dość łatwo jest nam analizować wygląd tego typu wykresów. Oczywiście trudność może pojawić się w przypadku konieczności analizy jednocześnie kilkunastu wykresów tego typu. [RYSUNEK ZGODNY Z INNYMI] Redukcja wielowymiarowości

4 Mając wielowymiarowe dane dość trudno jest nam je analizować. Oczywiście możemy przedstawiać dane na wykresach gwiazdowych czy we współrzędnych równoległych, ale nie zawsze nam to pomaga. Przydatne mogą okazać się w takich przypadkach techniki polegające na zmniejszeniu wymiarowości analizowanego problemu. Możemy wykorzystać tu jakieś funkcje podobieństwa w danych w celu ograniczenia ilości cech. Taką funkcją może być np. korelacja czy dystans pomiędzy poszczególnymi wektorami danych. PCA (ang. Principal Component Analysis) Wielowymiarowe dane przeważnie nie są równomiernie rozłożone w całej przestrzeni układu współrzędnych. Często koncentrują się one w pewnych podprzestrzeniach głównej przestrzeni. Celem PCA jest znalezienie tych podprzestrzeni. Analiza głównych składowych opiera się na wykorzystaniu takich statystycznych pojęć jak korelacja czy wariancja, które w połączeniu z elementami algebry liniowej tworzą całość. Najpierw liczymy średnią dla każdej z cech: Następnie kowariancję: Następnie kowariancje dla każdej pary wrzucamy do jednej macierzy, z której obliczamy wektory i wartości własne. Mając wyznaczone wartości własne porządkujemy je od największej do najmniejszej, jednocześnie sortując odpowiadające im wektory własne. W tym miejscy można dokonać redukcji wymiaru przestrzeni. Z otrzymanych wartości własnych wybieramy te największe, przez co minimalizujemy stratę informacji podczas rzutowania danych na nową ilość wymiarów. Im wyższa wartość własna tym odpowiadający jej wektor własny jest słabiej skorelowany z pozostałymi. Teraz możemy dokonać projekcji poprzez przemnożenie transponowanej macierzy wartości własnych i transponowanej macierzy danych wejściowych. Otrzymana macierz jest końcowym rezultatem PCA. Stosując PCA otrzymujemy nowe cechy, a redukcja wymiarów uzyskana zostaje poprzez usunięcie cech z małą wariancją. Wadą tej metody jest nieprzystosowanie do analizy danych o nieliniowej strukturze. [PRZYKŁAD DLA NP. IRYSA W MATLABIE] LDA Czy potrzebne? MDS (ang. Multiddimensional Scaling) Jest to prawdopodobnie najbardziej popularna metoda redukcji wielowymiarowości, pozwalająca na wizualizację danych w niskowymiarowych przestrzeniach. Główne założenie poczynione w MDS

5 polega n wykorzystaniu macierzy odległości pomiędzy poszczególnymi obiektami. Macierzą tą może być np. macierz podobieństwa bazująca na odległościach euklidesowych pomiędzy poszczególnymi danymi. W niektórych przypadkach informacje te są naturalnymi np. badając odległości pomiędzy poszczególnymi miastami, a w innym dane wejściowe muszą zostać poddane modyfikacją np. płeć, kolor oczu, które nie są typowo liczbowymi wielkościami. Następnie staramy się zrobić takie odwzorowanie, aby odległości w nowej ilości wymiarów były jak najbardziej zbliżone do tych w wejściowej. Sprowadza się to do minimalizacji pewnej funkcji, zwanej stress function. Może mieć ona postać jak poniżej: [WZÓR] i pozwala ona na sprawdzenie, jak dobrze nowa konfiguracja zgadza się z wejściową. Możemy również korzystać z innych funkcji stress u które mogą być mniej lub bardziej odpowiednie dla naszych potrzeb. [PRZYKŁAD MDS, MOŻE SZEŚCIAN] SOM (ang. Self-Organizing Maps) Mapy samoorganizujące zwane również sieciami Kohonena są pewnego typu sieciami neuronowymi, w których uczenie odbywa się bez nauczyciela. Mamy tutaj do dyspozycji tylko dane wejściowe, z których finalnie powinniśmy otrzymać wzorzec mogący prawidłowo rozróżniać wprowadzane informacje. Zasada działania SOM opiera się na wykorzystaniu metody jednego zwycięscy. Oznacza to, że podczas uczenia, na podstawie pewnej funkcji zwycięstwa zostaje wybrany tylko 1 neuron stający się wygranym. Następnie waga jego jak i najbliższych sąsiadów zostają zmodyfikowane w taki sposób, aby były bardziej predysponowane do wykrywania odpowiedniego przypadku.

6 W sieciach SOM każdy neuron ma ściśle określonych sąsiadów. Pozwala to na tworzenie mapy neuronów, tworzących pewną topologie. Jak w każdej sieci mamy również warstwę wejściową, do której wpływają dane. Pobudzają one 1 neuron, który staje się zwycięzcą. Wprowadzając wielokrotnie dane uczymy sieć odpowiednio rozpoznawać prawidłowe dla niego informacje bądź zbliżone do nich. Sieć ta ma tą własności, że neurony znajdujące się blisko siebie podobnie rozróżniają dane wzorce wejściowe. Jeśli jakieś dane pojawiają się częściej to dany neuron będzie częściej zwyciężał niż inne. Pozwala to odzwierciedlenie przez sieć częstotliwości występowania poszczególnych wzorców. Aby zrozumieć możliwość redukcji wymiarów przez SOM należy uświadomić sobie, że jest to obiekt dwuwymiarowy, do którego wprowadzane są dane wielowymiarowe. Rezultatem takiego postępowania jest przekonwertowanie n-wymiarowych danych w, bardziej wygodną do wizualnej analizy, postać dwu-wymiarowych. Sieć Kohenena dąży do stworzenia optymalnej struktury, która jest w stanie prawidłowo obrazować stosunki pomiędzy danymi wejściowymi. Dodatkowo mamy tu do czynienia z klasyfikacją danych w pewne grupy o zbliżonych do siebie własnościach. [PRZYKŁAD Z GRAMICKI.16] Relacyjne mapy perspektyw Relacyjne mapy perspektyw (ang, Relational Perspective Map, RPM).? k-średnich Metoda k-średnich jest jednym z algorytmów klasteryzacji pozwalający w prosty sposób pogrupować wielowymiarowe dane. Główną zasadą klasteryzacji jest taki podział zbioru danych, aby minimalizował wariancję w danej grupie, a maksymalizował pomiędzy różnymi. Sama zasada działania k-means, w podstawowej wersji, opiera się na znalezieniu k klastrów, gdzie w każdym z nich znajdują się elementy o najmniejszej odległości od centrum. Najczęściej do liczenia dystansu wykorzystujemy metrykę euklidesową. Początkowe usytuowanie samych centrów może być przypadkowe bądź mogą to być np. punkty najbardziej od siebie oddalone. W pierwszej iteracji wyznaczamy odległości pomiędzy poszczególnymi punktami a danymi centrami i na tej podstawie dołączamy je do danego kastra. W kolejnym kroku weryfikujemy położenie danych centr, wyznaczające je poprzez obliczenie centrum danego klastra, poprzez wyznaczenie średnich wartości położeń obiektów go tworzących. Następnie na nowo wyznaczamy położenia danych punktów względem nowo powstałych centr i modyfikujemy poprzednią przynależność do danych grup. Algorytm ten możemy powtarzać iteracyjnie, aż do ustabilizowania się klastrów bądź uzyskania satysfakcjonującego nas rezultatu. Algorytm k-średnich jest stosunkowo prosty i szybki jednak ma pewną wadę. Jest nią wyznaczona z góry ilość możliwych klastrów. To jest istotnym problemem jeśli nie wiemy czego dokładnie oczekujemy.

7 [JAKIŚ PRZYKŁAD] diagramy Voronoi Mając klastry uzyskane za pomocą k-means możemy uzyskać diagramy Voronoi a. Składają się one z pewnego zbioru centr zwanych również zalążkami. Poszczególne obszary są rozdzielone poprzez linie usytuowane w taki sposób, aby oddzielały punkty mniej oddalone od 1. centra, a bardziej od 2. Utworzone w ten sposób obszary, grupują punkty o odległości bliższej do określonego z zalążków niż każdego innego. [RYSUNEK] klasteryzacja hierarchiczna Techniki kalsteryzacji hierarchicznej możemy podzielić na skupiające (aglomeracyjne) i dzielące. Przy pierwszym wariancie wychodzimy z założenia, że każdy obiekt tworzy inny klaster i na podstawie jakiegoś określonego kryterium są one w kolejnych krokach łączone. Ostatecznie dążymy do jednego wspólnego obiektu grupującego wszystkie dane. W drugim wariancie zakładamy, że dane wejściowe należą do jednego klastra i stopniowo schodzimy w dół rozdzielając go na mniejsze, aż do uzyskania oczekiwanego przez nas podziału. Rezultatem takiego podziału jest najczęściej dendrogramy, które są to strukturami mającymi na celu ukazać związki pomiędzy wybranymi obiektami na podstawie jakiegoś kryterium. Liście takiego wykresu są elementami wejściowymi, a korzeń klastrem grupującym wszystkie dane. [PRZYKŁAD Z MATLABA I OPIS SPOSOBU ŁĄCZENIA DENDROGRAMU AVERAGE, COMLITE]

S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor

S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.

Bardziej szczegółowo

Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania

Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania Analiza Skupień Elementy składowe procesu grupowania obiekt Ekstrakcja cech Sprzężenie zwrotne Grupowanie klastry Reprezentacja

Bardziej szczegółowo

Co to jest grupowanie

Co to jest grupowanie Grupowanie danych Co to jest grupowanie 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Szukanie grup, obszarów stanowiących lokalne gromady punktów Co to jest grupowanie

Bardziej szczegółowo

Sieci Kohonena Grupowanie

Sieci Kohonena Grupowanie Sieci Kohonena Grupowanie http://zajecia.jakubw.pl/nai UCZENIE SIĘ BEZ NADZORU Załóżmy, że mamy za zadanie pogrupować następujące słowa: cup, roulette, unbelievable, cut, put, launderette, loveable Nie

Bardziej szczegółowo

Eksploracja Danych. wykład 3. Sebastian Zając. 5 kwietnia 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 5 kwietnia / 21

Eksploracja Danych. wykład 3. Sebastian Zając. 5 kwietnia 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 5 kwietnia / 21 Eksploracja Danych wykład 3 Sebastian Zając WMP.SNŚ UKSW 5 kwietnia 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 5 kwietnia 2017 1 / 21 Struktura Danych Rozpatrzmy zbiór danych: Sebastian Zając

Bardziej szczegółowo

Hierarchiczna analiza skupień

Hierarchiczna analiza skupień Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym

Bardziej szczegółowo

Elementy statystyki wielowymiarowej

Elementy statystyki wielowymiarowej Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Elementy statystyki wielowymiarowej 1.1 Kowariancja i współczynnik korelacji 1.2 Macierz kowariancji 1.3 Dwumianowy rozkład normalny 1.4 Analiza składowych

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO

STATYSTYKA I DOŚWIADCZALNICTWO STATYSTYKA I DOŚWIADCZALNICTWO Wykład 9 Analiza skupień wielowymiarowa klasyfikacja obiektów Metoda, a właściwie to zbiór metod pozwalających na grupowanie obiektów pod względem wielu cech jednocześnie.

Bardziej szczegółowo

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu

Bardziej szczegółowo

Analiza składowych głównych. Wprowadzenie

Analiza składowych głównych. Wprowadzenie Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących

Bardziej szczegółowo

Analiza składowych głównych idea

Analiza składowych głównych idea Analiza składowych głównych idea Analiza składowych głównych jest najczęściej używanym narzędziem eksploracyjnej analizy danych. Na metodę tę można spojrzeć jak na pewną technikę redukcji wymiarowości

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Eksploracja danych Co to znaczy eksploracja danych Klastrowanie (grupowanie) hierarchiczne Klastrowanie

Bardziej szczegółowo

METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA

METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA AMFETAMINY Waldemar S. Krawczyk Centralne Laboratorium Kryminalistyczne Komendy Głównej Policji, Warszawa (praca obroniona na Wydziale Chemii Uniwersytetu

Bardziej szczegółowo

10. Redukcja wymiaru - metoda PCA

10. Redukcja wymiaru - metoda PCA Algorytmy rozpoznawania obrazów 10. Redukcja wymiaru - metoda PCA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. PCA Analiza składowych głównych: w skrócie nazywana PCA (od ang. Principle Component

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Adrian Horzyk

Adrian Horzyk Metody Inteligencji Obliczeniowej Metoda K Najbliższych Sąsiadów (KNN) Adrian Horzyk horzyk@agh.edu.pl AGH Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości;

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP. V. Obliczenia procentowe. Uczeń: 1) przedstawia część wielkości jako procent tej wielkości; WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 7SP Liczby. TEMAT Rozwinięcia dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. Mnożenie i dzielenie

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Przykładowa analiza danych

Przykładowa analiza danych Przykładowa analiza danych W analizie wykorzystano dane pochodzące z publicznego repozytorium ArrayExpress udostępnionego na stronach Europejskiego Instytutu Bioinformatyki (http://www.ebi.ac.uk/). Zbiór

Bardziej szczegółowo

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI.

MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. programowej dla klas IV-VI. programowej dla klas IV-VI. MATEMATYKA Z PLUSEM DLA KLASY VII W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 6 h Liczby. Rozwinięcia

Bardziej szczegółowo

SIECI KOHONENA UCZENIE BEZ NAUCZYCIELA JOANNA GRABSKA-CHRZĄSTOWSKA

SIECI KOHONENA UCZENIE BEZ NAUCZYCIELA JOANNA GRABSKA-CHRZĄSTOWSKA SIECI KOHONENA UCZENIE BEZ NAUCZYCIELA JOANNA GRABSKA-CHRZĄSTOWSKA Wykłady w dużej mierze przygotowane w oparciu o materiały i pomysły PROF. RYSZARDA TADEUSIEWICZA SAMOUCZENIE SIECI metoda Hebba W mózgu

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo

Techniki grupowania danych w środowisku Matlab

Techniki grupowania danych w środowisku Matlab Techniki grupowania danych w środowisku Matlab 1. Normalizacja danych. Jedne z metod normalizacji: = = ma ( y =, rσ ( = ( ma ( = min = (1 + e, min ( = σ wartość średnia, r współczynnik, σ odchylenie standardowe

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji Stosowana Analiza Regresji Wykład VIII 30 Listopada 2011 1 / 18 gdzie: X : n p Q : n n R : n p Zał.: n p. X = QR, - macierz eksperymentu, - ortogonalna, - ma zera poniżej głównej diagonali. [ R1 X = Q

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Sposoby prezentacji problemów w statystyce

Sposoby prezentacji problemów w statystyce S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki

Bardziej szczegółowo

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia

Bardziej szczegółowo

Agnieszka Nowak Brzezińska

Agnieszka Nowak Brzezińska Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia

Bardziej szczegółowo

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną

Bardziej szczegółowo

Wykład 4: Statystyki opisowe (część 1)

Wykład 4: Statystyki opisowe (część 1) Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można

Bardziej szczegółowo

Inteligentna analiza danych

Inteligentna analiza danych Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki

Bardziej szczegółowo

Statystyka opisowa. Wykład I. Elementy statystyki opisowej

Statystyka opisowa. Wykład I. Elementy statystyki opisowej Statystyka opisowa. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Elementy statystyku opisowej 1 Elementy statystyku opisowej 2 3 Elementy statystyku opisowej Definicja Statystyka jest to nauka o

Bardziej szczegółowo

Agnieszka Nowak Brzezińska Wykład III

Agnieszka Nowak Brzezińska Wykład III Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe

Bardziej szczegółowo

Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji

Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji Analiza składników podstawowych - wprowadzenie (Principal Components Analysis

Bardziej szczegółowo

Eksploracja danych. Grupowanie. Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne. Grupowanie wykład 1

Eksploracja danych. Grupowanie. Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne. Grupowanie wykład 1 Grupowanie Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Grupowanie wykład 1 Sformułowanie problemu Dany jest zbiór obiektów (rekordów). Znajdź naturalne pogrupowanie

Bardziej szczegółowo

Temat: Sieci neuronowe oraz technologia CUDA

Temat: Sieci neuronowe oraz technologia CUDA Elbląg, 27.03.2010 Temat: Sieci neuronowe oraz technologia CUDA Przygotował: Mateusz Górny VIII semestr ASiSK Wstęp Sieci neuronowe są to specyficzne struktury danych odzwierciedlające sieć neuronów w

Bardziej szczegółowo

Statystyka. Wykład 5. Magdalena Alama-Bućko. 20 marca Magdalena Alama-Bućko Statystyka 20 marca / 26

Statystyka. Wykład 5. Magdalena Alama-Bućko. 20 marca Magdalena Alama-Bućko Statystyka 20 marca / 26 Statystyka Wykład 5 Magdalena Alama-Bućko 20 marca 2017 Magdalena Alama-Bućko Statystyka 20 marca 2017 1 / 26 Koncentracja Analiza struktury zbiorowości miary położenia ( miary średnie) miary zmienności

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci

Bardziej szczegółowo

Przemysław Włodarczyk. Wizualizacja danych. Praca magisterska pod kierunkiem. prof. Włodzisława Ducha. Wydział Matematyki i Informatyki

Przemysław Włodarczyk. Wizualizacja danych. Praca magisterska pod kierunkiem. prof. Włodzisława Ducha. Wydział Matematyki i Informatyki Przemysław Włodarczyk Wizualizacja danych Praca magisterska pod kierunkiem prof. Włodzisława Ducha Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika, Toruń 2007 Spis treści 1.Wstęp...4 2.

Bardziej szczegółowo

4.3 Grupowanie według podobieństwa

4.3 Grupowanie według podobieństwa 4.3 Grupowanie według podobieństwa Przykłady obiektów to coś więcej niż wektory wartości atrybutów. Reprezentują one poszczególne rasy psów. Ważnym pytaniem, jakie można sobie zadać, jest to jak dobrymi

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

Uczenie sieci typu MLP

Uczenie sieci typu MLP Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik

Bardziej szczegółowo

Praktyczny Excel. Wykresy i grafika. w Excelu krok po kroku

Praktyczny Excel. Wykresy i grafika. w Excelu krok po kroku Praktyczny Excel Wykresy i grafika w Excelu krok po kroku 5 1 NUMER PRAWNICZY przygotowany przez + OCHRONA DANYCH OSOBOWYCH profesjonalnie i kompleksowo 1 2 + GRATIS 20% GRATIS 30%, tel. 22 518 29 29,

Bardziej szczegółowo

Spis treści Szybki start... 4 Podstawowe informacje opis okien... 6 Tworzenie, zapisywanie oraz otwieranie pliku... 23

Spis treści Szybki start... 4 Podstawowe informacje opis okien... 6 Tworzenie, zapisywanie oraz otwieranie pliku... 23 Spis treści Szybki start... 4 Podstawowe informacje opis okien... 6 Plik... 7 Okna... 8 Aktywny scenariusz... 9 Oblicz scenariusz... 10 Lista zmiennych... 11 Wartości zmiennych... 12 Lista scenariuszy/lista

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

Elementy Sztucznej Inteligencji. Sztuczne sieci neuronowe cz. 2

Elementy Sztucznej Inteligencji. Sztuczne sieci neuronowe cz. 2 Elementy Sztucznej Inteligencji Sztuczne sieci neuronowe cz. 2 1 Plan wykładu Uczenie bez nauczyciela (nienadzorowane). Sieci Kohonena (konkurencyjna) Sieć ze sprzężeniem zwrotnym Hopfielda. 2 Cechy uczenia

Bardziej szczegółowo

CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI

CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III CZEŚĆ PIERWSZA I. POTĘGI Zamienia potęgi o wykładniku całkowitym ujemnym na odpowiednie potęgi o wykładniku naturalnym. Oblicza wartości

Bardziej szczegółowo

Wykład Prezentacja materiału statystycznego. 2. Rodzaje szeregów statystycznych.

Wykład Prezentacja materiału statystycznego. 2. Rodzaje szeregów statystycznych. Wykład 2. 1. Prezentacja materiału statystycznego. 2. Rodzaje szeregów statystycznych. 3. Wykresy: histogram, diagram i ogiwa. Prezentacja materiału statystycznego Przy badaniu struktury zbiorowości punktem

Bardziej szczegółowo

Wprowadzenie. SOM jest skrótem od Self Organizing Maps, czyli Samoorganizujące się mapy.

Wprowadzenie. SOM jest skrótem od Self Organizing Maps, czyli Samoorganizujące się mapy. SOM i WebSOM Wprowadzenie SOM jest skrótem od Self Organizing Maps, czyli Samoorganizujące się mapy. Podstawy teoretyczne stworzył fiński profesor Teuvo Kohonen w 1982 r SOM - ogólnie Celem tych sieci

Bardziej szczegółowo

Metody Sztucznej Inteligencji II

Metody Sztucznej Inteligencji II 17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału

Bardziej szczegółowo

Asocjacyjna reprezentacja danych i wnioskowanie

Asocjacyjna reprezentacja danych i wnioskowanie Asocjacyjna reprezentacja danych i wnioskowanie Wykorzystane technologie JetBrains PyCharm 504 Python 35 Struktura drzewa GRAPH PARAM PARAM ID1 ID2 ID_N params params params param_name_1: param_value_1

Bardziej szczegółowo

WYKRESY SPORZĄDZANE W UKŁADZIE WSPÓŁRZĘDNYCH:

WYKRESY SPORZĄDZANE W UKŁADZIE WSPÓŁRZĘDNYCH: WYKRESY SPORZĄDZANE W UKŁADZIE WSPÓŁRZĘDNYCH: Zasada podstawowa: Wykorzystujemy możliwie najmniej skomplikowaną formę wykresu, jeżeli to możliwe unikamy wykresów 3D (zaciemnianie treści), uwaga na kolory

Bardziej szczegółowo

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności I. FIGURY I PRZEKSZTAŁCENIA - zna i rozumie pojęcia, zna własności figur: ogólne równanie prostej, kierunkowe równanie prostej okrąg, równanie okręgu - oblicza odległość dwóch punktów na płaszczyźnie -

Bardziej szczegółowo

Praktyczny Excel. Wykresy i grafika. w Excelu krok po kroku

Praktyczny Excel. Wykresy i grafika. w Excelu krok po kroku Praktyczny Excel Wykresy i grafika w Excelu krok po kroku 5 1 NUMER PRAWNICZY przygotowany przez + OCHRONA DANYCH OSOBOWYCH profesjonalnie i kompleksowo 1 2 + GRATIS 20% GRATIS 30%, tel. 22 518 29 29,

Bardziej szczegółowo

Matematyka wykaz umiejętności wymaganych na poszczególne oceny

Matematyka wykaz umiejętności wymaganych na poszczególne oceny Matematyka wykaz umiejętności wymaganych na poszczególne oceny KLASA I 1.Liczby rzeczywiste 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;

Bardziej szczegółowo

Statystyczne metody analizy danych. Agnieszka Nowak - Brzezińska

Statystyczne metody analizy danych. Agnieszka Nowak - Brzezińska Statystyczne metody analizy danych Agnieszka Nowak - Brzezińska SZEREGI STATYSTYCZNE SZEREGI STATYSTYCZNE odpowiednio usystematyzowany i uporządkowany surowy materiał statystyczny. Szeregi statystyczne

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy IIIa i IIIb Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ 1. FUNKCJE (11h) Uczeń: poda definicję funkcji (2)

Bardziej szczegółowo

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Szkolenie Data mining przegląd metod

Szkolenie Data mining przegląd metod Szkolenie Data mining przegląd metod program i cennik Łukasz Deryło Analizy statystyczne, szkolenia www.statystyka.c0.pl Szkolenie Data mining przegląd metod Co obejmuje? Szkolenie obejmuje podstawowe

Bardziej szczegółowo

Nie tylko wynik Plan wynikowy dla klasy 3 gimnazjum

Nie tylko wynik Plan wynikowy dla klasy 3 gimnazjum Poziomy wymagań edukacyjnych: K konieczny P podstawowy R rozszerzający D dopełniający W wykraczający Nie tylko wynik Plan wynikowy dla klasy 3 gimnazjum Statystyka opisowa i elementy rachunku prawdopodobieństwa

Bardziej szczegółowo

Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.

Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść

Bardziej szczegółowo

Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań

Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,

Bardziej szczegółowo

SPOTKANIE 9: Metody redukcji wymiarów

SPOTKANIE 9: Metody redukcji wymiarów Wrocław University of Technology SPOTKANIE 9: Metody redukcji wymiarów Piotr Klukowski* Studenckie Koło Naukowe Estymator piotr.klukowski@pwr.wroc.pl 08.12.2015 *Część slajdów pochodzi z prezentacji dr

Bardziej szczegółowo

Animowana grafika 3D. Opracowanie: J. Kęsik.

Animowana grafika 3D. Opracowanie: J. Kęsik. Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Rzutowanie Równoległe Perspektywiczne Rzutowanie równoległe Rzutowanie równoległe jest powszechnie używane w rysunku technicznym - umożliwienie

Bardziej szczegółowo

WYKŁAD 12. Analiza obrazu Wyznaczanie parametrów ruchu obiektów

WYKŁAD 12. Analiza obrazu Wyznaczanie parametrów ruchu obiektów WYKŁAD 1 Analiza obrazu Wyznaczanie parametrów ruchu obiektów Cel analizy obrazu: przedstawienie każdego z poszczególnych obiektów danego obrazu w postaci wektora cech dla przeprowadzenia procesu rozpoznania

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji

Bardziej szczegółowo

Określanie ważności atrybutów. RapidMiner

Określanie ważności atrybutów. RapidMiner Określanie ważności atrybutów RapidMiner Klasyfikacja (1/2) TEMP BÓL WYSYPKA GARDŁO DIAGNOZA 36.6 T BRAK NORMA NIESTRAWNOŚĆ 37.5 N MAŁA PRZEKR. ALERGIA 36.0 N BRAK NORMA PRZECHŁODZENIE 39.5 T DUŻA PRZEKR.

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

Katalog wymagań na poszczególne stopnie szkolne klasa 3

Katalog wymagań na poszczególne stopnie szkolne klasa 3 Katalog wymagań na poszczególne stopnie szkolne klasa 3 I. GRANIASTOSŁUPY I OSTROSŁUPY 6 5 4 3 2 Wskazuje wśród wielościanów graniastosłupy proste i pochyłe. Wskazuje na modelu lub rysunku krawędzie, wierzchołki,

Bardziej szczegółowo

Podstawowe definicje statystyczne

Podstawowe definicje statystyczne Podstawowe definicje statystyczne 1. Definicje podstawowych wskaźników statystycznych Do opisu wyników surowych (w punktach, w skali procentowej) stosuje się następujące wskaźniki statystyczne: wynik minimalny

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

Zamiana reprezentacji wektorowej na rastrową - rasteryzacja

Zamiana reprezentacji wektorowej na rastrową - rasteryzacja MODEL RASTROWY Siatka kwadratów lub prostokątów stanowi elementy rastra. Piksel - pojedynczy element jest najmniejszą rozróŝnialną jednostką powierzchniową, której własności są opisane atrybutami. Model

Bardziej szczegółowo

STATYSTYKA OPISOWA. Dr Alina Gleska. 12 listopada Instytut Matematyki WE PP

STATYSTYKA OPISOWA. Dr Alina Gleska. 12 listopada Instytut Matematyki WE PP STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 12 listopada 2017 1 Analiza współzależności dwóch cech 2 Jednostka zbiorowości - para (X,Y ). Przy badaniu korelacji nie ma znaczenia, która

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy

Bardziej szczegółowo

Dokąd on zmierza? Przemieszczenie i prędkość jako wektory

Dokąd on zmierza? Przemieszczenie i prędkość jako wektory A: 1 OK Muszę to powtórzyć... Potrzebuję pomocy Dokąd on zmierza? Przemieszczenie i prędkość jako wektory Łódź żegluje po morzu... Płynie z szybkością 10 węzłów (węzeł to 1 mila morska na godzinę czyli

Bardziej szczegółowo

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji

Bardziej szczegółowo

KRZYWA CZĘSTOŚCI, CZĘSTOLIWOŚCI I SUM CZASÓW TRWANIA STANÓW

KRZYWA CZĘSTOŚCI, CZĘSTOLIWOŚCI I SUM CZASÓW TRWANIA STANÓW KRZYWA CZĘSTOŚCI, CZĘSTOLIWOŚCI I SUM CZASÓW TRWANIA STANÓW Wykres codziennych stanów CZĘSTOŚĆ lub LICZEBNOŚĆ KLASOWA ZBARZEŃ (n), jest to liczba zdarzeń przypadających na dany przedział klasowy badanego

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski

Bardziej szczegółowo

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH. Sposoby sprawdzania wiedzy i umiejętności uczniów

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH. Sposoby sprawdzania wiedzy i umiejętności uczniów WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH Sposoby sprawdzania wiedzy i umiejętności uczniów 1. Odpowiedzi ustne. 2. Sprawdziany pisemne. 3. Kartkówki. 4. Testy.

Bardziej szczegółowo

POJĘCIA WSTĘPNE. STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych.

POJĘCIA WSTĘPNE. STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych. [1] POJĘCIA WSTĘPNE STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych. BADANIE STATYSTYCZNE - ogół prac mających na celu poznanie struktury określonej

Bardziej szczegółowo

Rozpoznawanie twarzy za pomocą sieci neuronowych

Rozpoznawanie twarzy za pomocą sieci neuronowych Rozpoznawanie twarzy za pomocą sieci neuronowych Michał Bereta http://torus.uck.pk.edu.pl/~beretam Praktyczna przydatność Bardzo szerokie praktyczne zastosowanie Ochrona Systemy bezpieczeństwa (np. lotniska)

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych aproksymacja LABORKA Piotr Ciskowski zadanie 1. aproksymacja funkcji odległość punktów źródło: Żurada i in. Sztuczne sieci neuronowe, przykład 4.4, str. 137 Naucz sieć taką

Bardziej szczegółowo

Zastosowania sieci neuronowych

Zastosowania sieci neuronowych Zastosowania sieci neuronowych klasyfikacja LABORKA Piotr Ciskowski zadanie 1. klasyfikacja zwierząt sieć jednowarstwowa żródło: Tadeusiewicz. Odkrywanie własności sieci neuronowych, str. 159 Przykład

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji n-wymiarowych Forma kwadratowa w n wymiarach Procedury minimalizacji Minimalizacja wzdłuż prostej w n-wymiarowej przestrzeni Metody minimalizacji wzdłuż osi współrzędnych wzdłuż kierunków

Bardziej szczegółowo

Rozpoznawanie obrazów na przykładzie rozpoznawania twarzy

Rozpoznawanie obrazów na przykładzie rozpoznawania twarzy Rozpoznawanie obrazów na przykładzie rozpoznawania twarzy Wykorzystane materiały: Zadanie W dalszej części prezentacji będzie omawiane zagadnienie rozpoznawania twarzy Problem ten można jednak uogólnić

Bardziej szczegółowo

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów: Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,

Bardziej szczegółowo

1. Potęgi. Logarytmy. Funkcja wykładnicza

1. Potęgi. Logarytmy. Funkcja wykładnicza 1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie

Bardziej szczegółowo

Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej

Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej Spis treści Autor: Marcin Orchel Algorytmika...2 Algorytmika w gimnazjum...2 Algorytmika w liceum...2 Język programowania w

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34

Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Po co nam charakterystyki liczbowe? Katarzyna Lubnauer 34 Def. Charakterystyki liczbowe to wielkości wyznaczone na podstawie danych statystycznych, charakteryzujące własności badanej cechy. Klasyfikacja

Bardziej szczegółowo

Kurs Chemometrii Poznań 28 listopad 2006

Kurs Chemometrii Poznań 28 listopad 2006 Komisja Nauk Chemicznych Polskiej Akademii Nauk Oddział w Poznaniu Wydział Technologii Chemicznej Politechniki Poznańskiej w Poznaniu GlaxoSmithKline Pharmaceuticals S.A. w Poznaniu Stowarzyszenie ISPE

Bardziej szczegółowo