Dokumentacja szyfratora ABA IPSec Gate. Paweł Krawczyk

Wielkość: px
Rozpocząć pokaz od strony:

Download "Dokumentacja szyfratora ABA IPSec Gate. Paweł Krawczyk kravietz@aba.krakow.pl"

Transkrypt

1 Dokumentacja szyfratora ABA IPSec Gate Paweł Krawczyk 24 lipca 2002

2 2

3 Spis treści 1 Wprowadzenie Protokół IP Architektura IPSec Tunelowanie Algorytmy kryptograficzne w AH i ESP Protokół IKE Standardy Parametry kryptograficzne urządzenia 13 3 Ogólny opis rozwiązania Interfejsy zewnętrzne Konfiguracja Zarządzanie Opis szczegółowy Zewnętrzna pamięć FLASH USB Klucze RSA Zabezpieczenia dodatkowe Przepełnienie bufora Uaktualnienia oprogramowania Ataki SYN Flood Analiza ruchu na podstawie TOS Filtr pakietów Wykrywanie fałszywych pakietów Wykrywanie nieprawidłowych pakietów Blokowanie ruchu nieszyfrowanego Izolacja interfejsów sieciowych Ręczny tryb konfiguracji filtra Generowanie liczb losowych Przewodnik po konfiguracji Konfiguracja sieci testowej Podstawowe parametry szyfratora

4 4 SPIS TREŚCI Test łączności Tunel AH: tryb transportowy end-to-end Konfiguracja Analiza Tunel AH: tryb tunelowy end-to-end Konfiguracja Analiza Tunel AH: tryb tunelowy end-to-end z kompresją Konfiguracja Analiza Tunel AH: tryb tunelowy VPN Konfiguracja Analiza Tunel ESP: tryb tunelowy VPN Konfiguracja Analiza RSA z identyfikatorem adres IP Konfiguracja Analiza RSA z identyfikatorem tekstowym Konfiguracja Analiza Tunele dynamiczne Konfiguracja Analiza Polecenia autologout exit fw halt hostname info soft interface ipsec nameserver ntp password peer ppp reboot reset route service

5 SPIS TREŚCI show telnet terminal upgrade write A Notacja prefiksowa 55 B Polityka filtra pakietów 57 C Informacje 61

6 6 SPIS TREŚCI

7 Rozdział 1 Wprowadzenie 1.1 Protokół IP Komunikacja w Internecie odbywa się za pomocą pakietów (datagramów) przesyłanych pomiędzy węzłami sieci posiadającymi unikalne adresy IP. Protokół IP jest najniższym funkcjonalnym składnikiem Internetu, niezależnym od platformy sprzętowej. Do przesyłania danych użytkownika wykorzystuje się szereg protokołów wyższych warstw, przesyłanych wewnątrz datagramów IP (enkapsulacja). Każdy datagram pomiędzy węzłem źródłowym i docelowym może pokonać wiele węzłów pośrednich (routerów). W sieci publicznej może to być od kilku do kilkunastu węzłów pośrednich, zarządzanych przez różne podmioty i geograficznie zlokalizowanych niekoniecznie pomiędzy węzłem źródłowym i docelowym. Ponadto, trasa pakietu może zmieniać się dynamicznie w zależności od konfiguracji i aktualnego stanu sieci. Protokół IP nie zapewnia ani doręczenia datagramu, ani jego bezpieczeństwa w sensie poufności oraz intergralności informacji. Brak tej gwarancji w połączeniu z ograniczoną przewidywalnością trasy pakietu powoduje, że dane przesyłane za pomocą IP są podatne na podsłuch oraz modyfikację zawartości. Mechanizmem zapewniającym bezpieczeństwo informacji przesyłanej za pomocą protokołu IP jest architektura IP Security (IPSec), stworzona na początku lat 90-tych przez Internet Engineering Task Force (IETF) organizację, która stworzyła IP. IPSec jest standardem ochrony informacji w sieci Internet, a jego realizacja w szyfratorze ABA IPSec Gatestanowi temat niniejszego opracowania. 1.2 Architektura IPSec Architektura IP Security wykorzystuje technikę enkapsulacji oraz mechanizmy kryptograficzne w celu zagwarantowania następujących cech przesyła- 7

8 8 ROZDZIAŁ 1. WPROWADZENIE nych za jego pomocą informacji: poufność, czyli uniemożliwienie zapoznania się z treścią informacji osobom niepowołanym, to jest nie posiadającym tajnych kluczy kryptograficznych, którymi ta informacja jest zaszyfrowana integralność, czyli zapewnienie że informacja nie została zmieniona, celowo lub wskutek błędów transmisji, przez wykrywanie takich zmian autentyczność, czyli uniemożliwienie wstawienia do transmisji własnych komunikatów osobom postronnym, przez wykrywanie nieautentycznych pakietów W skład architektury IP Security wchodzą dwa protokoły: Authentication Header (AH) oraz Encapsulation Security Payload (ESP). Protokoły te mogą być używane zamiennie lub wspólnie, przez enkapsulację jednego w drugim. Protokół AH zapewnia wyłącznie ochronę integralności oraz autentyczność informacji, z założenia nie zapewnia jej poufności dane chronione przez AH są przesyłane otwartym tekstem. Protokół ESP zapewnia ochronę integralności, autentyczności oraz poufności przesyłanych danych, które są przesyłane w postaci zaszyfrowanej. Ponadto wykorzystywany jest jeszcze protokół kompresji danych IPComp. 1.3 Tunelowanie Oba protokoły mogą być stosowane w dwóch trybach transportowym i tunelowym. Tryby te różnią się sposobem enkapsulacji: w trybie transportowym za oryginalnym nagłówkiem IP dokładany jest nagłówek AH lub ESP chroniący bezpośrednio protokoły wyższych warstw enkapsulowane wewnątrz. W trybie tunelowym nowy pakiet IP zawiera AH lub ESP enkapsulujące cały oryginalny pakiet IP. Z praktycznego punktu widzenia tryb tunelowy zapewnia to samo co tryb transportowy kosztem niewielkiego zwiększenia rozmiaru datagramu. W trybie transportowym jest jednak niemożliwe: korzystanie z więcej niż jednego protokołu bezpieczeństwa na raz (np. enkapsulacja IPComp w ESP) przesyłanie wewnątrz tunelu IPSec pakietów z węzłów innych niż jego końce Z tych powodów tryb transportowy znajduje ograniczone zastosowanie, na przykład do bezpośredniej komunikacji stacji zarządzającej z szyfratorem. Do większości zastosowań, na przykład budowy wirtualnych sieci prywatnych (Virtual Private Networks) wykorzystuje się wyłącznie tryb tunelowy.

9 1.4. ALGORYTMY KRYPTOGRAFICZNE W AH I ESP Algorytmy kryptograficzne w AH i ESP Protokoły AH oraz ESP nie posiadają na stałe przypisanych algorytmów kryptograficznych, które mogą być ustalane arbitralnie podczas uruchamiania bezpiecznego połączenia. Z punktu widzenia osoby analizującej takie połączenie z zewnątrz zastosowane algorytmy nie są znane każdy datagram stanowi ciąg zaszyfrowanych danych opatrzonych identyfikującym je numerem Security Parameters Index (SPI). Na podstawie SPI (wybranego podczas nawiązywania połączenia) każda ze stron określa, jakie przekształcenia kryptograficzne należy zastosować by rozszyfrować pakiet1. Zestaw informacji o danym połączeniu opisywany przez SPI określa się nazwą Security Association (SA). Protokoły AH i ESP do celów stwierdzenia integralności oraz autentyczności datagramu wykorzystują kryptograficzne funkcje skrótu w trybie Hashed Message Authentication Code (HMAC-96). W trybie tym wynik funkcji skrótu jest mieszany z ustalonym pomiędzy stronami tajnym kluczem kryptograficznym tworząc 96-cio bitowy wynik, który zapewnia: stwierdzenie integralności przez porównanie przysłanego skrótu z wynikiem obliczonym z otrzymanego datagramu stwierdzenie autentyczności, ponieważ tylko osoba znająca poprawny klucz mogła wygenerować poprawny skrót HMAC Wykorzystuje się funkcje skrótu MD5, SHA1 oraz RIPEMD-160. Protokół ESP do szyfrowania wykorzystuje szyfry blokowe w trybie Cipher Block Chaining (CBC) z losowym wektorem inicjalizującym (initialising vector), przy czym klucz szyfrowania jest niezależny od klucza wykorzystywanego do obliczenia HMAC wiadomości. Wykorzystuje się szyfry DES z kluczem 56 bitów, potrójny DES w trybie EDE (Encrypt-Decrypt-Encrypt) z kluczem o długości 168 bitów oraz inne szyfry blokowe. Wszystkie algorytmy, zarówno szyfrujące oraz HMAC, stosowane w IPSec mogą być personalizowane. Ponadto w ramach architektury IPSec wykorzystuje się protokół kompresji danych IPComp, działający w sposób analogiczny do AH oraz ESP i w nich enkapsulowany. Jak wynika z powyższego opisu, ze względu na wykorzystywanie algorytmów symetrycznych do skonfigurowania połączeń po protokołach AH i ESP konieczne jest wcześniejsze uzgodnienie kluczy kryptograficznych. Do tego celu wykorzystuje się najczęściej dodatkowy protokół Internet Key Exchange (IKE), zamiennie stosuje się także nazwę ISAKMP.

10 10 ROZDZIAŁ 1. WPROWADZENIE 1.5 Protokół IKE Protokół IKE działa dwuetapowo i jego wynikiem jest uzgodnienie wspólnych kluczy kryptograficznych pomiędzy dwoma stronami połączenia IPSec. Pierwszym etapem (Phase I) jest uwierzytelnienie komunikujących się stron oraz nawiązanie bezpiecznego kanału łączności na potrzeby późniejszej komunikacji (ISAKMP Security Association). W drugim etapie (Phase II) następuje dwustronne uzgodnienie kluczy kryptograficznych oraz parametrów IPSec, określanych nazwą IPSec SA. W pierwszym etapie uwierzytelnienie jest dokonywane na podstawie jednej z następujących informacji: hasło współdzielone pomiędzy obu stronami (shared secret) klucze kryptografii asymetrycznej (każda ze stron musi znać klucz publiczny drugiej strony) certyfikaty X.509 Uwierzytelnione strony przystępują w drugim etapie do obliczenia wspólnego klucza kryptograficznego na potrzeby IPSec SA. Możliwe jest okresowe renegocjowanie kluczy. Wszystkie algorytmy, w tym zarówno szyfry symetryczne jak i asymetryczne, są personalizowalne. 1.6 Standardy Standardy IETF definiujące architekturę IPSec oraz ISAKMP: RFC 2401, Security Architecture for the Internet Protocol RFC 2402, IP Authentication Header RFC 2406, Encapsulating Security Payload (ESP) RFC 2403, The Use of HMAC-MD5-96 within ESP and AH RFC 2404, The Use of HMAC-SHA-1-96 within ESP and AH RFC 2104, HMAC: Keyed-Hashing for Message Authentication Code RFC 2451, The ESP CBC Mode Cipher Algorithms RFC 2408, Internet Security Association and Key Management Protocol RFC 2412, OAKLEY Key Determination Protocol RFC 2409, Internet Key Exchange (IKE)

11 1.6. STANDARDY 11 RFC 2407, Internet IP Security Domain of Interpretation for ISAKMP RFC 3173, IP Payload Compression Protocol (IPComp) RFC 2394, IP Payload Compression Using DEFLATE

12 12 ROZDZIAŁ 1. WPROWADZENIE

13 Rozdział 2 Parametry kryptograficzne urządzenia Urządzenie implementuje następujące algorytmy i protokoły kryptograficzne: Protokół ISAKMP szyfrowanie ISAKMP SA 3DES-CBC ochrona integralności ISAKMP SA MD5 SHA1 metoda uzgodnienia kluczy dla IPSec SA metoda Diffiego-Hellmana, na grupach MODP-1024 i MODP tryby uwierzytelnienia główny (Main Mode) metody uwierzytelnienia stron hasło współdzielone (shared secret) o dowolnej długości klucze RSA o minimalnej długości 512 bitów Protokoły IPSec tryby pracy tunelowy transportowy protokół ESP szyfrowanie 3DES-CBC ochrona integralności 13

14 14 ROZDZIAŁ 2. PARAMETRY KRYPTOGRAFICZNE URZĄDZENIA protokół AH HMAC-MD5 HMAC-SHA1 ochrona integralności HMAC-MD5 HMAC-SHA1 protokół IPComp kompresja DEFLATE Ochrona konfiguracji na USB szyfrowanie 3DES-CBC z 64-ro bitowym saltem Skrót hasła dostępu do konsoli administracyjnej standard crypt() oparty o DES

15 Rozdział 3 Ogólny opis rozwiązania Szyfrator ABA IPSec Gatejest urządzeniem przeznaczonym do zabezpieczania ruchu IP przez enkapsulację w protokole IPSec z dynamiczną negocjacją kluczy za pomocą protokołu ISAKMP. Jako podstawę wybrano ogólnodostępną implementację IPSec FreeS/WAN zbudowaną na systemie Linux. Rozwiązanie działa na przystosowanej platormie PC w architekturze Intela. Oprogramowanie jest uruchamiane z pamięci FLASH i działa wyłącznie w pamięci operacyjnej urządzenia. 3.1 Interfejsy zewnętrzne Urządzenie posiada: 1-4 interfejsów Ethernet 10Base-T/100Base-TX 1 intefejs szeregowy 9600 bps do podłączenia konsoli szeregowej 2 interfejsy Universal Serial Bus (USB), przeznaczone do podłączenia: klawiatury numerycznej lub alfanumerycznej, oraz zewnętrznej pamięci FLASH USB 1 interfejs szeregowy bps do podłączenia: modemu sterowanego komendami AT ( Hayes ), lub modemu baseband (typu Goramo, SDI), lub pętli prądowej, lub innych urządzeń komunikacyjnych 15

16 16 ROZDZIAŁ 3. OGÓLNY OPIS ROZWIĄZANIA 3.2 Konfiguracja Konfiguracja może być przechowywana na jednym z dwóch nośników: pamięć FLASH wbudowana w urządzenie zewnętrzna pamięć FLASH podłączana przez USB 3.3 Zarządzanie Zarządzanie urządzeniem odbywa się za pomocą poleceń wpisywanych w linii komend interfejsu użytkownika. Dostęp do interfejsu użytkownika może być zabezpieczony hasłem. Po ustalonym czasie braku aktywności administrator jest wylogowywany z interfejsu i jego uaktywnienie wymaga ponownego wpisania hasła. Interfejs użytkownika jest dostępny na dwa sposoby: przez konsolę szeregową podłączoną bezpośrednio do urządzenia przez sieć za pomocą protokołu Telnet Usługa Telnet nie jest domyślnie włączona. Jej włączenie nie jest możliwe jeśli system nie posiada skonfigurowanego hasła dostępu. Zalecane jest korzystanie z usługi Telnet wyłącznie wewnątrz tunelu IPSec. W przypadku korzystania z zewnętrznej pamięci FLASH USB jedyną interakcją użytkownika może być wpisanie hasła dostępu do konfiguracji na zewnętrznej klawiaturze numerycznej. Poza interfejsem użytkownik nie ma innej możliwości wpływania na działanie urządzenia.

17 Rozdział 4 Opis szczegółowy 4.1 Zewnętrzna pamięć FLASH USB Celem zastosowania zewnętrznej pamięci FLASH USB jest: możliwość fizycznej separacji samego urządzenia od jego logiki (konfiguracji) centralne zarządzanie i rozprowadzanie parametrów konfiguracyjnych (pamięci USB) zaufanymi kanałami dystrybucyjnymi (kurierzy) rozprowadzanie uaktualnień oprogramowania zwiększanie lub zmienianie tą drogą funkcjonalności urządzenia przez instalację dodatkowych modułów programowych (personalizacja) Pamięci FLASH USB są programowane na dostarczanych oddzielnie urządzeniach (programatorach), wyposażonych w graficzny interfejs użytkownika oraz bazę, umożliwiającą zarządzanie konfiguracjami poszczególnych urządzeń. Całość konfiguracji zapisanej na pamięci FLASH USB jest szyfrowana za pomocą szyfru 3DES-CBC z kluczem 168-bitów wyprowadzonym z podawanego przez użytkownika hasła za pomocą funkcji skrótu SHA1. Szyfrowanie odbywa się z dodatkiem 64-bitowego, losowego modyfikatora (salt), który powoduje że identyczny tekst jawny przy kolejnych szyfrowaniach może wygenerować 2 64 różnych kryptogramów. W zależności od wybranej opcji hasła mogą składać się wyłącznie z cyfr [0-9] lub ze znaków alfanumerycznych [a-z0-9]. Minimalna długość hasła jest ustalona w programatorze i wynosi 16 cyfr dla haseł numerycznych i 8 znaków dla haseł alfanumerycznych. Pamięć FLASH USB jest wkładana do jednego z dostępnych w urządzeniu portów USB, do drugiego podłącza się klawiaturę numeryczną lub alfanumeryczną, która służy do wpisywania hasła. Podczas jego wprowadzania wykorzystywana jest sygnalizacja dźwiękowa. 17

18 18 ROZDZIAŁ 4. OPIS SZCZEGÓŁOWY Hasło zabezpieczające konfigurację na pamięci FLASH USB jest niezależne od hasła systemowego (dostępu do interfejsu użytkownika). U podstawowych założeń szyfratora stoją następujące scenariusze jego użytkowania: całość konfiguracji jest przechowywana w lokalnej pamięci FLASH pamięć FLASH USB nie jest wykorzystywane programator USB nie jest wykorzystywany urządzenie jest konfigurowane przez konsolę szeregową lub telnet całość konfiguracji jest przechowywana w pamięci FLASH USB lokalna pamięć FLASH nie jest wykorzystywana po włożeniu FLASH USB szyfrator zażąda podania hasła, zaimportuje i wykona konfigurację po wyjęciu FLASH USB szyfrator restartuje się z poziomu konsoli administracyjnej możliwe jest przeglądanie i modyfikowanie aktualnej konfiguracji nie jest możliwe zapisanie jej na lokalną pamięć FLASH jak wyżej, jednak konsola administracyjna jest zablokowana pamięć FLASH USB jako nośnik do kopiowania konfiguracji pamięć FLASH USB jest dostarczana jednorazowo po jej wczytaniu i uruchomieniu jest ona zapisywana do lokalnej pamięci FLASH kolejne uruchomienia następują z lokalnej pamięci FLASH Możliwe są różne modyfikacje wyżej wymienionych scenariuszy. Zachowaniem szyfratora sterują następujące flagi, zawarte na pamięci USB: akcja po włożeniu klucza szyfrator powinien zaimportować konfigurację z USB szyfrator powinien zignorować konfigurację z USB akcja po wyjęciu klucza szyfrator wyzeruje wszystkie aktywne połączenia, interfejsy sieciowe i zresetuje swój stan jak wyżej, po czym szyfrator wykona sprzętowey restart (reboot) szyfrator będzie kontynuował pracę

19 4.2. KLUCZE RSA 19 zezwolenie na modyfikację konfiguracji konfiguracja może być przeglądana, modyfikowana i zapisana lokalnie (z konsoli administracyjnej) konfiguracja może być przeglądana, modyfikowana, ale nie może być zapisana lokalnie konsola administracyjna jest wyłączona, przeglądanie, modyfikacja i lokalny zapis konfiguracji nie jest możliwy Router nie posiada możliwości zapisywania pamięci FLASH USB, jest to możliwe tylko na zewnętrznym programatorze. 4.2 Klucze RSA Klucze RSA są wykorzystywane do uwierzytelnienia stron komunikujących się za pomocą protokołu ISAKMP. Urządzenie może posiadać jedną parę identyfikujących go kluczy prywatnego i publicznego, oraz dowolną liczbę kluczy publicznych innych węzłów. Minimalna długość klucza, który można wygenerować na urządzeniu wynosi 512 bitów. Klucz publiczny jest identyfikowany przez pierwsze 4 bajty jego skrótu SHA1 zapisane w postaci liczby szesnastkowej (np. 4347d0f8). Urządzenie umożliwia cykliczną weryfikację kluczy publicznych RSA na centralnym serwerze, z którego ściągana jest lista identyfikatorów kluczy wraz z informacją o ich ważności (Key Revocation List). Stwierdzenie anulowania danego klucza powoduje natychmiastowe zerwanie tuneli IPSec wykorzystujących ten klucz i wycofanie go z użytku w przyszłości. 4.3 Zabezpieczenia dodatkowe Urządzenie posiada szereg dodatkowych zabezpieczeń programowych, mających na celu zminimalizowanie możliwości ujawnienia wrażliwych danych, przejęcia kontroli lub innego niepożądanego wpływu na pracę urządzenia. Podczas projektowania urządzenia przyjęto założenie, że oprogramowanie może posiadać błędy i ochrona przed konsekwencjami ewentualnie błędów jest zawsze wielopoziomowa Przepełnienie bufora W systemie działają dwie aplikacje mające bezpośredni kontakt z siecią zewnętrzną są to usługi ISAKMP i Telnet. Są one narażone na próby wykorzystania ewentualnych błędow w kodzie, umożliwiających na przykład nadpisanie wewnętrznych buforów i zmuszenie w ten sposób aplikacji do wykonania przygotowanego przez atakującego kodu (ataki buffer overrun i heap

20 20 ROZDZIAŁ 4. OPIS SZCZEGÓŁOWY overflow). Ataki tego rodzaju były w przeszłości i nadal są zmorą wszystkich producentów urządzeń sieciowych. W celu zminimalizowania szans powodzenia tego rodzaju ataku obie aplikacje zostały skompilowane kompilatorem StackShield wyposażonym w uniwersalne mechanizmy obrony przed nadpisaniem bufora. Analogiczny system ochronny działa również na poziomie jądra systemu. Oba te elementy w praktyce uniemożliwiają wykorzystanie nieznanych błędów w oprogramowaniu. Jądro systemu oraz stos TCP/IP zostały zmodyfikowane w sposób utrudniający skanowanie portów oraz wykrycie marki i wersji oprogramowania. Osiągnięto to przez stosowanie losowych identyfikatorów nagłówka IP (IP ID), portów źródłowych TCP i UDP, losowo modyfikowanego parametru Time To Live wysyłanych pakietów oraz zmodyfikowanego wzoru pakietów ping Uaktualnienia oprogramowania Uaktualnienia oprogramowania urządzenia są potencjalnym środkiem umożliwiającym atakującemu zainstalowanie na szyfratorze własnego oprogramowania monitorującego lub w inny sposób naruszającego bezpieczeństwo chronionej sieci. Aby uniemożliwić instalację nieautoryzowanego oprogramowania wszystkie pakiety z uaktualnieniami muszą być podpisane prywatnym kluczem RSA, będącym w posiadaniu producenta. Klucz publiczny producenta jest na stałe zainstalowany w urządzeniu. Istnieje możliwość personalizacji tych kluczy. Zainstalowane pamięci FLASH oprogramowanie producenta (firmware) jest zaszyfrowane w sposób znacznie utrudniający analizę działania czy deasemblację kodu osobom niepowołanym Ataki SYN Flood Usługa Telnet służąca do zdalnej konfiguracji urządzenia jest podatna na atak SYN Flood dotyczący wszystkich usług działających po protokole TCP/IP. W celu uniemożliwienia przepełnienia wewnętrznych tablic połączeń TCP zastosowano mechanizm SYN Cookies Analiza ruchu na podstawie TOS Architektura IPSec zezwala na opcjonalne kopiowanie zawartości pola Type of Service (TOS) oryginalnego pakietu do nagłówka pakietu zaszyfrowanego, co umożliwia poprawne klasyfikowanie tego pakietu według ważności przez węzły pośredniczące w jego przekazywaniu. Ponieważ wartości TOS są typowe dla niektórych usług, ich widoczność na zewnątrz zaszyfrowanego strumienia danych może być wskazówką co do charakteru usług przekazywanych wewnątrz (traffic analysis). Z tego powodu urządzenie domyślnie zeruje wartość TOS w wysyłanych pakietach.

21 4.4. FILTR PAKIETÓW Filtr pakietów Urządzenie jest wyposażone w zaawansowany filtr pakietowy oparty o oprogramowanie iptables Wykrywanie fałszywych pakietów Urządzenie w domyślnej konfiguracji prowadzi weryfikację ruchu sieciowego, sprawdzając w szczególności czy: pakiety przychodzące na każdy z interfejsów sieciowych mają adres źródłowy zgodny z przyłączoną przez ten interfejs siecią, pakiety wysyłane na dany interfejs mają adres docelowy zgodny z przyłączoną przez ten siecią lokalną lub zdalną (wynikającą ze skonfigurowanego routingu). Pakiety nie spełniające tych warunków są kasowane i zapisywane w rejestrze zdarzeń Wykrywanie nieprawidłowych pakietów Urządzenie posiada możliwość wykrywania pakietów IP posiadających błędne lub niemożliwe kombinacje flag i innych pól nagłówka. Pakiety takie są kasowane i zapisywane w rejestrze zdarzeń Blokowanie ruchu nieszyfrowanego Każdy z interfejsów sieciowych może być ustawiony w tryb blokowania ruchu nieszyfrowanego. W trybie tym z interfejsu są wysyłane i przyjmowane wyłącznie dane enkapsulowane w protokołach AH, ESP oraz ruch ISAKMP. Pozostałe pakiety są kasowane i zapisywane w rejestrze zdarzeń Izolacja interfejsów sieciowych Każdy z interfejsów sieciowych może być izolowany od pozostałych w ten sposób, że ruch z i do niego będzie przekazywany wyłącznie do jednego, wskazanego interfejsu. Gwarantuje to, że informacje z zastrzeżonej sieci nie zostaną przesłane do sieci niezaufanej w wyniku błędów konfiguracyjnych, błędów oprogramowania lub celowej manipulacji siecią Ręczny tryb konfiguracji filtra Wszystkie wyżej wymienione zabezpieczenia są aktywne w trybie automatycznej konfiguracji filtra pakietowego. Poza tym możliwe jest również włączenie trybu ręcznego, w którym użytkownik może uwzględnić nietypowe konfiguracje sieci lub inne specyficzne potrzeby.

22 22 ROZDZIAŁ 4. OPIS SZCZEGÓŁOWY 4.5 Generowanie liczb losowych Liczby losowe wysokiej jakości są wykorzystywane przede wszystkim do generowania kluczy kryptograficznych podczas uzgadniania parametrów IPSec SA oraz ISAKMP SA. Protokoły te pozyskują liczby losowe ze sterownika, wbudowanego w jądro systemu. Jądro posiada wewnętrzny zbiornik liczb losowych o pojemności 32 KB. Jest on zasilany na dwa sposoby po pierwsze przez dodawanie do niego liczb będących mierzonymi w 1/100 sekundy odstępami czasu pomiędzy przerwaniami sprzętowymi generowanymi przez pakiety odbierane na interfejsach Ethernet lub znaki przesyłane przez porty szeregowe urządzenia (konsola szeregowa lub interfejs PPP), które to zdarzenia mają charakter w dużej mierze losowy. Po drugie zbiornik jest zasilany przez sprzętowy generator liczb losowych znajdujący się w układzie produkcji firmy Intel, jeśli jest on dostępny w zastosowanej platformie sprzętowej. Generator ten wykorzystuje szum termiczny z dwóch oscylatorów zamieniany na ciąg bitów przetwarzany przez korektor von Neumanna. Dane losowe z układu są pobierane z taką szybkością, z jaką są udostępniane przez generator6 i po przeprowadzeniu dodatkowych testów statystycznych (FIPS) mieszane z systemowym zbiornikiem. Dane losowe są udostępniane na żądanie aplikacji przez obliczenie funkcji skrótu SHA1 z aktualnej zawartości zbiornika, co uniemożliwia odgadnięcie jego wewnętrznego stanu. W celu uniknięcia przewidywalnego stanu generatora liczb losowych w momencie startu urządzenia, podczas zapisywania konfiguracji zapisywany jest również blok liczb pobrany z generatora. Podczas startu urządzenia jest on ponownie mieszany z generatorem.

23 Rozdział 5 Przewodnik po konfiguracji Bieżący rozdział jest przewodnikiem, mającym w praktycznych przykładach pokazać użytkownikowi typowe czynności konfiguracyjne szyfratora. Przedstawione są wszystkie wprowadzane komendy, istotne rezultaty ich wykonania. Dodatkowo pokazane są zrzuty z analizatora sieciowego, przedstawiające faktyczny stan przesyłanych pomiędzy szyfratorami danych po wykonaniu kolejnych komend. 5.1 Konfiguracja sieci testowej Konfiguracja przykładowej sieci przedstawia się następujaco: 23

24 24 ROZDZIAŁ 5. PRZEWODNIK PO KONFIGURACJI Podstawowe parametry szyfratora Poniżej konfigurowane parametry powinny być ustawione na każdym szyfratorze. Opis Router test1 Router test2 Nazwa szyfratora hostname test1 hostname test2 Hasło konsoli password test1ksr87 password test2htn30 Adres interfejsu Ethernet interface eth /24 interface eth /24 Routing domyślny route default route default Włączenie usługi Telnet service telnet service telnet Uwaga: włączenie usługi Telnet może narazić na kompromitację szyfrator w razie odgadnięcia hasła. Usługa ta jest ponadto wrażliwa na rozmaite ataki sieciowe (podsłuch, przejęcie sesji) i należy z niej korzystać wyłącznie w ramach zaufanej sieci lub wewnątrz tunelu IPSec Test łączności Opis Router test1 Router test2 Ping na adres test2 ping Polecenie ping powoduje wysłanie czterech pakietów ICMP Echo Request do zdalnego systemu, który powinien na nie odpowiedzieć pakietami ICMP

25 5.2. TUNEL AH: TRYB TRANSPORTOWY END-TO-END 25 Echo Reply. Standardowo pakiety ICMP zawierają ciąg znaków ASCII, co przedstawia zrzut z analizatora sieci przedstawiony na rysunku. 5.2 Tunel AH: tryb transportowy end-to-end Tryb transportowy jest w praktyce wykorzystywany rzadko poza sieciami lokalnymi, podobnie jak rzadko jest w ogóle wykorzystywany protokół AH wszystkie jego funkcje plus szyfrowanie zapewnia ESP. Kombinacja jednak trybu transportowego z protokołem AH ma jedną zasadniczą zaletę jest bardzo przejrzysta podczas podsłuchiwania jej za pomocą analizatora sieci. Zaczynając od niej będziemy wzbogacać tunel o kolejne elementy dochodząc do konfiguracji stosowanych w praktyce Konfiguracja Konfigurujemy tunel AH w trybie transportowym end-to-end, czyli jedynymi użytkownikami szyfrowanego tunelu będą jego końce:

26 26 ROZDZIAŁ 5. PRZEWODNIK PO KONFIGURACJI Opis Router test1 Router test2 Adres IP końca tunelu peer test peer test Hasło współdzielone ISAKMP peer test2 secret hu3yohaima peer test1 secret hu3yohaima Włączamy AH peer test2 ah peer test1 ah Wyłączamy ESP peer test2 noesp peer test1 noesp Włączamy tryb transportowy peer test2 transport peer test1 transport Uruchomienie tunelu peer test2 enable peer test1 enable Test łączności ping Konfiguracja tunelu wykorzystującego wyłącznie AH wymaga zachowania kolejności takiej jak powyżej, to jest najpierw włączenia AH, a następnie wyłączenia ESP, które jest zawsze włączane domyślnie (tunel nie może istnieć bez AH lub ESP). Domyślnym trybem jest tryb tunelowy, konieczne jest zatem jawne włączenie trybu transportowego. Faktyczne uruchomienie tunelu odbywa się dopiero po wydaniu polecenia enable Analiza Rezultat jest zaprezentowany na rysunku. Widać dwuetapowe nawiązanie ISAKMP SA pomiędzy szyfratorami Main Mode, podczas którego dochodzi do uwierzytelnienia stron na podstawie hasła współdzielonego, a następnie Quick Mode, który powoduje wynegocjowanie kluczy oraz parametrów tunelu IPSec.

27 5.2. TUNEL AH: TRYB TRANSPORTOWY END-TO-END 27 Pakiety ping są od tej pory wysyłane przez tunel AH. Na rysunku widać kolejne wartstwy enkapsulacji oraz znaki ASCII stanowiące treść pakietu AH przesyła dane otwartym tekstem.

28 28 ROZDZIAŁ 5. PRZEWODNIK PO KONFIGURACJI 5.3 Tunel AH: tryb tunelowy end-to-end Wprowadzamy modyfikację do poprzedniej konfiguracji w postaci włączenia trybu tunelowego zamiast transportowego. Wydanie komendy enable na końcu powoduje zrestartowanie połączenia z nowymi parametrami Konfiguracja Opis Router test1 Router test2 Włączamy tryb tunelowy peer test2 tunnel peer test1 tunnel Aktywacja tunelu peer test2 enable peer test1 enable Test łączności ping Analiza Jak widać na rysunku. pakiety są przesyłane przez istniejące AH (to samo SPI), ale w innej enkapsulacji wewnątrz AH pojawił się dodatkowy nagłówek IP, a w nim dopiero oryginalny pakiet ICMP. Widać również fragment wymiany ISAKMP, która doprowadziła do wygenerowania nowego tunelu. Zwróćmy uwagę na to, że wewnętrzny nagłówek IP jest praktycznie identyczny jak nagłówek zewnętrzny (adresowany od do ).

29 5.4. TUNEL AH: TRYB TUNELOWY END-TO-END Z KOMPRESJĄ29 W przypadku tunelu end-to-end stanowi to pewien dodatkowy, niepotrzebny narzut ilości przesyłanych danych. Z tego powodu w połączeniach end-to-end wykorzystuje się najczęściej tryb transportowy. 5.4 Tunel AH: tryb tunelowy end-to-end z kompresją Wprowadzamy modyfikację do poprzedniej konfiguracji włączając kompresję IPComp Konfiguracja Opis Router test1 Router test2 Włączamy kompresję peer test2 compress peer test1 compress Aktywacja tunelu peer test2 enable peer test1 enable Zdalna sesja Telnet telnet

30 30 ROZDZIAŁ 5. PRZEWODNIK PO KONFIGURACJI Analiza Aby zaobserwować działanie IPComp łączymy się za pomocą Telnet ze zdalnym szyfratorem, gdzie wydajemy komendę help, która spowoduje wygenerowanie sporej ilości tekstu. Protokół IPComp jest włączany wyłącznie wtedy, gdy spowoduje faktyczną redukcję objętości przesyłanych danych1 pakiety bardzo krótkie lub niepodatne na kompresję są wysyłane z pominięciem IPComp (tylko w AH). Rysunek przedstawia pakiet AH z enkapsulowanym wewnątrz skompresowanym pakietem IPComp. 5.5 Tunel AH: tryb tunelowy VPN Do poprzedniej konfiguracji wprowadzamy zasadnicze zmiany. polegające na wprowadzeniu pakietów z zewnętrznych sieci do tunelu pomiędzy szyfratorami test1 i test2. W tej typowej dla wirtualnych sieci prywatnych (Virtual Private Network) konfiguracji szyfratory pełnią rolę bram zabezpieczających (security gateways). Aktualna konfiguracja przedstawiać się będzie tak:

31 5.5. TUNEL AH: TRYB TUNELOWY VPN Konfiguracja Na każdym z szyfratorów konfigurujemy drugi interfejs Ethernet, prowadzący do zabezpieczanych sieci. Wyłączamy kompresję i pozostajemy przy protokole AH dla ułatwienia analizy pakietów. Równocześnie jednak musimy wskazać szyfratorom adresy sieci, z których dane mają być przesyłane przez tunele IPSec. Służą do tego polecenia: lroute, wskazujące sieć zabezpieczaną przyłączoną do lokalnego szyfratora, oraz route, określające jaka sieć znajduje się za szyfratorem zdalnym. Opis Router test1 Router test2 Włączamy kompresję peer test2 nocompress peer test1 nocompress Konfigurujemy interferjsy do zabezpieczanych sieci int eth /24 int eth /24 Wskazanie lokalnych sieci peer test2 lroute /24 peer test1 lroute /24 Wskazanie zdalnych sieci peer test2 route /24 peer test1 route /24 Aktywacja tunelu peer test2 enable peer test1 enable Polecenia lroute i route sterują polityką szyfrowania na każdym z szyfratorów. Pierwsze z nich nakazuje szyfrować cały ruch pochodzący z wskazanej sieci, drugie ruch skierowany do zdalnej sieci.

32 32 ROZDZIAŁ 5. PRZEWODNIK PO KONFIGURACJI Pominięcie polecenia lroute powoduje przyjęcie założenia, że źródłem ruchu podlegającego ochronie jest lokalny szyfrator. Analogicznie w przypadku braku polecenia route zakłada się że zdalny szyfrator jest celem wrażliwych danych. Wynikową politykę bezpieczeństwa wyświetli polecenie show eroute Analiza Aby przetestować działanie tunelu możemy skorzystać z polecenia ping, ale w domyślnej konfiguracji pakiety te będą wysyłane bez szyfrowania. Przeanalizujmy dlaczego, co pozwoli na dokładniejsze wyjaśnienie jak działa polityka bezpieczeństwa na szyfratorach: W konfiguracji przedstawionej powyżej szyfrowaniu będzie podlegał tylko ruch pomiędzy sieciami /24 i /24, bo tak nakazują polecenia lroute i route. Patrząc z perspektywy szyfratora test1, pakiet ping wysłany z zewnętrznego adresu szyfratora ( ) nie należy do żadnej z chroniony sieci wymieniomych powyżej. Powinien więc być wysłany normalnie, bez szyfrowania. Aby zapewnić ten konkretny zakres ochronę należałoby stworzyć kolejny tunel pomiędzy (brak lroute) i /24 (route do tej sieci). Nie ma to jednak praktycznego sensu, jeśli nie będzie faktycznie wrażliwego ruchu generowanego z szyfratora test1 do tej sieci. Najprostszym sposobem by zobaczyć szyfrowany ruch jest oczywiście wysłanie danych z jednej sieci chronionej do drugiej, czyli tak jak miałoby się to odbywać w środowisku produkcyjnym. Jednak zaimplementowne na szyfratorach polecenie ping posiada możliwość wysyłania pakietów z innym niż domyślny źródłowym adresem IP. Rysunek przedstawia konsolę administracyjną podczas wpisywania tego polecenia.

33 5.5. TUNEL AH: TRYB TUNELOWY VPN 33 Rysunek przedstawia zrzut jednego z wysłanych powyżej pakietów ICMP. Jak widać, w pakietach AH wysyłanych z do enkapsulowany jest pakiet ICMP pochodzący z adresu i skierowany do

34 34 ROZDZIAŁ 5. PRZEWODNIK PO KONFIGURACJI 5.6 Tunel ESP: tryb tunelowy VPN Do powyższej konfiguracji wprowadzamy istotną zmianę - zamiast protokołu AH zastosujemy ESP, zapewniający ochronę integralności oraz autentyczności pakietów oraz dodatkowo ich szyfrowanie Konfiguracja Opis Router test1 Router test2 Włączamy ESP peer test2 esp peer test1 esp Wyłączamy AH peer test2 noah peer test1 noah Reaktywacja tuneli peer test2 enable peer test1 enable Również i w tym wypadku konieczne jest zachowanie odpowiedniej kolejności włączenie ESP i dopiero później wyłączenie AH Analiza Rysunek przedstawia zrzut części sesji ISAKMP, która wygenerowała nowy tunel ESP oraz zrzut zaszyfrowanych pakietów zawierających pakiety ping,

35 5.7. RSA Z IDENTYFIKATOREM ADRES IP 35 wysłany w sposób identyczny do opisanego w poprzednim przypadku. Ich zawartość jest zupełnie nieprzezroczysta dla postronnego obserwatora. 5.7 RSA z identyfikatorem adres IP We wszystkich wyżej wymienionych konfiguracjach strony tuneli były uwierzytelniane za pomocą hasła współdzielonego, które musi być identyczne na obu końcach każdego tunelu. W przypadku szyfratorów, z których wychodzi wiele tuneli zarządzanie hasłami staje się zadaniem skomplikowanym. Ponadto, uwierzytelnienie za pomocą haseł można stosować wyłącznie gdy adresy IP komunikujących się szyfratorów są stałe, metoda ta nie nadaje się zatem do uwierzytelniania szyfratorów wdzwaniających się do Internetu z dynamicznnie przydzielanymi adresami IP. W takich wypadkach należy skorzystać z uwierzytelnienia za pomocą kluczy RSA. Metoda ta posiada następujące cechy: Każdy szyfrator musi posiadać swój klucz prywatny oraz związany z nim klucz publiczny

36 36 ROZDZIAŁ 5. PRZEWODNIK PO KONFIGURACJI Każdy szyfrator musi posiadać klucze publiczne wszystkich routerów, do których będzie nawiązywał połączenia IPSec Strony połączeń mogą przedstawiać się za pomocą adresów IP lub identyfikatorów tekstowych. Te ostatnie wykorzystuje się, gdy adres IP nie jest stały. Aby przejść na uwierzytelnienie po kluczach RSA konieczne jest wygenerowanie kluczy prywatnych na każdym z szyfratorów, a następnie wymiana kluczy publicznych. Klucze publiczne mają postać długich ciągów znaków (np. 0sAQNcmZbb7qn12...). Dla ułatwienia zarządzania kluczami w konfiguracji szyfratora wykorzystuje się identyfikatory kluczy będące krótkimi liczbami szesnastkowymi (np. f2570af1). Wprowadzenie samego klucza jest konieczne wyłącznie podczas jego dodawania komendą ipsec pub add, wszelkie późniejsze operacje (wyświetlanie, kasowanie, dodawanie do tunelu) wykonuje się na identyfikatorze Konfiguracja Kroki, które należy wprowadzić do istniejącego już tunelu opisane są poniżej: Opis Router test1 Router test2 Generacja klucza prywatnego dla każdego z szyfratorów ipsec sec gen 1 ipsec sec gen 2 Dodanie klucza publicznego drugiej strony na każdym z szyfratorów ipsec pub add 0sAQNcmZbb7qn12... ipsec pub add 0sAQLbW60kNiU11... Wskazanie identyfikatorów kluczy publicznych w konfiguracji tuneli peer test2 pubkey f2570af1 peer test1 pubkey b26a016f Wyłączenie konfiguracji za pomocą hasła współdzielonego peer test2 nosecret peer test1 nosecret Rekonfiguracja tuneli peer test2 enable peer test1 enable Analiza Po wprowadzeniu tych zmian strony połączenia uwierzytelniają się za pomocą swoich kluczy RSA, identyfikowanych przez adresy IP. Na rysunku przedstawiony jest stan tunelu po rekonfiguracji.

37 5.8. RSA Z IDENTYFIKATOREM TEKSTOWYM RSA z identyfikatorem tekstowym Uwierzytelnienie kluczami RSA identyfikowanymi przez adresy IP jest możliwe tylko wówczas, gdy adresy te są stałe. W przypadkach, kiedy zmieniają się one dynamicznie konieczne jest zastosowanie identyfikatorów niezależnych od adresów IP, będących jednoznacznymi i wybranymi przez administratorami nazwami. Routery obsługują dwa rodzaje identyfikatorów tekstowych: identyfikatory będące nazwą domenową (np. gw.aba.krakow.pl), które muszą jednak rozwiązywać się poprawnie w DNS identyfikatory typu użytkownik@host W większoścy przypadków praktyczniejsze jest korzystanie z identyfikatorów drugiego typu. Rekonfiguracja w tym wypadku ogranicza się do wskazania odpowiednich identyfikatorów po każdej ze stron. Polecenie lid określa lokalny identyfikator, którym szyfrator będzie się przedstawiał do drugiego końca tunelu. Polecenie id określa spodziewany identyfikator zdalnego szyfratora Konfiguracja Opis Router test1 Router test2 Konfiguracja lokalnych identyfikatorów peer test2 lid admin@test1 peer test1 lid kravietz@test2 Konfiguracja identyfikatorów zdalnych szyfratorów peer test2 id kravietz@test2 peer test1 id admin@test1 Rekonfiguracja tuneli peer test2 enable peer test1 enable

38 38 ROZDZIAŁ 5. PRZEWODNIK PO KONFIGURACJI Analiza Rysunek przedstawia konfigurację tunelu po zastosowaniu identyfikatorów. 5.9 Tunele dynamiczne Tunele dynamiczne charakteryzują się co najmniej jedną z poniższych cech: mają charakter tymczasowy, tzn. mogą być inicjalizowane w momencie nawiązania łączności przez modem i kończone w momencie jej zerwania mają zmieniające się, przydzielane dynamicznie adresy IP

39 5.9. TUNELE DYNAMICZNE Konfiguracja Opis Router test1 Router test2 Konfiguracja nazwy szyfratora host centrala host dialup Adres IP Ethernet int eth /28 Routing domyślny route default Ustawienie hasła pass jhalgm81 pass yuq1ma3 Generowanie kluczy prywatnych ipsec sec gen ipsec sec gen Wymiana kluczy publicznych ipsec pub add... ipsec pub add... Tunel dynamiczny peer centrala dynamic Adres zdalnego szyfratora peer dialup1 any peer centrala Klucze publiczne peer dialup1 pubkey... peer centrala pubkey... Identyfikator lokalny peer dialup1 lid peer centrala lid Identyfikator zdalny peer dialup1 id peer centrala id Aktywacja tunelu peer dialup1 enable peer centrala enable Edycja konfiguracji modemu ppp chat Użytownik i hasło PPP ppp auth ppp ppp Domyślny routing przez PPP ppp defroute Aktywacja PPP ppp enable Uwagi: Komendy dynamic musi być pierwszą komendą podczas konfiguracji danego tunelu dynamicznego. Tunele ze specjalnym adresem docelowym any działają wyłącznie w trybie biernym, tj. nie mogą inicjować połączeń Konfiguracja modemu to skrypt zawierający komendy AT (Hayes) inicjalizujące modem oraz powodujące nawiązanie połączenia. Przykładowy skrypt dla dialupu POLPAK-T ( ) z wyjściem przez wewnętrzny numer 9 jest przedstawiona na rysunku. Dynamiczny routing domyślny przez PPP może być uruchomiony tylko wówczas, gdy nie jest ustawiony inny, statyczny routing domyśłny. Autoryzacja po PPP jest możliwa tylko przy pomocy protokołu Password Authentication Protocol (PAP).

40 40 ROZDZIAŁ 5. PRZEWODNIK PO KONFIGURACJI Analiza Rysunek przedstawia sytuację tunelu po nawiązaniu dynamicznego połączenia, w którym szyfrator dialup otrzymał adres

41 Rozdział 6 Polecenia 6.1 autologout SKŁADNIA autologout autologout minuty OPIS Ustawia czas w minutach po którym sesja administracyjna będzie automatycznie wylogowana w razie braku aktywności użytkownika. Bez parametrów wyświetla aktualne ustawienia. Domyślną wartością jest 10 minut. 6.2 exit SKŁADNIA quit exit OPIS Kończy sesję w konsoli administracyjnej. 6.3 fw SKŁADNIA firew firew firew 41

42 42 ROZDZIAŁ 6. POLECENIA firew firew OPIS Polecenie autowłącza tryb automatyczny wbudowanego filtra pakietów. Jego konfiguracja będzie tworzona automatycznie na podstawie ustawień interfejsów sieciowych. Polecenie manualwyłącza tryb automatyczny. Wykonywana będzie wyłącznie konfiguracja stworzona ręcznie poleceniem edit. Polecenie showwyswietla aktualna konfiguracje filtra pakietow wraz ze statystykami. 6.4 halt SKŁADNIA halt OPIS Kończy pracę systemu i zatrzymuje go, bez wznowienia pracy. 6.5 hostname SKŁADNIA hostname nazwa OPIS Ustawia nazwę systemu. Zalecane jest, by nazwa nie miała więcej niż 16 znaków i składała się wyłącznie z liter oraz cyfr. 6.6 info soft Oprogramowanie wykorzystuje kod na licencji GPL oraz BSD: Linux 2.4, FreeS/WAN 1.95 i inne. Autor oprogramowania sterującego, systemu pomocy oraz interfejsu użytkownika:

43 6.7. INTERFACE 43 Paweł Krawczyk Wszystkie prawa zastrzeżone. Analiza działania, śledzenie, deasemblacja lub dekompilacja jakiejkolwiek części tego oprogramowania bez pisemnej zgody właściciela praw autorskich jest zabroniona. 6.7 interface SKŁADNIA interface ifaaa.bbb.ccc.ddd/nn interface ifadd aaa.bbb.ccc.ddd/nn interface ifdel [aaa.bbb.ccc.ddd/nn] interface if[stop start] interface if[restricted norestricted] interface if[nat nonat] interface ifseparate ifs interface ifnoseparate interface interface stats OPIS Polecenie służy do zarządzania interfejsami sieciowymi urządzenia. Nazwa interfejsu ifmoże być jedną z poniżej wymienionych (niektóre modele mogą posiadać mniej interfejsów):.5i eth0 pierwszy interfejs Ethernet eth1 drugi interfejs Ethernet eth2 trzeci interfejs Ethernet ppp0 asynchroniczny interfejs szeregowy PPP Polecenie interface ifaaa.bbb.ccc.ddd/nnustawia adres interfejsu ifna podany adres IP w notacji prefiksowej. Adres ten jest głównym adresem interfejsu. Polecenie adddodaje kolejne adresy IP do interfejsu. Polecenie delkasuje podany adres IP. Jeśli nie podano żadnego to kasuje wszystkie. Polecenia stopi startodpowiednio zatrzymują oraz podnoszą wskazany interfejs sieciowy.

44 44 ROZDZIAŁ 6. POLECENIA Polecenie restrictedi norestrictedodpowio włączają lub wyłączają bezpieczny tryb interfejsu. W bezpiecznym trybie fizyczny interfejs może wysyłać i otrzymywać wyłącznie pakiety protokołów AH, ESP lub ISAKMP. Polecenia nati nonatodpowiednio włączają i wyłączają inteligentną translację adresów dla połączeń przychodzących zsieci podłączonej do danego interfejsu. Polecenie separatewłącza wymuszoną izolację wskazanego interfejsu ifod pozostałych interfejsów sieciowych. Nie będzie przepuszczany żaden ruch sieciowy z i do tego interfejsu, poza komunikacją ze wskazanym interfejsem ifs. Polecenie interfacewywołane bez argumentów wyświetla adresy IP wszystkich dostępnych intefejsów. Polecenie statswyświetla statystyki tych interfejsów. 6.8 ipsec SKŁADNIA ipsec [hidetos nohidetos] ipsec [icmp noicmp] ipsec ikelifetime czas ipsec ipseclifetime czas ipsec pub add klucz ipsec pub del klucz ipsec pub show ipsec sec gen [bity](r) ipsec sec del ipsec krl server adres ipsec krl frequency czas ipsec krl none OPIS Jeśli aktywna jest opcja nohidetos), to tunel będzie miał taką samą wartość TOS (Type of Service) jak przesyłane wewnątrz oryginalne pakiety. Jeśli włączone jest opcja hidetos, to wartość ta będzie zawsze ustawiona na zero (zachowanie domyślne). Jeśli włączona jest opcja icmp, to router będzie wysyłał komunikaty ICMP informujące inne hosty o konieczności fragmentacji pakietów, jeśli będą one większe niż dopuszczalny limit wynikający z parametrów tunelu. Jeśli aktywna jest opcja noicmp, router nie będzie wysyłał żadnych komunikatów, a zbyt duże pakiety beda gubione. Domyślnie komunikaty takie są wysyłane. Parametr ikelifetimeokreśla czas w sekundach po którym renegocjowany

45 6.9. NAMESERVER 45 będzie każdy tunel ISAKMP. Parametr ipseclifetimeokresla czas w sekundach po ktorym renegocjowany będzie klucz sesyjny kazdego tunelu IPSec. Zalecane wartości to 3600 do sekund (1-8 godzin). Polecenie pub adddodaje klucz publiczny kluczwyświetlając jego identyfikator. Polecenie pub delkasuje klucz o identyfikatorze id. Polecenie pub showwyświetla bazę kluczy publicznych.. Polecenie sec genz opcjonalnym parametrem bitygeneruje parę kluczy RSA - prywatny oraz publiczny o podanej dlugości w bitach. Domyślnie generowany jest klucz o długości 1024 bity, minimalna wielkość klucza to 512 bitów. Polecenie sec delkasuje klucz prywatny oraz odpowiadający mu klucz publiczny. Polecenia krlsłużą do zarządzania mechanizmem weryfikacji listy anulowanych kluczy (Key Revocation List). Polecenie krl serverokreśla pełny adres URL z którego będzie pobierana lista. Polecenie krl frequencyokreśla czas w minutach co jaki lista będzie sprawdzana. Polecenie krl nonewyłącza sprawdzanie listy. UWAGA Polecenia oznaczone (R)są dostępne wyłącznie w wersji Cryptonite Router. 6.9 nameserver SKŁADNIA nameserver adres OPIS Ustawia adres IP serwera DNS. Adres ten jest wymagany aby działały nazwy symboliczne hostów podczas dla połączeń ping, telneti innych ntp SKŁADNIA ntp server serwer ntp frequency czas ntp none OPIS Polecenia ntpkontrolują mechanizm synchronizacji czasu wysokiej dokładności po protokole NTP (Network Time Protocol). Polecenie ntp serverokreśla

46 46 ROZDZIAŁ 6. POLECENIA adres zdalnego serwera NTP. Polecenie ntp frequencyokreśla częstotliwość synchronizacji w minutach (domyślnie co godzinę). Polecenie ntp nonewyłącza korzystanie z NTP. UWAGA Urządzenie posługuje się czasem GMT password SKŁADNIA password [-e]haslo password [-d] OPIS Ustawia nowe hasło do konsoli administracyjnej. Hasło może mieć dowolną dlugość, składać sie z dużych i małych liter, cyfr i znaków./-. Hasło jest przechowywane w konfiguracji w postaci zaszyfrowanej standardowym algorytmem cryptwykorzystującym algorytm DES. Jeśli podana zostanie opcja -eto następujące hasło jest traktowane jako już zaszyfrowane i zachowywane bez dodatkowych przekształceń. Opcja -dkasuje hasło peer SKŁADNIA peer idadres peer idsecret haslo peer idnosecret peer id[compress nocompress] peer id[route noroute] adres peer id[lroute nolroute] adres peer id[enable disable] peer id[require norequire] peer id[tunnel transport] peer id[esp noesp] peer id[ah noah] peer id[pfs nopfs] peer id[initiator responder] peer id[dynamic static] peer idid id peer idlid lid

47 6.12. PEER 47 peer idnolid peer idnoid peer idpubkey klucz peer idnopubkey peer iddelete peer show peer idshow peer status OPIS Polecenia peersłużą do zarządzania tunelami do innych routerów. Poszczególne tunele są identyfikowane nazwami id, które mają znaczenie wyłącznie lokalne i są uznaniowe. Parametry istniejącego tunelu są faktycznie zmieniane tylko przez sekwencję poleceń disable(zatrzymanie tunelu) oraz enable(uruchomienie z nowymi parametrami). peer idadres Polecenie zakłada nowy tunel o identyfikatorze id, którego końcem jest router o podanym adresie. Jeśli zamiast adresu podano słowo kluczowe any, przyjmowane będą połączenia ze wszystkich adresów. peer idsecret haslo Przypisuje danemu tunelowi nowy klucz, używany do uwierzytelnienia systemu po drugiej stronie (klucz skonfigurowany tam musi być identyczny). peer id[compress nocompress] Włącza lub wyłącza używanie kompresji IPComp w danym tunelu. Ustawienie po drugiej stronie musi być identyczne. peer id[route unroute] adres Ustawia lub kasuje routing do podanej sieciprzez szyfrowany tunel do routera id. Adresy docelowych sieci powinny być podawane w formacie prefiksowym. peer id[lroute unlroute] adres Ustawia lub kasuje routing do podanej sieci, jaki będzie oferowany klientowi przez tunel IPSec. peer id[enable disable] Włącza lub wyłącza dany tunel. Domyślnie nowy tunel nie jest aktywny. Po użyciu opcji disabletunel jest natychmiast zamykany i nie będzie podniesiony po restarcie systemu (nie jest on kasowany z konfiguracji). peer id[tunnel transport]

Bezpieczeństwo Systemów Komputerowych. Wirtualne Sieci Prywatne (VPN)

Bezpieczeństwo Systemów Komputerowych. Wirtualne Sieci Prywatne (VPN) Bezpieczeństwo Systemów Komputerowych Wirtualne Sieci Prywatne (VPN) Czym jest VPN? VPN(Virtual Private Network) jest siecią, która w sposób bezpieczny łączy ze sobą komputery i sieci poprzez wirtualne

Bardziej szczegółowo

Protokół IPsec. Patryk Czarnik

Protokół IPsec. Patryk Czarnik Protokół IPsec Patryk Czarnik Bezpieczeństwo sieci komputerowych MSUI 2009/10 Standard IPsec IPsec (od IP security) to standard opisujacy kryptograficzne rozszerzenia protokołu IP. Implementacja obowiazkowa

Bardziej szczegółowo

Dokumentacja Programatora kluczy USB Szyfratora IPSec Gateway

Dokumentacja Programatora kluczy USB Szyfratora IPSec Gateway Dokumentacja Programatora kluczy USB Szyfratora IPSec Gateway Grzegorz Łabuzek grzesiekl@aba.krakow.pl 19 marca 2003 Wersja Programatora kluczy USB: 0.9.5 Wersja dokumentacji: 0.9.5 Spis treści 1. Wprowadzenie...4

Bardziej szczegółowo

IPsec bezpieczeństwo sieci komputerowych

IPsec bezpieczeństwo sieci komputerowych IPsec bezpieczeństwo sieci komputerowych Bartłomiej Świercz Katedra Mikroelektroniki i Technik Informatycznych Łódź,18maja2006 Wstęp Jednym z najlepiej zaprojektowanych protokołów w informatyce jestprotokółipoczymświadczyfakt,żejestużywany

Bardziej szczegółowo

ZiMSK. Konsola, TELNET, SSH 1

ZiMSK. Konsola, TELNET, SSH 1 ZiMSK dr inż. Łukasz Sturgulewski, luk@kis.p.lodz.pl, http://luk.kis.p.lodz.pl/ dr inż. Artur Sierszeń, asiersz@kis.p.lodz.pl dr inż. Andrzej Frączyk, a.fraczyk@kis.p.lodz.pl Konsola, TELNET, SSH 1 Wykład

Bardziej szczegółowo

Konfiguracja aplikacji ZyXEL Remote Security Client:

Konfiguracja aplikacji ZyXEL Remote Security Client: Połączenie IPSec VPN pomiędzy komputerem z zainstalowanym oprogramowaniem ZyWALL Remote Security Client, a urządzeniem serii ZyWALL. Przykład konfiguracji. Konfiguracja aplikacji ZyXEL Remote Security

Bardziej szczegółowo

Hosting WWW Bezpieczeństwo hostingu WWW. Dr Michał Tanaś (http://www.amu.edu.pl/~mtanas)

Hosting WWW Bezpieczeństwo hostingu WWW. Dr Michał Tanaś (http://www.amu.edu.pl/~mtanas) Hosting WWW Bezpieczeństwo hostingu WWW Dr Michał Tanaś (http://www.amu.edu.pl/~mtanas) Szyfrowana wersja protokołu HTTP Kiedyś używany do specjalnych zastosowań (np. banki internetowe), obecnie zaczyna

Bardziej szczegółowo

Optimus ABA IPSec + Windows 2000/XP + Terminal ABAX-2. Instrukcja tworzenia połącze ń szyfrowanych.

Optimus ABA IPSec + Windows 2000/XP + Terminal ABAX-2. Instrukcja tworzenia połącze ń szyfrowanych. Optimus ABA IPSec + Windows 2000/XP + Terminal ABAX-2 Instrukcja tworzenia połącze ń szyfrowanych. Grzegorz Łabuzek grzesiek@aba.krakow.pl Pawe ł Krawczyk pawelk@aba.krakow.pl Piotr Leśniak piotrl@aba.krakow.pl

Bardziej szczegółowo

Wykład 2: Budowanie sieci lokalnych. A. Kisiel, Budowanie sieci lokalnych

Wykład 2: Budowanie sieci lokalnych. A. Kisiel, Budowanie sieci lokalnych Wykład 2: Budowanie sieci lokalnych 1 Budowanie sieci lokalnych Technologie istotne z punktu widzenia konfiguracji i testowania poprawnego działania sieci lokalnej: Protokół ICMP i narzędzia go wykorzystujące

Bardziej szczegółowo

VPN Virtual Private Network. Użycie certyfikatów niekwalifikowanych w sieciach VPN. wersja 1.1 UNIZETO TECHNOLOGIES SA

VPN Virtual Private Network. Użycie certyfikatów niekwalifikowanych w sieciach VPN. wersja 1.1 UNIZETO TECHNOLOGIES SA VPN Virtual Private Network Użycie certyfikatów niekwalifikowanych w sieciach VPN wersja 1.1 Spis treści 1. CO TO JEST VPN I DO CZEGO SŁUŻY... 3 2. RODZAJE SIECI VPN... 3 3. ZALETY STOSOWANIA SIECI IPSEC

Bardziej szczegółowo

Protokół IPsec. Patryk Czarnik. Bezpieczeństwo sieci komputerowych MSUI 2010/11. Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski

Protokół IPsec. Patryk Czarnik. Bezpieczeństwo sieci komputerowych MSUI 2010/11. Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Protokół IPsec Patryk Czarnik Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Bezpieczeństwo sieci komputerowych MSUI 2010/11 Patryk Czarnik (MIMUW) 03 IPsec BSK 2010/11 1 / 23 VPN Virtual

Bardziej szczegółowo

ZAŁĄCZNIK Nr 3 do CZĘŚCI II SIWZ

ZAŁĄCZNIK Nr 3 do CZĘŚCI II SIWZ ZAŁĄCZNIK Nr 3 do CZĘŚCI II SIWZ WYMAGANIA BEZPIECZEŃSTWA DLA SYSTEMÓW IT Wyciąg z Polityki Bezpieczeństwa Informacji dotyczący wymagań dla systemów informatycznych. 1 Załącznik Nr 3 do Część II SIWZ Wymagania

Bardziej szczegółowo

Najczęściej stosowane rozwiązania IPSec PPTP SSL (OpenVPN)

Najczęściej stosowane rozwiązania IPSec PPTP SSL (OpenVPN) Sieci nowej generacji Sieci VPN Marek Pałczyński Sieci VPN Cechy sieci VPN Tunel do przekazywania pakietów sieci LAN przez sieć WAN Przezroczystość dla użytkowników końcowych Bezpieczeństwo transmisji

Bardziej szczegółowo

Wykład 4 Bezpieczeństwo przesyłu informacji; Szyfrowanie

Wykład 4 Bezpieczeństwo przesyłu informacji; Szyfrowanie Wykład 4 Bezpieczeństwo przesyłu informacji; Szyfrowanie rodzaje szyfrowania kryptografia symetryczna i asymetryczna klucz publiczny i prywatny podpis elektroniczny certyfikaty, CA, PKI IPsec tryb tunelowy

Bardziej szczegółowo

ABA-X3 PXES v. 1.5.0 Podręczna instrukcja administratora. FUNKCJE SIECIOWE Licencja FDL (bez prawa wprowadzania zmian)

ABA-X3 PXES v. 1.5.0 Podręczna instrukcja administratora. FUNKCJE SIECIOWE Licencja FDL (bez prawa wprowadzania zmian) Grupa Ustawienia Sieciowe umożliwia skonfigurowanie podstawowych parametrów terminala: Interfejs ETH0 Umożliwia wybór ustawień podstawowego interfejsu sieciowego. W przypadku wyboru DHCP adres oraz inne

Bardziej szczegółowo

Serwer SSH. Wprowadzenie do serwera SSH Instalacja i konfiguracja Zarządzanie kluczami

Serwer SSH. Wprowadzenie do serwera SSH Instalacja i konfiguracja Zarządzanie kluczami Serwer SSH Serwer SSH Wprowadzenie do serwera SSH Instalacja i konfiguracja Zarządzanie kluczami Serwer SSH - Wprowadzenie do serwera SSH Praca na odległość potrzeby w zakresie bezpieczeństwa Identyfikacja

Bardziej szczegółowo

ZAŁĄCZNIK Nr 1 do CZĘŚCI II SIWZ

ZAŁĄCZNIK Nr 1 do CZĘŚCI II SIWZ ZAŁĄCZNIK Nr 1 do CZĘŚCI II SIWZ WYMAGANIA BEZPIECZEŃSTWA DLA SYSTEMÓW IT Wyciąg z Polityki Bezpieczeństwa Informacji dotyczący wymagań dla systemów informatycznych. 1 Załącznik Nr 1 do Część II SIWZ SPIS

Bardziej szczegółowo

Wykład 4. komputerowych Protokoły SSL i TLS główne slajdy. 26 października 2011. Igor T. Podolak Instytut Informatyki Uniwersytet Jagielloński

Wykład 4. komputerowych Protokoły SSL i TLS główne slajdy. 26 października 2011. Igor T. Podolak Instytut Informatyki Uniwersytet Jagielloński Wykład 4 Protokoły SSL i TLS główne slajdy 26 października 2011 Instytut Informatyki Uniwersytet Jagielloński 4.1 Secure Sockets Layer i Transport Layer Security SSL zaproponowany przez Netscape w 1994

Bardziej szczegółowo

Bezpieczeństwo aplikacji typu software token. Mariusz Burdach, Prevenity. Agenda

Bezpieczeństwo aplikacji typu software token. Mariusz Burdach, Prevenity. Agenda Bezpieczeństwo aplikacji typu software token Mariusz Burdach, Prevenity Agenda 1. Bezpieczeństwo bankowości internetowej w Polsce 2. Główne funkcje aplikacji typu software token 3. Na co zwrócić uwagę

Bardziej szczegółowo

VPN Host-LAN IPSec X.509 z wykorzystaniem DrayTek Smart VPN Client

VPN Host-LAN IPSec X.509 z wykorzystaniem DrayTek Smart VPN Client 1. Konfiguracja serwera VPN 1.1. Włączenie obsługi IPSec 1.2. Ustawienie czasu 1.3. Lokalny certyfikat (żądanie certyfikatu z serwera CA) 1.4. Certyfikat zaufanego CA 1.5. Identyfikator IPSec 1.6. Profil

Bardziej szczegółowo

Laboratorium nr 6 VPN i PKI

Laboratorium nr 6 VPN i PKI Laboratorium nr 6 VPN i PKI Wprowadzenie Sieć VPN (Virtual Private Network) to sieć komputerowa, która pomimo że używa publicznej infrastruktury (np. sieć Internet), jest w stanie zapewnić wysoki poziom

Bardziej szczegółowo

Zdalne logowanie do serwerów

Zdalne logowanie do serwerów Zdalne logowanie Zdalne logowanie do serwerów Zdalne logowanie do serwerów - cd Logowanie do serwera inne podejście Sesje w sieci informatycznej Sesje w sieci informatycznej - cd Sesje w sieci informatycznej

Bardziej szczegółowo

Wykład 3 Bezpieczeństwo przesyłu informacji; Szyfrowanie

Wykład 3 Bezpieczeństwo przesyłu informacji; Szyfrowanie Wykład 3 Bezpieczeństwo przesyłu informacji; Szyfrowanie rodzaje szyfrowania kryptografia symetryczna i asymetryczna klucz publiczny i prywatny podpis elektroniczny certyfikaty, CA, PKI IPsec tryb tunelowy

Bardziej szczegółowo

OBSŁUGA I KONFIGURACJA SIECI W WINDOWS

OBSŁUGA I KONFIGURACJA SIECI W WINDOWS OBSŁUGA I KONFIGURACJA SIECI W WINDOWS Jak skonfigurować komputer pracujący pod kontrolą systemu operacyjnego Windows 7, tak aby uzyskać dostęp do internetu? Zakładamy, że komputer pracuje w małej domowej

Bardziej szczegółowo

4. Podstawowa konfiguracja

4. Podstawowa konfiguracja 4. Podstawowa konfiguracja Po pierwszym zalogowaniu się do urządzenia należy zweryfikować poprawność licencji. Można to zrobić na jednym z widżetów panelu kontrolnego. Wstępną konfigurację można podzielić

Bardziej szczegółowo

ZADANIE.02 Podstawy konfiguracji (interfejsy) Zarządzanie konfiguracjami 1,5h

ZADANIE.02 Podstawy konfiguracji (interfejsy) Zarządzanie konfiguracjami 1,5h Imię Nazwisko ZADANIE.02 Podstawy konfiguracji (interfejsy) Zarządzanie konfiguracjami 1,5h 1. Zbudować sieć laboratoryjną 2. Podstawowe informacje dotyczące obsługi systemu operacyjnego (na przykładzie

Bardziej szczegółowo

Laboratorium - Przechwytywanie i badanie datagramów DNS w programie Wireshark

Laboratorium - Przechwytywanie i badanie datagramów DNS w programie Wireshark Laboratorium - Przechwytywanie i badanie datagramów DNS w programie Wireshark Topologia Cele Część 1: Zapisanie informacji dotyczących konfiguracji IP komputerów Część 2: Użycie programu Wireshark do przechwycenia

Bardziej szczegółowo

Przesyłania danych przez protokół TCP/IP

Przesyłania danych przez protokół TCP/IP Przesyłania danych przez protokół TCP/IP PAKIETY Protokół TCP/IP transmituje dane przez sieć, dzieląc je na mniejsze porcje, zwane pakietami. Pakiety są często określane różnymi terminami, w zależności

Bardziej szczegółowo

Bezpieczeństwo systemów informatycznych

Bezpieczeństwo systemów informatycznych Politechnika Poznańska Bezpieczeństwo systemów rozproszonych Bezpieczeństwo systemów informatycznych ĆWICZENIE VPN 1. Tunele wirtualne 1.1 Narzędzie OpenVPN OpenVPN jest narzędziem służącym do tworzenia

Bardziej szczegółowo

Jarosław Kuchta Administrowanie Systemami Komputerowymi. Dostęp zdalny

Jarosław Kuchta Administrowanie Systemami Komputerowymi. Dostęp zdalny Jarosław Kuchta Dostęp zdalny Zagadnienia Infrastruktura VPN Protokoły VPN Scenariusz zastosowania wirtualnej sieci prywatnej Menedżer połączeń Dostęp zdalny 2 Infrastruktura VPN w WS 2008 Klient VPN Windows

Bardziej szczegółowo

Dlaczego? Mało adresów IPv4. Wprowadzenie ulepszeń względem IPv4 NAT CIDR

Dlaczego? Mało adresów IPv4. Wprowadzenie ulepszeń względem IPv4 NAT CIDR IPv6 Dlaczego? Mało adresów IPv4 NAT CIDR Wprowadzenie ulepszeń względem IPv4 Większa pula adresów Lepszy routing Autokonfiguracja Bezpieczeństwo Lepsza organizacja nagłówków Przywrócenie end-to-end connectivity

Bardziej szczegółowo

Podstawowa konfiguracja routerów. Interfejsy sieciowe routerów. Sprawdzanie komunikacji w sieci. Podstawy routingu statycznego

Podstawowa konfiguracja routerów. Interfejsy sieciowe routerów. Sprawdzanie komunikacji w sieci. Podstawy routingu statycznego Podstawowa konfiguracja routerów Interfejsy sieciowe routerów Sprawdzanie komunikacji w sieci Podstawy routingu statycznego Podstawy routingu dynamicznego 2 Plan prezentacji Tryby pracy routera Polecenia

Bardziej szczegółowo

Czym jest router?... 3 Vyatta darmowy router... 3 Vyatta podstawowe polecenia i obsługa... 3 Zarządzanie użytkownikami... 3 Uzupełnianie komend...

Czym jest router?... 3 Vyatta darmowy router... 3 Vyatta podstawowe polecenia i obsługa... 3 Zarządzanie użytkownikami... 3 Uzupełnianie komend... Czym jest router?... 3 Vyatta darmowy router... 3 Vyatta podstawowe polecenia i obsługa... 3 Zarządzanie użytkownikami... 3 Uzupełnianie komend... 4 Historia komend... 4 Wywołanie komend operacyjnych w

Bardziej szczegółowo

Laboratorium nr 4 Sieci VPN

Laboratorium nr 4 Sieci VPN Laboratorium nr 4 Sieci VPN Wprowadzenie Sieć VPN (Virtual Private Network) to sieć komputerowa, która pomimo że używa publicznej infrastruktury (np. sieć Internet), jest w stanie zapewnić wysoki poziom

Bardziej szczegółowo

Sieci wirtualne VLAN cz. I

Sieci wirtualne VLAN cz. I Sieci wirtualne VLAN cz. I Dzięki zastosowaniu sieci VLAN można ograniczyć ruch rozgłoszeniowy do danej sieci VLAN, tworząc tym samym mniejsze domeny rozgłoszeniowe. Przykładowo celu zaimplementowania

Bardziej szczegółowo

Moduł Ethernetowy. instrukcja obsługi. Spis treści

Moduł Ethernetowy. instrukcja obsługi. Spis treści Moduł Ethernetowy instrukcja obsługi Spis treści 1. Podstawowe informacje...2 2. Konfiguracja modułu...4 3. Podłączenie do sieci RS-485 i LAN/WAN...9 4. Przywracanie ustawień fabrycznych...11 www.el-piast.com

Bardziej szczegółowo

Instrukcja instalacji Control Expert 3.0

Instrukcja instalacji Control Expert 3.0 Instrukcja instalacji Control Expert 3.0 Program Control Expert 3.0 jest to program służący do zarządzania urządzeniami kontroli dostępu. Dedykowany jest dla kontrolerów GRx02 i GRx06 oraz rozwiązaniom

Bardziej szczegółowo

MODEL WARSTWOWY PROTOKOŁY TCP/IP

MODEL WARSTWOWY PROTOKOŁY TCP/IP MODEL WARSTWOWY PROTOKOŁY TCP/IP TCP/IP (ang. Transmission Control Protocol/Internet Protocol) protokół kontroli transmisji. Pakiet najbardziej rozpowszechnionych protokołów komunikacyjnych współczesnych

Bardziej szczegółowo

Protokół DHCP. DHCP Dynamic Host Configuration Protocol

Protokół DHCP. DHCP Dynamic Host Configuration Protocol Protokół DHCP Patryk Czarnik Bezpieczeństwo sieci komputerowych MSUI 2009/10 DHCP Dynamic Host Configuration Protocol Zastosowanie Pobranie przez stację w sieci lokalnej danych konfiguracyjnych z serwera

Bardziej szczegółowo

Połączenie VPN LAN-LAN IPSec X.509 (stały IP > stały IP)

Połączenie VPN LAN-LAN IPSec X.509 (stały IP > stały IP) Zestawienie tunelu VPN po protokole IPSec pomiędzy routerem Vigor 2910 (klient VPN) a VigorPro 5500 (serwer VPN). 1. Certyfikaty na routerach Vigor 1.1. Ustawienie czasu 1.2. Lokalny certyfikat (żądanie

Bardziej szczegółowo

2.1. System kryptograficzny symetryczny (z kluczem tajnym) 2.2. System kryptograficzny asymetryczny (z kluczem publicznym)

2.1. System kryptograficzny symetryczny (z kluczem tajnym) 2.2. System kryptograficzny asymetryczny (z kluczem publicznym) Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik

Bardziej szczegółowo

Podstawy Transmisji Danych. Wykład IV. Protokół IPV4. Sieci WAN to połączenia pomiędzy sieciami LAN

Podstawy Transmisji Danych. Wykład IV. Protokół IPV4. Sieci WAN to połączenia pomiędzy sieciami LAN Podstawy Transmisji Danych Wykład IV Protokół IPV4 Sieci WAN to połączenia pomiędzy sieciami LAN 1 IPv4/IPv6 TCP (Transmission Control Protocol) IP (Internet Protocol) ICMP (Internet Control Message Protocol)

Bardziej szczegółowo

Kierunek: technik informatyk 312[01] Semestr: II Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński

Kierunek: technik informatyk 312[01] Semestr: II Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Kierunek: technik informatyk 312[01] Semestr: II Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat 8.9. Wykrywanie i usuwanie awarii w sieciach komputerowych. 1. Narzędzia

Bardziej szczegółowo

TP-LINK 8960 Quick Install

TP-LINK 8960 Quick Install TP-LINK 8960 Quick Install (na przykładzie Neostrady) Podłączenie urządzenia Konfiguracja połączenia xdsl Włącz swoją przeglądarkę internetową i w polu adresowym wpisz http://192.168.1.1/ i naciśnij klawisz

Bardziej szczegółowo

ZADANIE.07. Procesy Bezpieczeństwa Sieciowego v.2011alfa ZADANIE.07. VPN RA Virtual Private Network Remote Access (Router) - 1 -

ZADANIE.07. Procesy Bezpieczeństwa Sieciowego v.2011alfa ZADANIE.07. VPN RA Virtual Private Network Remote Access (Router) - 1 - Imię Nazwisko ZADANIE.07 VPN RA Virtual Private Network Remote Access (Router) - 1 - 212.191.89.192/28 ISP LDZ dmz security-level 50 ISP BACKBONE 79.96.21.160/28 outside security-level 0 subinterfaces,

Bardziej szczegółowo

Posiadając dwa routery z serii Vigor 2200/2200X/2200W/2200We postanawiamy połączyć dwie odległe sieci tunelem VPN. Przyjmujemy następujące założenia:

Posiadając dwa routery z serii Vigor 2200/2200X/2200W/2200We postanawiamy połączyć dwie odległe sieci tunelem VPN. Przyjmujemy następujące założenia: Posiadając dwa routery z serii Vigor 2200/2200X/2200W/2200We postanawiamy połączyć dwie odległe sieci tunelem VPN. Przyjmujemy następujące założenia: Vigor1: publiczny, stały adres IP: 81.15.19.90, podsieć

Bardziej szczegółowo

Protokoły zdalnego logowania Telnet i SSH

Protokoły zdalnego logowania Telnet i SSH Protokoły zdalnego logowania Telnet i SSH Krzysztof Maćkowiak Wprowadzenie Wykorzystując Internet mamy możliwość uzyskania dostępu do komputera w odległej sieci z wykorzystaniem swojego komputera, który

Bardziej szczegółowo

Zestawienie tunelu VPN po protokole IPSec pomiędzy klientem VPN - Draytek Smart VPN Client za NAT-em, a routerem Draytek

Zestawienie tunelu VPN po protokole IPSec pomiędzy klientem VPN - Draytek Smart VPN Client za NAT-em, a routerem Draytek Zestawienie tunelu VPN po protokole IPSec pomiędzy klientem VPN - Draytek Smart VPN Client za NAT-em, a routerem Draytek Aby zestawić VPN po protokole IPSec, pomiędzy komputerem podłączonym za pośrednictwem

Bardziej szczegółowo

Wprowadzenie do obsługi systemu IOS na przykładzie Routera Tryby poleceń Użytkownika (user mode) Router> Przejście do trybu: Dostępny bezpośrednio po podłączeniu konsoli. Opuszczenie trybu: Polecenia:

Bardziej szczegółowo

Metody ataków sieciowych

Metody ataków sieciowych Metody ataków sieciowych Podstawowy podział ataków sieciowych: Ataki pasywne Ataki aktywne Ataki pasywne (passive attacks) Polegają na śledzeniu oraz podsłuchiwaniu w celu pozyskiwania informacji lub dokonania

Bardziej szczegółowo

Uproszczony opis obsługi ruchu w węźle IP. Trasa routingu. Warunek:

Uproszczony opis obsługi ruchu w węźle IP. Trasa routingu. Warunek: Uproszczony opis obsługi ruchu w węźle IP Poniższa procedura jest dokonywana dla każdego pakietu IP pojawiającego się w węźle z osobna. W routingu IP nie wyróżniamy połączeń. Te pojawiają się warstwę wyżej

Bardziej szczegółowo

Laboratorium nr 5 Sieci VPN

Laboratorium nr 5 Sieci VPN Laboratorium nr 5 Sieci VPN Wprowadzenie Sieć VPN (Virtual Private Network) to sieć komputerowa, która pomimo że używa publicznej infrastruktury (np. sieć Internet), jest w stanie zapewnić wysoki poziom

Bardziej szczegółowo

Wprowadzenie 5 Rozdział 1. Lokalna sieć komputerowa 7

Wprowadzenie 5 Rozdział 1. Lokalna sieć komputerowa 7 Wprowadzenie 5 Rozdział 1. Lokalna sieć komputerowa 7 System operacyjny 7 Sieć komputerowa 8 Teoria sieci 9 Elementy sieci 35 Rozdział 2. Sieć Linux 73 Instalowanie karty sieciowej 73 Konfiguracja interfejsu

Bardziej szczegółowo

Wymagania bezpieczeństwa wobec statycznych bezpośrednich 1-fazowych i 3-fazowych liczników energii elektrycznej. Wymaganie techniczne

Wymagania bezpieczeństwa wobec statycznych bezpośrednich 1-fazowych i 3-fazowych liczników energii elektrycznej. Wymaganie techniczne Wymagania bezpieczeństwa wobec statycznych bezpośrednich 1-fazowych i 3-fazowych liczników energii elektrycznej Lp. 1. Wymagania ogólne Wymaganie techniczne 1.1 Licznik musi posiadać aktywną funkcję Watchdog

Bardziej szczegółowo

12. Wirtualne sieci prywatne (VPN)

12. Wirtualne sieci prywatne (VPN) 12. Wirtualne sieci prywatne (VPN) VPN to technologia tworzenia bezpiecznych tuneli komunikacyjnych, w ramach których możliwy jest bezpieczny dostęp do zasobów firmowych. Ze względu na sposób połączenia

Bardziej szczegółowo

Zastosowania PKI dla wirtualnych sieci prywatnych

Zastosowania PKI dla wirtualnych sieci prywatnych Zastosowania PKI dla wirtualnych sieci prywatnych Andrzej Chrząszcz NASK Agenda Wstęp Sieci Wirtualne i IPSEC IPSEC i mechanizmy bezpieczeństwa Jak wybrać właściwą strategię? PKI dla VPN Co oferują dostawcy

Bardziej szczegółowo

ZADANIE.02 Korporacyjne Sieci Bez Granic v.2013 ZADANIE.02. VPN L2L Virtual Private Network site-to-site (ASA) - 1 -

ZADANIE.02 Korporacyjne Sieci Bez Granic v.2013 ZADANIE.02. VPN L2L Virtual Private Network site-to-site (ASA) - 1 - Imię Nazwisko ZADANIE.02 VPN L2L Virtual Private Network site-to-site (ASA) - 1 - 212.191.89.192/28 ISP LDZ dmz security-level 50 ISP BACKBONE 79.96.21.160/28 outside security-level 0 subinterfaces, trunk

Bardziej szczegółowo

Graficzny terminal sieciowy ABA-X3. część druga. Podstawowa konfiguracja terminala

Graficzny terminal sieciowy ABA-X3. część druga. Podstawowa konfiguracja terminala Graficzny terminal sieciowy ABA-X3 część druga Podstawowa konfiguracja terminala Opracował: Tomasz Barbaszewski Ustawianie interfejsu sieciowego: Podczas pierwszego uruchomienia terminala: Program do konfiguracji

Bardziej szczegółowo

TRX API opis funkcji interfejsu

TRX API opis funkcji interfejsu TRX Krzysztof Kryński Cyfrowe rejestratory rozmów seria KSRC TRX API opis funkcji interfejsu Kwiecień 2013 Copyright TRX TRX ul. Garibaldiego 4 04-078 Warszawa Tel. 22 871 33 33 Fax 22 871 57 30 www.trx.com.pl

Bardziej szczegółowo

Konfiguracja bezpiecznego tunelu IPSec VPN w oparciu o bramę ZyWall35 i klienta ZyXEL RSC (Remote Security Client).

Konfiguracja bezpiecznego tunelu IPSec VPN w oparciu o bramę ZyWall35 i klienta ZyXEL RSC (Remote Security Client). . ZyXEL Communications Polska, Dział Wsparcia Technicznego Konfiguracja bezpiecznego tunelu IPSec VPN w oparciu o bramę ZyWall35 i klienta ZyXEL RSC (Remote Security Client). Niniejszy dokument przedstawia

Bardziej szczegółowo

Metody zabezpieczania transmisji w sieci Ethernet

Metody zabezpieczania transmisji w sieci Ethernet Metody zabezpieczania transmisji w sieci Ethernet na przykładzie protokołu PPTP Paweł Pokrywka Plan prezentacji Założenia Cele Problemy i ich rozwiązania Rozwiązanie ogólne i jego omówienie Założenia Sieć

Bardziej szczegółowo

Na podstawie: Kirch O., Dawson T. 2000: LINUX podręcznik administratora sieci. Wydawnictwo RM, Warszawa. FILTROWANIE IP

Na podstawie: Kirch O., Dawson T. 2000: LINUX podręcznik administratora sieci. Wydawnictwo RM, Warszawa. FILTROWANIE IP FILTROWANIE IP mechanizm decydujący, które typy datagramów IP mają być odebrane, które odrzucone. Odrzucenie oznacza usunięcie, zignorowanie datagramów, tak jakby nie zostały w ogóle odebrane. funkcja

Bardziej szczegółowo

Bezpieczeństwo systemów informatycznych

Bezpieczeństwo systemów informatycznych ĆWICZENIE SSH 1. Secure Shell i protokół SSH 1.1 Protokół SSH Protokół SSH umożliwia bezpieczny dostęp do zdalnego konta systemu operacyjnego. Protokół pozwala na zastosowanie bezpiecznego uwierzytelniania

Bardziej szczegółowo

PODSTAWOWA KONFIGURACJA LINKSYS WRT300N

PODSTAWOWA KONFIGURACJA LINKSYS WRT300N PODSTAWOWA KONFIGURACJA LINKSYS WRT300N 1. Topologia połączenia sieci WAN i LAN (jeśli poniższa ilustracja jest nieczytelna, to dokładny rysunek topologii znajdziesz w pliku network_konfigurowanie_linksys_wrt300n_cw.jpg)

Bardziej szczegółowo

Zadanie1: Odszukaj w serwisie internetowym Wikipedii informacje na temat zapory sieciowej (firewall) oraz oprogramowania iptables.

Zadanie1: Odszukaj w serwisie internetowym Wikipedii informacje na temat zapory sieciowej (firewall) oraz oprogramowania iptables. T: Konfiguracja zapory sieciowej (firewall) w systemie Linux. Zadanie1: Odszukaj w serwisie internetowym Wikipedii informacje na temat zapory sieciowej (firewall) oraz oprogramowania iptables. Zapora sieciowa

Bardziej szczegółowo

8. Tunele wirtualne VPN

8. Tunele wirtualne VPN 8. Tunele wirtualne VPN Tunel wirtualny (Virtual Private Network, VPN) jest to kanał komunikacyjny chroniony przez niepowołanym dostępem (odczytem i modyfikacją) poprzez zastosowanie kryptografii. Tunel

Bardziej szczegółowo

Bezpieczeństwo systemów komputerowych

Bezpieczeństwo systemów komputerowych Bezpieczeństwo systemów komputerowych Tunele wirtualne, kryptograficzne zabezpieczanie komunikacji Aleksy Schubert (Marcin Peczarski) Instytut Informatyki Uniwersytetu Warszawskiego 13 grudnia 2016 Na

Bardziej szczegółowo

Asix. Konfiguracja serwera MS SQL dla potrzeb systemu Asix. Pomoc techniczna NIEZAWODNE ROZWIĄZANIA SYSTEMÓW AUTOMATYKI

Asix. Konfiguracja serwera MS SQL dla potrzeb systemu Asix. Pomoc techniczna NIEZAWODNE ROZWIĄZANIA SYSTEMÓW AUTOMATYKI NIEZAWODNE ROZWIĄZANIA SYSTEMÓW AUTOMATYKI Asix Konfiguracja serwera MS SQL dla potrzeb systemu Asix Pomoc techniczna Dok. Nr PLP0024 Wersja:2015-03-04 ASKOM i Asix to zastrzeżony znak firmy ASKOM Sp.

Bardziej szczegółowo

Warsztaty z Sieci komputerowych Lista 3

Warsztaty z Sieci komputerowych Lista 3 Warsztaty z Sieci komputerowych Lista 3 Uwagi ogólne Topologia sieci na te zajęcia została przedstawiona poniżej; każda czwórka komputerów jest osobną strukturą niepołączoną z niczym innym. 2 2 3 4 0 3

Bardziej szczegółowo

Połączenie VPN Host-LAN IPSec z wykorzystaniem Windows Vista/7. 1. Konfiguracja routera. 2. Konfiguracja klienta VPN. 3. Zainicjowanie połączenia

Połączenie VPN Host-LAN IPSec z wykorzystaniem Windows Vista/7. 1. Konfiguracja routera. 2. Konfiguracja klienta VPN. 3. Zainicjowanie połączenia 1. Konfiguracja routera 2. Konfiguracja klienta VPN 3. Zainicjowanie połączenia Procedura konfiguracji została oparta na poniższym przykładzie. Główne założenia: typ tunelu: Host-LAN protokół VPN: IPSec

Bardziej szczegółowo

Vigor 2900 ZyWall 70 konfiguracja połączenia LAN-LAN (IPSec)

Vigor 2900 ZyWall 70 konfiguracja połączenia LAN-LAN (IPSec) Uwaga! Przykład zakłada, że na obu routerach funkcjonuje już dostęp do Internetu, iżze wszystkie funkcje sieciowe niezbędne do komunikacji sieci LAN z Internetem zostały prawidłowo ustawione (adresy na

Bardziej szczegółowo

Laboratorium 6.7.1: Ping i Traceroute

Laboratorium 6.7.1: Ping i Traceroute Laboratorium 6.7.1: Ping i Traceroute Topologia sieci Tabela adresacji Urządzenie Interfejs Adres IP Maska podsieci Domyślna brama R1-ISP R2-Central Serwer Eagle S0/0/0 10.10.10.6 255.255.255.252 Nie dotyczy

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas. Wykład 11

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas. Wykład 11 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 11 Spis treści 16 Zarządzanie kluczami 3 16.1 Generowanie kluczy................. 3 16.2 Przesyłanie

Bardziej szczegółowo

Wireshark analizator ruchu sieciowego

Wireshark analizator ruchu sieciowego Wireshark analizator ruchu sieciowego Informacje ogólne Wireshark jest graficznym analizatorem ruchu sieciowego (snifferem). Umożliwia przechwytywanie danych transmitowanych przez określone interfejsy

Bardziej szczegółowo

Rozkład menu narzędzi

Rozkład menu narzędzi Tylko administrator systemu ma dostęp do wszystkich opcji Narzędzi. Ustawienia urządzenia Ogólne Oszczędzanie energii Inteligentny Uruchamiany pracą Planowany Data i godzina Strefa czasowa (różnica dla

Bardziej szczegółowo

SSL (Secure Socket Layer)

SSL (Secure Socket Layer) SSL --- Secure Socket Layer --- protokół bezpiecznej komunikacji między klientem a serwerem, stworzony przez Netscape. SSL w założeniu jest podkładką pod istniejące protokoły, takie jak HTTP, FTP, SMTP,

Bardziej szczegółowo

Projekt wymagań bezpieczeństwa wobec statycznych bezpośrednich 1-fazowych i 3- fazowych liczników energii elektrycznej:

Projekt wymagań bezpieczeństwa wobec statycznych bezpośrednich 1-fazowych i 3- fazowych liczników energii elektrycznej: Projekt wymagań bezpieczeństwa wobec statycznych bezpośrednich 1-fazowych i 3- fazowych liczników energii elektrycznej: Lp. 1. Wymagania ogólne Wymaganie techniczne 1.1 Licznik musi posiadać aktywną funkcję

Bardziej szczegółowo

Ćwiczenie 5a Sieć komputerowa z wykorzystaniem rutera.

Ćwiczenie 5a Sieć komputerowa z wykorzystaniem rutera. . Cel ćwiczenia: - Krótka charakterystyka rutera. - Połączenie rutera z komputerem w celu jego konfiguracji. - Szybka konfiguracja rutera do pracy w przewodowej sieci LAN. - Zmiana adresu rutera. - Konfiguracja

Bardziej szczegółowo

INSTRUKCJA OBSŁUGI SUPLEMENT

INSTRUKCJA OBSŁUGI SUPLEMENT INSTRUKCJA OBSŁUGI SUPLEMENT PROGRAM SONEL ANALIZA 2 Dotyczy analizatorów jakości zasilania PQM-710 i PQM-711 i instrukcji obsługi programu w wersji 1.1 SONEL SA ul. Wokulskiego 11 58-100 Świdnica, Poland

Bardziej szczegółowo

Wykład Nr 4. 1. Sieci bezprzewodowe 2. Monitorowanie sieci - polecenia

Wykład Nr 4. 1. Sieci bezprzewodowe 2. Monitorowanie sieci - polecenia Sieci komputerowe Wykład Nr 4 1. Sieci bezprzewodowe 2. Monitorowanie sieci - polecenia Sieci bezprzewodowe Sieci z bezprzewodowymi punktami dostępu bazują na falach radiowych. Punkt dostępu musi mieć

Bardziej szczegółowo

Podstawy Secure Sockets Layer

Podstawy Secure Sockets Layer Podstawy Secure Sockets Layer Michał Grzejszczak 20 stycznia 2003 Spis treści 1 Wstęp 2 2 Protokół SSL 2 3 Szyfry używane przez SSL 3 3.1 Lista szyfrów.................................... 3 4 Jak działa

Bardziej szczegółowo

Marcin Szeliga marcin@wss.pl. Sieć

Marcin Szeliga marcin@wss.pl. Sieć Marcin Szeliga marcin@wss.pl Sieć Agenda Wprowadzenie Model OSI Zagrożenia Kontrola dostępu Standard 802.1x (protokół EAP i usługa RADIUS) Zabezpieczenia IPSec SSL/TLS SSH Zapory Sieci bezprzewodowe Wprowadzenie

Bardziej szczegółowo

Ćwiczenie Konfiguracja statycznych oraz domyślnych tras routingu IPv4

Ćwiczenie Konfiguracja statycznych oraz domyślnych tras routingu IPv4 Ćwiczenie Konfiguracja statycznych oraz domyślnych tras routingu IPv4 Topologia Tabela adresacji Urządzenie Interfejs Adres IP Maska podsieci Brama domyślna R1 G0/1 192.168.0.1 255.255.255.0 N/A S0/0/1

Bardziej szczegółowo

Badanie bezpieczeństwa IPv6

Badanie bezpieczeństwa IPv6 lp wykonawca grupa (g) 1. Grzegorz Pol 3 2. Artur Mazur 3. Michał Grzybowski 4. 5. Tabela 1. zadanie Funkcja skrótu Grupa DH Protokół szyfrowania Zestaw przekształceń 1. MD5 2 DES AH-MD5-HMAC ESP-DES 2.

Bardziej szczegółowo

Stos protokołów TCP/IP (ang. Transmission Control Protocol/Internet Protocol)

Stos protokołów TCP/IP (ang. Transmission Control Protocol/Internet Protocol) Stos protokołów TCP/IP (ang. Transmission Control Protocol/Internet Protocol) W latach 1973-78 Agencja DARPA i Stanford University opracowały dwa wzajemnie uzupełniające się protokoły: połączeniowy TCP

Bardziej szczegółowo

Bezpieczeństwo Systemów Sieciowych

Bezpieczeństwo Systemów Sieciowych Bezpieczeństwo Systemów Sieciowych dr inż. Łukasz Sturgulewski, luk@kis.p.lodz.pl, http://luk.kis.p.lodz.pl/ dr inż. Andrzej Frączyk, a.fraczyk@kis.p.lodz.pl BSS - 2013 1 Co dalej? VPN IDS, IPS Application

Bardziej szczegółowo

Połączenie VPN LAN-LAN IPSec (zmienny IP > zmienny IP)

Połączenie VPN LAN-LAN IPSec (zmienny IP > zmienny IP) 1. Konfiguracja serwera VPN 2. Konfiguracja klienta VPN 3. Status połączenia Procedura konfiguracji została oparta na poniższym przykładzie. Główne założenia: typ tunelu: LAN-LAN z routingiem pomiędzy

Bardziej szczegółowo

ARP Address Resolution Protocol (RFC 826)

ARP Address Resolution Protocol (RFC 826) 1 ARP Address Resolution Protocol (RFC 826) aby wysyłać dane tak po sieci lokalnej, jak i pomiędzy różnymi sieciami lokalnymi konieczny jest komplet czterech adresów: adres IP nadawcy i odbiorcy oraz adres

Bardziej szczegółowo

Połączenia. Obsługiwane systemy operacyjne. Strona 1 z 5

Połączenia. Obsługiwane systemy operacyjne. Strona 1 z 5 Strona 1 z 5 Połączenia Obsługiwane systemy operacyjne Korzystając z dysku CD Oprogramowanie i dokumentacja, można zainstalować oprogramowanie drukarki w następujących systemach operacyjnych: Windows 8

Bardziej szczegółowo

Bezpieczne protokoły Materiały pomocnicze do wykładu

Bezpieczne protokoły Materiały pomocnicze do wykładu Bezpieczne protokoły Materiały pomocnicze do wykładu Bezpieczeństwo systemów informatycznych Bezpieczne protokoły Zbigniew Suski 1 Bezpieczne protokoły Sec! Sec (Secure )! L2TP (Layer 2 Tunneling Protocol)!

Bardziej szczegółowo

(BSS) Bezpieczeństwo w sieciach WiFi szyfrowanie WEP.

(BSS) Bezpieczeństwo w sieciach WiFi szyfrowanie WEP. Do wykonania ćwiczenia będą potrzebne dwa komputery wyposażone w bezprzewodowe karty sieciową oraz jeden Access Point. 1. Do interfejsu sieciowego komputera, z uruchomionym systemem Windows XP podłącz

Bardziej szczegółowo

SMB protokół udostępniania plików i drukarek

SMB protokół udostępniania plików i drukarek SMB protokół udostępniania plików i drukarek Początki protokołu SMB sięgają połowy lat 80., kiedy to w firmie IBM opracowano jego wczesną wersję (IBM PC Network SMB Protocol). W kolejnych latach protokół

Bardziej szczegółowo

Protokoły sieciowe - TCP/IP

Protokoły sieciowe - TCP/IP Protokoły sieciowe Protokoły sieciowe - TCP/IP TCP/IP TCP/IP (Transmission Control Protocol / Internet Protocol) działa na sprzęcie rożnych producentów może współpracować z rożnymi protokołami warstwy

Bardziej szczegółowo

V4R3. SEE Electrical Expert V4R3 Sposoby zabezpieczenia programu

V4R3. SEE Electrical Expert V4R3 Sposoby zabezpieczenia programu V4R3 SEE Electrical Expert V4R3 Sposoby zabezpieczenia programu COPYRIGHT 1986-2018 IGE+XAO Wszelkie prawa zastrzeżone. Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w

Bardziej szczegółowo

Wprowadzenie do obsługi systemu IOS na przykładzie Routera

Wprowadzenie do obsługi systemu IOS na przykładzie Routera Wprowadzenie do obsługi systemu IOS na przykładzie Routera Tryby poleceń Użytkownika (user mode) Router> Przejście do trybu: Dostępny bezpośrednio po podłączeniu konsoli. Opuszczenie trybu: Polecenia:

Bardziej szczegółowo

Usługi sieciowe systemu Linux

Usługi sieciowe systemu Linux Usługi sieciowe systemu Linux 1. Serwer WWW Najpopularniejszym serwerem WWW jest Apache, dostępny dla wielu platform i rozprowadzany w pakietach httpd. Serwer Apache bardzo często jest wykorzystywany do

Bardziej szczegółowo

Konfiguracja IPSec. 5.1.2 Brama IPSec w Windows 2003 Server

Konfiguracja IPSec. 5.1.2 Brama IPSec w Windows 2003 Server Konfiguracja IPSec Aby zainstalować OpenSWAN w popularnej dystrybucji UBUNTU (7.10) należy użyć Menedżera Pakietów Synaptics lub w konsoli wydać polecenia: sudo apt-get install openswan. Zostaną pobrane

Bardziej szczegółowo

Zadanie1: Odszukaj w Wolnej Encyklopedii Wikipedii informacje na temat NAT (ang. Network Address Translation).

Zadanie1: Odszukaj w Wolnej Encyklopedii Wikipedii informacje na temat NAT (ang. Network Address Translation). T: Udostępnianie połączenia sieciowego w systemie Windows (NAT). Zadanie1: Odszukaj w Wolnej Encyklopedii Wikipedii informacje na temat NAT (ang. Network Address Translation). NAT (skr. od ang. Network

Bardziej szczegółowo

WSIZ Copernicus we Wrocławiu

WSIZ Copernicus we Wrocławiu Bezpieczeństwo sieci komputerowych Wykład 4. Robert Wójcik Wyższa Szkoła Informatyki i Zarządzania Copernicus we Wrocławiu Plan wykładu Sylabus - punkty: 4. Usługi ochrony: poufność, integralność, dostępność,

Bardziej szczegółowo

11. Autoryzacja użytkowników

11. Autoryzacja użytkowników 11. Autoryzacja użytkowników Rozwiązanie NETASQ UTM pozwala na wykorzystanie trzech typów baz użytkowników: Zewnętrzna baza zgodna z LDAP OpenLDAP, Novell edirectory; Microsoft Active Direcotry; Wewnętrzna

Bardziej szczegółowo