Wykład 8 i 9. Projektowanie i Realizacja Sieci Komputerowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład 8 i 9. Projektowanie i Realizacja Sieci Komputerowych"

Transkrypt

1 Projektowanie i Realizacja Sieci Komputerowych Wykład 8 i 9 Zestaw protokołów TCP/IP Adresacja IP RARP, BOOTP, DHCP, ARP Protokół IP, ICMP Routing protokoły i urządzenia Protokoły TCP i UDP dr inż. Artur Sierszeń asiersz@kis.p.lodz.pl dr inż. Łukasz Sturgulewski luk@kis.p.lodz.pl Projektowanie i Realizacja Sieci Komputerowych 1

2 Zestaw protokołów TCP/IP warstwa aplikacji warstwa transportowa warstwa Internet warstwa dostępu do sieci TCP/IP OSI warstwa aplikacji warstwa prezentacji warstwa sesji warstwa transportowa warstwa sieciowa warstwa łącza danych warstwa fizyczna Warstwa dostępu do sieci: technologie sieci LAN i WAN (np. Ethernet) Warstwa Internet: IP (Internet Protocol), ICMP (Internet Control Message Protocol) Warstwa transportowa: TCP (Transmission Control Protocol), UDP (User Datagram Protocol) Warstwa aplikacji: TELNET, FTP, SMTP, DNS, SNMP, DHCP Projektowanie i Realizacja Sieci Komputerowych 2

3 Warstwa sieciowa warstwa 3 application layer warstwa aplikacji presentation layer warstwa prezentacji session layer warstwa sesji transport layer warstwa transportowa network layer warstwa sieciowa data link layer warstwa łącza danych physical layer warstwa fizyczna Odpowiada za transmisję bloków informacji poprzez sieć. Określa, jaką drogą przesyłane będą poszczególne jednostki danych (routing). Podstawową jednostką informacji w warstwie sieciowej jest pakiet. Umożliwia uniezależnienie warstw wyższych od transmisji danych, rodzaju technologii komutacji itp. Projektowanie i Realizacja Sieci Komputerowych 3

4 Definicje Warstwa 3 modelu OSI: Zapewnia najlepsze (jak to jest możliwe) dostarczenie pakietów od punktu początkowego (sieci źródłowej) do punktu końcowego (sieci docelowej). Routing (wyznaczanie ścieżki): Czynność polegająca na kierowaniu drogą przepływu pakietów informacji w sieci komputerowej. Router: Urządzanie (może być także program) realizujące routing. Jest to najbardziej inteligentne i zaawansowane urządzenia sieciowe instalowane w węzłach sieci. Projektowanie i Realizacja Sieci Komputerowych 4

5 Routing Routing = Wyznaczanie ścieżki pakietu. Wyznaczanie ścieżki to proces, który umożliwia routerowi wybranie następnego skoku w drodze pakietu do adresata. W tym procesie mogą być brane pod uwagę różne czynniki np.: Odległość do celu; Przepustowość łącza; Obciążenie łącza; Koszt łącza. Projektowanie i Realizacja Sieci Komputerowych 5

6 Routing Protokół routowalny: Protokół warstwy sieciowej dopuszczający kierowanie przepływem pakietów np. IP (Internet Protocol). Protokół routingu: Protokół określający sposób kierowania pakietami routowalnego protokołu sieciowego. Protokół routingu ułatwia obsługą protokołów routowalnych poprzez dostarczenie mechanizmów umożliwiających wymianę informacji o trasach (ścieżkach) np. RIP (Routing Information Protocol), IGRP (Interior Gateway Routing Protocol), EIGRP (Enhanced Interior Gateway Routing Protocol), OSPF (Open Shortest Path First). Routing wieloprotokołowy: Routery mogą obsługiwać wiele protokołów routingu oraz wiele protokołów routowalnych. Projektowanie i Realizacja Sieci Komputerowych 6

7 Router Router pracuje w trzeciej warstwie modelu OSI. Łączy ze sobą segmenty sieci lub całe sieci. Może łączyć sieci pracujące w różnych technologiach warstwy drugiej np.: Ethernet i Token Ring. Podejmuje decyzje o porcie na który zostanie przesłany pakietu na podstawie adresu grupy jednostek (adres sieci część adresu IP) tak aby ścieżka jaką będzie poruszał się pakiet była optymalna. Najważniejsze (najbardziej zaawansowane) z urządzeń regulujących ruch w sieciach. Graficzny symbol routera: Projektowanie i Realizacja Sieci Komputerowych 7

8 Adresowanie płaskie i hierarchiczne Adresowanie płaskie: Przy nadawaniu adresu jednostka otrzymuje następny wolny adres. Brak struktury schematu adresowania. Na przykład adres MAC. Adresowanie hierarchiczne: Nie można przydzielać adresów losowo, na zasadzie następny wolny. Przy nadawaniu adresu ważne jest położenie jednostki w strukturze. Na przykład adres IP. Projektowanie i Realizacja Sieci Komputerowych 8

9 Adresy IP Główne zadania stawiane systemowi adresowania w sieciach rozległych: Potrzeba globalnego systemu identyfikacji każdej jednostki przyłączonej do sieci. Identyfikator ma za zadanie określić: nazwę, adres i trasę do jednostki docelowej. W najpopularniejszej obecnie wersji IPv4 używa się 32-bitowych adresów. Adres IP składa się z pary (ids, idm), gdzie: ids określa sieć w której znajduje się dana jednostka; idm określa jednoznacznie jednostkę w tej sieci. Adresy IP zostały podzielone na klasy (zwiększa to znacznie elastyczność tego rozwiązania). Klasa, do której należy dany adres, jest identyfikowana przez pierwsze bity adresu (analizowane do napotkania zera). Projektowanie i Realizacja Sieci Komputerowych 9

10 Adresy IP Klasa A B C Charakterystyka 7 bitów adres sieci 24 bity adres jednostki w tej sieci Klasa wykorzystywana w duzych sieciach 14 bitów adres sieci 16 bitów adres jednostki w tej sieci Klasa wykorzystywana w srednich sieciach 21 bitów adres sieci 8 bitów adres jednostki w tej sieci Klasa wykorzystywana w malych sieciach Projektowanie i Realizacja Sieci Komputerowych 10

11 Adresy IP Adres IP określa sieć oraz konkretny węzeł w tej sieci nie jest więc związany z jednostką, ale z przyłączeniem do sieci. W celu ułatwienia analizy adresu IP, a także jego zapamiętania, stosuje się konwencję zapisu: a.b.c.d gdzie a, b, c, d są liczbami całkowitymi z zakresu 0-255, oznaczającymi kolejne 8 bitów z całego 32 bitowego adresu. Projektowanie i Realizacja Sieci Komputerowych 11

12 Przydzielanie adresów IP Początkowo jedyną organizacją dokonującą przydziałów numerów IP była IANA (Internet Assigned Numbers Authority). Później części przestrzeni adresowej były przekazywane w zarząd różnych lokalnych organizacji, przez które został przejęty proces przydzielania adresów IP. Pod adresem: znajduje się aktualny przydział adresów IP dla organizacji i firm. Projektowanie i Realizacja Sieci Komputerowych 12

13 Adresy specjalne Istniej kilka kombinacji zer (bieżący) i jedynek (każdy): ids = zera, idm = zera: Dany komputer (do wykorzystania tylko w czasie rozruchu systemu). ids = zera, idm = komputer: Komputer w danej sieci (do wykorzystania tylko w czasie rozruchu systemu). ids = jedynki, idm = jedynki : Ograniczone rozgłaszanie (w sieci lokalnej). W ograniczonym rozgłaszaniu mamy możliwość wysłania pakietów do wszystkich jednostek znajdujących się w tej samej sieci lokalnej, co nadawca. Nie jest wymagana znajomość adresu sieci. ids = sieć, idm = jedynki: Ukierunkowane rozgłaszanie. Wysyłanie pakietów do wszystkich jednostek znajdujących się w sieci wyspecyfikowanej w adresie. To czy usługa zostanie zrealizowana zależy od sieci, do której wysyłamy pakiety : Pętla zwrotna. Adres pętli zwrotnej służy do testowania TCP/IP oraz komunikacji międzyprocesowej lokalnej dla danej jednostki. Oprogramowanie protokołu komunikacyjnego przekazuje pakiety z adresem pętli zwrotnej bezpośrednio jednostce bez wysyłania ich w sieć. Adresy pętli zwrotnej mają numer sieci równy 127. Projektowanie i Realizacja Sieci Komputerowych 13

14 Protokół IP W warstwie sieciowej dane są enkapsulowane w pakiety: Nagłówek pakietu Dane przenoszone przez pakiet Protokół przyjmuje dane z warstwy wyższej (transportowej), nie troszcząc się zupełnie o ich zawartość. Nagłówek pakietu IP: WERSJA DŁ. NAGŁ TYP OBSŁUGI DŁUGOŚĆ CAŁKOWITA IDENTYFIKACJA ZNACZ NIKI PRZES UNIĘCIE FRAGMENTU CZAS ŻYCIA PROTOKÓŁ SUMA K ONTROLNA NAGŁÓ WKA ADRES IP NADAWCY ADRE S IP ODBIORCY OPCJE IP UZUPEŁNIENIE Projektowanie i Realizacja Sieci Komputerowych 14

15 Nagłówek pakietu IP WERSJA (4 bity): Wersja protokołu IP, z którego użyciem utworzono ten pakiet (obecnie jest to wersja czwarta). DŁUGOŚĆ NAGŁÓWKA (4 bity): Większość pól nagłówka ma stałą wielkość, oprócz pól OPCJE IP i UZUPEŁNIENIE. Wielkość ta określa długość nagłówka mierzoną w 32 bitowych słowach. TYP OBSŁUGI (8 bitów): PIERWSZEŃSTWO O S P NIEUŻYWANE Pierwszeństwo: Pole to, pomimo iż daje duże możliwości kontroli przepływu danych, nie jest praktycznie wykorzystywane. Wartość tego pola jest liczbą całkowitą z przedziału od 0 do 7, gdzie 0 normalny stopień ważności, a 7 najwyższy stopień ważności (sterowanie siecią). O: Bit oznaczający prośbę o krótkie czasy oczekiwania. S: Bit oznaczający prośbę o przesyłanie pakietu szybkimi łączami. P: Bit oznaczający prośbę o dużą pewność poprawnego przesłania danych. Uwaga: Powyższe prośby są traktowane w formie sugestii - nie mają i nie mogą mieć charakteru żądania! Projektowanie i Realizacja Sieci Komputerowych 15

16 Nagłówek pakietu IP DŁUGOŚĆ CAŁKOWITA (16 bitów): Całkowita długość pakietu IP mierzona w oktetach. Kontrola fragmentacji i składania pakietu (Fragmentacja następuje w wyniku przesyłania pakietów przez sieci o różnym MTU (Maximum Transfer Unit)): IDENTYFIKACJA (16 bitów): Umożliwia identyfikacje fragmentów należących do tego samego pakietu. ZNACZNIK (3 bity): Umożliwia kontrolę fragmentacji (pierwszy bit = 1 oznacza nie fragmentuj, młodszy bit = 1 oznacza dalsze fragmenty ). PRZESUNIĘCIE FRAGMENTU (13 bitów): Mierzone w jednostkach 8-oktetowych. Fragmenty pakietu mogą docierać do celu w różnej kolejności, a dzięki temu polu możliwe jest prawidłowe połączenie wszystkich części. CZAS ŻYCIA (8 bitów): Określa jak długo pakiet może być transportowany w sieci. Nadawca decyduje o czasie życia a urządzenia obsługujące transmisję (routery) zmniejszają wartość tego parametru. W przypadku osiągnięcia zera, usuwają pakiet z sieci. PROTOKÓŁ (8 bitów): Określa protokół wyższego poziomu, który został użyty do stworzenia treści pola danych pakietu. SUMA KONTROLNA NAGŁÓWKA (16 bitów): Zapewnia kontrolę poprawności nagłówka (przy obliczaniu tego pola przyjmuje się, że suma kontrolna nagłówka równa się zero). ADRES IP NADAWCY i ADRES IP ODBIORCY (po 32 bity): Omówione wcześniej adresy IP jednostki wysyłającej i odbierającej pakiet. Projektowanie i Realizacja Sieci Komputerowych 16

17 Podsieci (Subnets) Czasem wymagany jest podział sieci opartej o adresy klasy A, B lub C na kilka mniejszych (lepsze gospodarowanie dostępną pulą adresów). Podsieć wydzielana jest poprzez zapożyczenie bitów z części hosta adresu IP. Minimalna ilość pożyczanych bitów: 2 Maksymalna ilość pożyczonych bitów: 2 bity muszą zostać na część hosta. Projektowanie i Realizacja Sieci Komputerowych 17

18 Maska podsieci Określa jaka część adresu IP jest częścią sieci a jaka częścią hosta. Jest 32-bitową liczą, w której bity 1 oznaczają część sieci a bity 0 część hosta. Zapisywana przeważnie zgodnie z notacją a.b.c.d gdzie a, b, c, d liczby całkowite z przedziału <0; 255>. Projektowanie i Realizacja Sieci Komputerowych 18

19 Maska podsieci Projektowanie i Realizacja Sieci Komputerowych 19

20 Maska podsieci Projektowanie i Realizacja Sieci Komputerowych 20

21 Metody przyznawania adresów IP Statyczne. Dynamiczne: RARP (Reverse address resolution protocol) BOOTP (BOOTstrap protocol) DHCP (Dynamic host configuration protocol) Projektowanie i Realizacja Sieci Komputerowych 21

22 RARP (Reverse address resolution protocol) Ustalanie własnego adresu IP (maszyny bezdyskowe). Etapy uzyskiwania adresu IP: Wysłanie zapytania RARP do serwera. Pakiet IP z zapytaniem wysyłany jest na adres Wyszukanie w bazie serwera adresu IP dla danego adresu MAC. Jeśli w sieci jest więcej niż jeden serwer RARP może przyjść kilka odpowiedzi. Wysłanie odpowiedzi na adres MAC nadawcy. Jeśli nadawca nie otrzyma odpowiedzi po upływie określonego czasu wysyła ponowne zapytania. Projektowanie i Realizacja Sieci Komputerowych 22

23 RARP (Reverse address resolution protocol) Komunikat RARP jest umieszczany w części pakietu przeznaczonej na dane. MAC celu MAC źródła IP celu IP źródła Komunikat RARP Gdy w sieci jest kilka serwerów RARP: Podział na serwer podstawowy i zapasowe. Brak odpowiedzi z serwerów zapasowych przy pierwszym zapytaniu. Opóźnianie odpowiedzi z serwerów zapasowych. Projektowanie i Realizacja Sieci Komputerowych 23

24 BOOTP (BOOTstrap Protocol) Protokół BOOTP jest protokołem warstwy aplikacji (używa UDP oraz IP). Przy wysyłania pakietów wykorzystywany jest adres rozgłaszania Ponieważ BOOTP używa protokołu UDP należało: Wprowadzić wymóg używania w UDP sumy kontrolnej. Nie fragmentować pakietów IP (ponieważ nie wszystkie jednostki mają odpowiednią ilość pamięci aby przechowywać części pakietów). Umożliwić odbieranie wielu odpowiedzi z wielu serwerów (przetwarzana jest oczywiście tylko pierwsza!). Zaimplementować obsługę retransmisji zapytania po upływie określonego czasu: Aby unikną równoczesnych transmisji losuje się czas oczekiwania (0 4s). Aby dodatkowo nie obciążać sieci podwaja się czas oczekiwania po każdej nie udanej retransmisji (po osiągnięciu 60s wracamy do przedziału 0 4s). Brak dynamicznej konfiguracji węzła (plik konfiguracyjny serwera BOOTP zawiera wszystkie potrzebne informacje dla każdego węzła w sieci). W przypadku, gdy następują częste zmiany sieci oraz gdy liczba jednostek przekracza dostępną pulę adresów IP statyczny system stosowany w BOOTP po prostu się nie sprawdza. Projektowanie i Realizacja Sieci Komputerowych 24

25 DHCP (Dynamic host configuration protocol) Jest kompatybilny z BOOTP (serwer DHCP może odpowiadać na komunikaty BOOTP). DHCP obsługuje trzy metody przyznawania adresów: Statyczne (ręczne tworzenie pliku konfiguracyjnego). Automatyczne przyznawanie stałego adresu dla jednostki włączającej się po raz pierwszy do sieci (dynamiczne bez ograniczeń). Automatyczne przyznawanie adresu na określony czas (dynamiczne na czas). Jednostki są identyfikowane przez serwer po identyfikatorze, którym przeważnie jest ich adres sprzętowy. Sposób obsługi jednostki zależy od konfiguracji serwera. Projektowanie i Realizacja Sieci Komputerowych 25

26 DHCP (Dynamic host configuration protocol) Dynamiczne przyznawanie adresów, a więc możliwość obsługi dowolnego węzła, daje możliwość budowania samokonfigurujących się sieci. Rola administratora przy konfiguracji serwera DHCP: Wyznaczanie puli adresów, z której może korzystać serwer; Określenie reguł, którymi posługuje się serwer przy przyznawaniu adresów; Czas, na który serwer przyznaje adres (dla szybko zmieniających się stanów sieci krótki). Projektowanie i Realizacja Sieci Komputerowych 26

27 DHCP Procedura uzyskania adresu 1. Klient startuje (stan INICJALIZUJ); 2. Klient wysyła komunikat DHCPDISCOVER (port 67, UDP); 3. Klient przechodzi w stan WYBIERZ; 4. Serwer wysyła DHCPOFFER; 5. Klient zbiera komunikaty DHCPOFFER; 6. Klient wybiera jedną z odebranych ofert (przeważnie pierwszą, jaką otrzymał); 7. Klient negocjuje w sprawie wynajęcia komunikat DHCPREQUEST; 8. Klient przechodzi w tan PROŚBA; 9. Serwer potwierdza rozpoczęcie wynajmu adresu wysyła DHCPACK; 10. Klient po odebraniu tego potwierdzenia przechodzi w stan POWIĄZANIE. Projektowanie i Realizacja Sieci Komputerowych 27

28 DHCP Zakończenie wynajmu adresu 1. Klient wysyła komunikat DHCPRELEASE; 2. Przejście w stan INICJALIZUJ. Projektowanie i Realizacja Sieci Komputerowych 28

29 DHCP Odnowienie wynajmu adresu Będąc w stanie POWIĄZANIE klient ustawia trzy zegary: Czas odnowienia: 1. Klient wysyła do serwera komunikat DHCPREQUEST; 2. Klient przechodzi w stan ODNÓW; 3. Jeśli serwer zaakceptuje prośbę klienta wysyła komunikat DHCPACK, a klient po jego odebraniu przechodzi w stan POWIĄZANIE; 4. Jeśli serwer odrzuci prośbę klienta wysyła komunikat DHCPNACK, a klient po jego odebraniu przechodzi w stan INICJALIZUJ; Czas przewiązania: 1. Klient przechodzi ze stanu ODNÓW do stanu PRZEWIĄŻ; 2. Klient wysyła komunikat DHCPREQUEST do serwerów DHCP; 3. Jeśli serwer zaakceptuje prośbę klienta wysyła komunikat DHCPACK, a klient po jego odebraniu przechodzi w stan POWIĄZANIE; 4. Jeśli serwer odrzuci prośbę klienta wysyła komunikat DHCPNACK, a klient po jego odebraniu przechodzi w stan INICJALIZUJ; Czas zakończenia: 1. Klient wysyła komunikat DHCPRELEASE; 2. Przejście w stan INICJALIZUJ. Projektowanie i Realizacja Sieci Komputerowych 29

30 Metody ustalania adresu MAC Protokół ARP (Address Resolution Protocol) umożliwia ustalenie, na podstawie adresu logicznego IP, adresu fizycznego MAC odbiorcy, do którego mają zostać przesłane informacje. Projektowanie i Realizacja Sieci Komputerowych 30

31 ARP (Address Resolution Protocol) Protokół ARP umożliwia jednostce nadawcy określenie adresu MAC odbiorcy znając jedynie jego adres IP. MAC celu MAC źródła IP celu IP źródła Komunikat ARP Etapy uzyskiwania adresu MAC: Wysłanie zapytania ARP. Ramka z zapytaniem wysyłana jest na adres rozgłoszeniowy FF.FF.FF.FF.FF.FF. Wysłanie odpowiedzi do nadawcy przez poszukiwaną jednostkę. Ramki odbierają wszystkie jednostki w sieci (rozgłoszenie) zaś na komunikat ARP odpowiada tylko jednostka o pasującym adresie IP. Aktualizacja tablicy ARP przez jednostkę która wysłała zapytanie ARP. Dzięki tablicy ARP jednostka nie musi przed wysłaniem każdej ramki wyznaczać ponownie adresu MAC. Projektowanie i Realizacja Sieci Komputerowych 31

32 ICMP (Internet Control Message Protocol) Protokół ICMP jest częścią protokołu IP i służy do przekazywania informacji o sytuacjach wyjątkowych. Powstał z myślą o udostępnieniu routerom mechanizmu powiadamiania węzłów o przyczynach problemów w dostarczeniu pakietów do celu. Jednak może być wykorzystany do komunikacji pomiędzy dwoma dowolnymi węzłami w sieci. Komunikaty ICMP są wysyłane do pierwotnego nadawcy, który musi otrzymaną wiadomość, zinterpretować i podjąć odpowiednie kroki w celu wyeliminowania błędów. Komunikat ICMP jest przesyłany przez sieć w części danych pakietu IP (mimo to nie jest on protokołem wyższego poziomu, lecz stanowi rozszerzenie protokołu IP). Komunikat o błędzie nie jest tworzony, jeśli błąd powstał przy przesyłaniu komunikatu ICMP. Projektowanie i Realizacja Sieci Komputerowych 32

33 Typy komunikatów Prośba o echo, Odbiorca nieosiągalny, Tłumienie nadawcy, Zmień trasowanie, Przekroczenie czasu, Inne kłopoty, Prośba o czas, Prośba o maskę adresową. Projektowanie i Realizacja Sieci Komputerowych 33

34 Budowa komunikatu ICMP Każdy komunikat ICMP ma swój własny format. Jednak istnieje kilka cech wspólnych. Pierwsze pola komunikatu są takie same: TYP (8 bitów) Identyfikator typu komunikatu; KOD (8 bitów) Dalsze informacje na temat rodzaju komunikatu; SUMA KONTROLNA odnosi się wyłącznie do komunikatu ICMP i jest obliczana wg tych samych reguł, co w przypadku IP. Projektowanie i Realizacja Sieci Komputerowych 34

35 Prośba o echo Pomyślna odpowiedź tzw. odpowiedź z echem oznacza, że komunikacja między węzłami funkcjonuje prawidłowo. TYP (8 lub 0) KOD SUMA KONTROLNA IDENTYFIKATOR NUMER KOLEJNY DANE... TYP: 8 prośba o echo, 0 odpowiedź z echem; IDENTYFIKATOR umożliwia powiązanie próśb i odpowiedzi przez nadawcę; NUMER KOLEJNY umożliwia powiązanie próśb i odpowiedzi przez nadawcę; DANE te same dane są w prośbie i odpowiedzi z echem. Projektowanie i Realizacja Sieci Komputerowych 35

36 Odbiorca nieosiągalny Wysyłane przez router, jeśli nie jest on w stanie nic dalej zrobić z pakietem (router wysyła komunikat ICMP i traci pakiet). TYP (3) KOD (0 12) SUMA KONTROLNA ZERO (nieużywane) Nagłówek oraz pierwsze 64 bity pakietu, który spowodował błąd.... Projektowanie i Realizacja Sieci Komputerowych 36

37 Tłumienie nadawcy Komunikat wysyłany przez router w celu powiadomienia nadawcy o zbyt dużym obciążeniu napływającymi pakietami. TYP (4) KOD (0) SUMA KONTROLNA ZERO (nieużywane) Nagłówek oraz pierwsze 64 bity pakietu, który spowodował błąd.... Projektowanie i Realizacja Sieci Komputerowych 37

38 Zmień trasowanie Komunikat przesyłany z routera do węzła znajdującego się w tej samej sieci i próbującego wysyłać pakiety przez powyższy router podczas gdy istnieje bardziej optymalna droga. TYP (5) KOD (0 3) SUMA KONTROLNA ADRES ROUTERA (zapewniającego bardziej optymalną obsługę) Nagłówek oraz pierwsze 64 bity pakietu, który spowodował błąd.... Projektowanie i Realizacja Sieci Komputerowych 38

39 Przekroczenie czasu Router porzuca pakiet, gdy licznik czasu jego życia został wyczerpany, oraz wysyła komunikat ICMP przekroczenie czasu (KOD 0). Ten sam komunikat jest wysyłany, gdy zostanie przekroczony czas na składanie fragmentów pakietu w węźle (KOD 1). TYP (11) KOD (0 1) SUMA KONTROLNA ZERO (nieużywane) Nagłówek oraz pierwsze 64 bity pakietu, który spowodował błąd.... Projektowanie i Realizacja Sieci Komputerowych 39

40 Inne kłopoty Komunikat inne kłopoty jest wysyłany przez router gdy stwierdzi np. błędy w nagłówku pakietu. TYP (12) KOD (0 1) SUMA KONTROLNA WSKAŹNIK ZERO (nieużywane) Nagłówek oraz pierwsze 64 bity pakietu, który spowodował błąd.... WSKAŹNIK wskaźnik do oktetu, który spowodował błąd (KOD 0). Jeśli brakuje jakiejś opcji pole WSKAŹNIK nie jest wypełniane tylko zwracany jest KOD 1. Projektowanie i Realizacja Sieci Komputerowych 40

41 Prośba o czas Komunikat prośba o czas umożliwia synchronizację zegarów i szacowanie czasu przesyłania pakietów. TYP (13 14) KOD (0) SUMA KONTROLNA IDENTYFIKATOR NUMER KOLEJNY CZAS POCZĄTKOWY (wypełnia pierwotny nadawca przed wysłaniem) CZAS OTRZYMANIA (wypełnia odbiorca tuż po otrzymaniu) CZAS ODESŁANIA (wypełnia odbiorca tuż przed wysłaniem odpowiedzi) Projektowanie i Realizacja Sieci Komputerowych 41

42 Prośba o maskę adresową Jednostka wysyła do routera to zapytanie, aby ustalić maskę podsieci. TYP (17 18) KOD (0) SUMA KONTROLNA IDENTYFIKATOR NUMER KOLEJNY MASKA ADRESOWA Projektowanie i Realizacja Sieci Komputerowych 42

43 Domyślna brama (default gateway) Jeśli komunikacja ma przebiegać pomiędzy jednostkami znajdującymi się w różnych sieciach należy podać adres IP bramy domyślnej (interfejsu routera). Protokół ARP umożliwia pozyskanie informacji o adresie MAC bramy. Wysyłany pakiet zawiera adres IP nadawcy, adres IP końcowego odbiorcy, ramka zaś adres MAC nadawcy oraz adres MAC bramy. Projektowanie i Realizacja Sieci Komputerowych 43

44 Routing Protokół routowalny: Protokół warstwy sieciowej dopuszczający kierowanie przepływem pakietów np. IP (Internet Protocol), IPX, AppleTalk. Protokół routingu: Protokół określający ścieżki, po których będą się poruszać pakiety protokołu routowalnego w drodze do jednostki docelowej np. RIP (Routing Information Protocol), IGRP (Interior Gateway Routing Protocol), EIGRP (Enhanced Interior Gateway Routing Protocol), OSPF (Open Shortest Path First). Routing wieloprotokołowy: Routery mogą obsługiwać wiele protokołów routingu oraz wiele protokołów routowalnych. Projektowanie i Realizacja Sieci Komputerowych 44

45 Adres sieciowy Adres sieciowy składa się z dwóch części: sieci: służy do identyfikacji sieci; hosta: służy do identyfikacji jednostki w danej sieci. Część sieciowa adresu wykorzystywana jest przez router do podjęcia decyzji o wyborze właściwej ścieżki. Spójny schemat adresowania (adresy IP obowiązujące w warstwie trzeciej modelu OSI) ułatwia znalezienie właściwej ścieżki do odbiorcy (bez korzystania z transmisji rozgłoszeniowej). Projektowanie i Realizacja Sieci Komputerowych 45

46 System autonomiczny Każdy zbiór sieci i routerów zarządzany przez jedno ciało jest uważany za pojedynczy system autonomiczny. W ramach systemu autonomicznego istnieje swobodny wybór wewnętrznej architektury wyznaczania tras. Do przekazywania informacji o osiągalności innym systemom wydelegowany jest jeden bądź kilka routerów. System autonomiczny System autonomiczny IGP EGP IGP Projektowanie i Realizacja Sieci Komputerowych 46

47 Routing statyczny Ręczne ustalanie tras przez administratora. Dobry w sieciach wolno zmieniających się. Przydatny ze względu na bezpieczeństwo możliwość ukrycia części sieci czyli decyzji, które informacje mają być rozgłaszane. Przydatny gdy przy dostępie do sieci wykorzystywana jest tylko jedna ścieżka. Brak odporności na błędy (utrudnione korzystanie ze ścieżek alternatywnych). Zupełnie nie zdaje egzaminu w rozbudowanych szybko zmieniających się sieciach. Projektowanie i Realizacja Sieci Komputerowych 47

48 Routing dynamiczny Administrator ustala konfigurację inicjującą routing dynamiczny. Informacje o trasach są wymieniane pomiędzy urządzeniami, które automatycznie dokonują zmian w swoich tablicach routingu. Następuje automatyczne dostosowywanie się do zmian w topologii sieci. Projektowanie i Realizacja Sieci Komputerowych 48

49 Tablica routingu Przykładowa tablica routingu: Cel Następny router Odległość Liczniki czasowe Flagi Sieć A Router 1 3 t1, t2, t3 x, y Sieć B Router 2 5 t1, t2, t3 x, y Projektowanie i Realizacja Sieci Komputerowych 49

50 Trasa domyślna Trasą domyślną są wysyłane pakiety dla których kolejny skok nie jest znany (brak wpisu w tablicy routingu). Trasa domyślna jest definiowana na sztywno (statycznie) przez administratora. Projektowanie i Realizacja Sieci Komputerowych 50

51 Metryki Metryki umożliwiają określanie najlepszej ścieżki do sieci tylko routing dynamiczny. Tablica routingu powinna zawierać najlepsze informacje, stąd każda ścieżka ma swoją metrykę określającą jej dobroć. Generalnie im metryka mniejsza tym ścieżka lepsza. Do wyznaczenia metryki można używać kilku cech charakterystycznych dla ścieżek: Długość ścieżki (liczba skoków) liczba routerów które musi przebyć pakiet w drodze do sieci docelowej; Niezawodność stopa błędu łącza w sieci; Opóźnienie czas potrzebny do przesłania pakietu od nadawcy do odbiorcy; Pasmo (przepustowość) szerokość łącza; Obciążenie obciążenie danej ścieżki (łącza, routerów); Koszt transportu wartość przypisywana przez administratora określająca koszt przesłania danych. Projektowanie i Realizacja Sieci Komputerowych 51

52 Cele protokołów routingu Prostota. Małe obciążenie sieci (dodatkowym ruchem). Odporność na zakłócenia, stabilność. Szybka zbieżność (stan, w którym wszystkie routery wykorzystują te same informacje o stanie sieci). Elastyczność, adaptacyjność do zmiennych warunków sieci. Projektowanie i Realizacja Sieci Komputerowych 52

53 Algorytmy routingu Wektor odległości (distnace vector) (algorytm Bellmana-Forda): Określa kierunek i odległość do danej sieci. Stan łącza (link state): Metoda najkrótszej ścieżki router tworzy i przechowuje bazy danych dotyczących topologii partycji sieci, w której się znajduje (zna wszystkie routery pośrednie w drodze do celu). Hybrydowy: Stanowi połączenia algorytmu wektor odległości oraz stan łącza. Projektowanie i Realizacja Sieci Komputerowych 53

54 Wektor odległości (distance vector) Routery wysyłają własne tablice routingu do sąsiadów, a ci na podstawie otrzymanych informacji dokonują aktualizacji swoich tablic routingu. Każda sieć w tablicy routingu ma wektor zakumulowanej odległości, który mówi jak daleko jest w danym kierunku do wybranej sieci. Jeśli sieć jest bezpośrednio przyłączona do routera to odległość wynosi 0. Zmiana konfiguracji sieci pociąga za sobą konieczność uaktualnienia tablic routingu, postępując krok po kroku od routera do routera. Projektowanie i Realizacja Sieci Komputerowych 54

55 Wektor odległości (distance vector) Problemy: Pętle routingu: Pojawiają się, gdy zbieżność protokołu routingu jest zbyt wolna. Liczenie do nieskończoności: występuje na skutek pojawienia się pętli routingu. Każde przejście pakietu przez kolejny router powoduje zwiększenie wektora odległości. Jeśli sieć docelowa jest niedostępna i pojawiła się pętla routingu, pakiet może krążyć w sieci w nieskończoność a wartość wektora odległości będzie rosła do nieskończoności. Rozwiązania: Maksymalna liczba skoków (metryka): Po osiągnięciu tej wartości sieć docelowa uważana jest za niedostępną. Podzielony horyzont (split horizon): Informacje o trasie nie są wysyłane z powrotem do miejsca, z którego one pochodzą. Liczniki wstrzymania: Gdy przybędzie informacja o niedostępności sieci uruchamiany jest licznik wstrzymania. Po upływie czasu wstrzymania sieć oznaczana jest jako niedostępna. Jeśli przed upływem czasu router otrzyma lepszą ofertę licznik wstrzymania jest usuwany i nowa ścieżka jest zapamiętywana. Jeśli otrzymana oferta będzie gorsza od istniejącej nic się nie dzieje. Projektowanie i Realizacja Sieci Komputerowych 55

56 Stan łącza (link state) Metoda najkrótszej ścieżki router tworzy i przechowuje bazy danych dotyczących topologii partycji sieci, w której się znajduje (zna wszystkie routery pośrednie w drodze do celu). Routing stanu łącza korzysta z: Ogłoszeń stanu łącza LSA (Link State Advertisement); Topologicznej bazy danych; Algorytmu najkrótszej ścieżki - SPF (Shortest Path First); Drzewa SPF; Tablicy routingu ścieżek i portów prowadzących do sieci docelowych. Projektowanie i Realizacja Sieci Komputerowych 56

57 Stan łącza (link state) Problemy: Przetwarzanie: Modyfikowanie tablicy routingu, wykorzystując protokół stanu łącza, wymaga dość skomplikowanych obliczeń. Zapotrzebowanie na pamięć: Przechowywanie wszystkich informacji potrzebnych do tworzenia tablicy routingu wymaga dużej ilości pamięci. Zapotrzebowanie na pasmo: Pierwotna operacja odkrywania struktury sieci wymaga wysłania dużej ilości pakietów LSA, co może obciążyć łącza sieci. W stanie zbieżności pakietów jest znacznie mniej. Uaktualnianie stanu łącza: Aby routing działał prawidłowo (generacja prawidłowych tras) wszystkie routery muszą otrzymywać niezbędne (w prawidłowej kolejności) pakiety LSA. Rozwiązanie: Mechanizm stanu łącza: Zmniejszenie liczby wysyłanych pakietów w stanie zbieżności. Uaktualnienia mogą być wysyłane do grup. W grupie znajduje się jeden przedstawiciel, który przechowuje spójne dane o topologii sieci. Wprowadzenie struktury hierarchicznej routerów (w dużych sieciach). Wprowadzenie mechanizmów koordynacji uaktualnień: znaczniki czasu, mechanizmy starzenia i inne. Projektowanie i Realizacja Sieci Komputerowych 57

58 Hybrydowy Stanowi połączenia algorytmu wektor odległości oraz stan łącza. Do wyznaczenia najlepszej trasy wykorzystywany jest algorytm wektor-odległość, jednak uaktualnienia tabeli routingu następuje dopiero w wyniku zmiany konfiguracji sieci. Projektowanie i Realizacja Sieci Komputerowych 58

59 Protokół RIP (Routing Information Protocol) RIP został opracowany przez firmę Xerox Network Systems. Swoją dużą popularność zawdzięcza programowi (demonowi Unix owemu) routed opracowanemu w University of California w Berkeley. Ponieważ routed wchodzi w skład wielu systemów Unix owych, stał się w sposób naturalny najczęściej stosowanym programem tego typu. Główne zadania realizowane przez routed: Zapewnienie niesprzeczności informacji o trasach oraz informacji o osiągalności między jednostkami; Zapewnienie szybkiego rozgłaszania informacji o stanie i konfiguracji sieci. Projektowanie i Realizacja Sieci Komputerowych 59

60 Protokół RIP (Routing Information Protocol) Protokół RIP jest implementacją algorytmu wyznaczania tras wektor-odległość. Jednostki uczestniczące w procesie podzielone są na dwie grupy: Czynne: Jednostki oferujące informacje o trasach innym jednostkom (są to wyłącznie routery). Rozgłaszanie odbywa się co 30 sekund; Bierne: Jednostki nasłuchujące informacji od jednostek czynnych, same niczego nie oferują. Zarówno jednostki czynne jak i bierne odbierają rozgłaszane komunikaty i modyfikują własne tabele tras (algorytm wektor-odległość). Projektowanie i Realizacja Sieci Komputerowych 60

61 Protokół RIP (Routing Information Protocol) Rozgłaszane komunikaty zawierają pary: adres sieci i odległość do tej sieci. Odległość w protokole RIP określa się używając liczby etapów, która oznacza liczbę routerów, przez które musi przejść pakiet, aby dotarł do omawianej podsieci (łatwo się domyśleć, że minimalna liczba routerów nie oznacza optymalnej, najszybszej drogi do celu). W przypadku dużej ilości wymienianych informacji mogłaby zaistnieć sytuacja częstych zmian tras, dlatego trasy modyfikowane są tylko wtedy, gdy jednostka uzyska lepszą ofertę. Projektowanie i Realizacja Sieci Komputerowych 61

62 Protokół RIP (Routing Information Protocol) Stosowane liczniki czasowe: routing update timer (30 sekund): Częstotliwość rozsyłania informacji o routingu; route invalid timer (90 sekund): Czas po upływie, którego możemy przypuszczać, że trasa jest nieaktualna jeśli jednostka nie otrzyma ponowienia jej oferty; route flush timer (270 sekund): Czas po upływie, którego nastąpi wykasowanie informacji o trasie jeśli jednostka nie otrzyma ponowienia jej oferty. Projektowanie i Realizacja Sieci Komputerowych 62

63 Protokół RIP (Routing Information Protocol) Trzy główne problemy, z jakimi można się spotkać korzystając z protokołu RIP: Brak automatycznego wykrywania zapętleń w trasowaniu; Ograniczenie maksymalnej liczby etapów, jakie przebywa komunikat do 16 w celu uniknięcia niestabilności; Powolna zbieżność lub naliczanie do nieskończoności (dzięki ograniczeniu ilości etapów do 16 częściowo rozwiązano ten problem). Projektowanie i Realizacja Sieci Komputerowych 63

64 Protokół RIP (Routing Information Protocol) Format komunikatów. Wyróżniamy dwa główne typy komunikatów (ich struktura jest dokładnie taka sama): Komunikaty z informacjami o trasach; Komunikaty z prośbami o informacje. Typ pola Długość pola Funkcja A 1 bajt KOMENDA zapytanie lub odpowiedź o część lub całą tablicę routingu. B 1 bajt NUMER WERSJI RIP C 2 bajty POLE ZEROWE D 2 bajty IDENTYFIKATOR SIECI dla IP przyjmuje wartość 2. C 2 bajty POLE ZEROWE E 4 bajty ADRES IP SIECI DOCELOWEJ C 4 bajty POLE ZEROWE C 4 bajty POLE ZEROWE F 4 bajty METRYKA liczba routerów na drodze do celu. Uwaga: Pozycje od D do F mogą się powtórzyć do 25 razy. Projektowanie i Realizacja Sieci Komputerowych 64

65 Protokół OSPF (Open Shortest Path First) Protokół OSPF jest oparty na algorytmie stanu łącza, został opracowany w grupie roboczej Internet Engineering Task Force. Jak sama nazwa wskazuje protokół ten ma charakter otwarty tzn. każdy użytkownik ma dostęp do pełnej dokumentacji oraz może go implementować we własnych rozwiązaniach bez wnoszenia jakichkolwiek opłat licencyjnych. Jest to jeden z nielicznych protokołów, które wykorzystują trasowanie zależne od typu obsługi. Można zdefiniować wiele tras prowadzących do tego samego celu. Wybór pomiędzy nimi będzie zależał od pola typ obsługi w nagłówku pakietu IP. Jest to jeden z nielicznych protokołów, które wykorzystują mechanizm równomiernego obciążenia. Jeśli istnieje kilka tras o tym samym koszcie to ruch zostanie rozłożony równomiernie pomiędzy nimi. Projektowanie i Realizacja Sieci Komputerowych 65

66 Protokół OSPF (Open Shortest Path First) Umożliwia podział zasobów sieci na niezależne obszary. Dzięki temu wiele grup może brać razem udział przy wyznaczaniu tras. Grupy mogą wewnętrznie dokonywać zmian topologii bez informowania innych. Umożliwia wybranie jednego routera zwanego wyróżnionym routerem, który odpowiedzialny jest wysyłanie komunikatów o wszystkich łączach i routerach w sieci za którą jest odpowiedzialny. Umożliwia wymianę informacji, które przybyły z innych ośrodków (zewnętrznych). Format komunikatów pozwala odróżnić informacje otrzymane z zewnętrznych obszarów od tych wewnętrznych. Przy wymianie informacji o routingu między urządzeniami wymagane jest uwierzytelnianie. Projektowanie i Realizacja Sieci Komputerowych 66

67 Warstwa transportowa warstwa 4 application layer warstwa aplikacji presentation layer warstwa prezentacji session layer warstwa sesji transport layer warstwa transportowa network layer warstwa sieciowa data link layer warstwa łącza danych physical layer warstwa fizyczna Najważniejsza zadania warstwy transportowej: Transport i regulacja przepływu informacji pomiędzy nadawcą i odbiorcą. Niezawodny i przezroczysty transfer danych między punktami końcowymi (hostami). Kontrola transmisji oraz wykrywanie błędów transmisji. Jednostką informacji na poziomie warstwy transportowej jest segment. Niezawodność połączenia w warstwie transportowej realizuje się wyłącznie środkami programowymi. Projektowanie i Realizacja Sieci Komputerowych 67

68 Warstwa transportowa Rodzina protokołów TCP/IP zawiera dwa protokoły warstwy transportowej: TCP (Transmission Control Protocol) UDP (User Datagram Protocol) Warstwa sieciowa: dostarczenie danych Warstwa transportowa: kontrola poprawności danych Projektowanie i Realizacja Sieci Komputerowych 68

69 TCP - własności usługi niezawodnego dostarczania danych Przesyłanie strumieni (przekazanie odbiorcy tego samego ciągu oktetów, który wysłał nadawca). Łączenie w obwód wirtualny (tworzenie wirtualnego połączenia między nadawcą i odbiorcą w celu ustalenia gotowości obu jednostek a później w celu wykrywania błędów transmisji). Przesyłanie z użyciem buforów (oczekiwanie i wysyłanie większej ilości danych tak, aby ograniczyć zbędny ruch w sieci mechanizm wypchnięcia, gdy dane należy wysłać natychmiast). Brak strukturyzacji strumienia (brak rozróżniania rodzaju przesyłanych danych użytkownika). Połączenie w pełni dwukierunkowe. Projektowanie i Realizacja Sieci Komputerowych 69

70 Segment TCP Nagłówek Dane a.) postać ogólna PORT NADAWCY PORT ODBIORCY NUMER PORZĄDKOWY NUMER POTWIERDZENIA DŁ. NAG. ZAREZERWOWANE BITY KODU OKNO SUMA KONTROLNA WSKAŹNIK PILNYCH DANYCH OPCJE UZUPEŁNIENIE b.) postać szczegółowa nagłówka Projektowanie i Realizacja Sieci Komputerowych 70

71 Segment TCP W TCP informacje między jednostkami są wymieniane w postaci segmentów TCP. Dotyczy to zarówno danych jak i procesów otwierania czy zamykania połączenia. PORT NADAWCY i PORT ODBIORCY (16 bitów): Porty TCP określające programy wymieniające między sobą dane. NUMER PORZĄDKOWY (32 bity): Liczba porządkowa pozwalająca odtworzyć właściwą kolejność segmentów. NUMER POTWIERDZENIA (32 bity): Określa numer oktetu, który nadawca spodziewa się otrzymać w następnej kolejności. DŁUGOŚĆ NAGŁÓWKA (4 bity): Określa rozmiar nagłówka segmentu jako wielokrotność 32 bitów. ZAREZERWOWANE (6 bitów): Przeznaczone do ewentualnego wykorzystania w przyszłości. Projektowanie i Realizacja Sieci Komputerowych 71

72 Segment TCP BITY KODU (6 bitów): Określają przeznaczenie zawartości segmentu: Bity pola BITY KODU opisane od lewej do prawej: URG Wskaźnik pilności jest istotny; ACK Pole potwierdzenia jest istotne; PSH Ten segment zawiera prośbę o natychmiastowe wysłanie; RST Skasuj połączenie; SYN Zsynchronizuj numery porządkowe; FIN Koniec strumienia bajtów u nadawcy. OKNO (16 bit): Liczba oktetów którą może nadać nadawca bez potwierdzenia (16- bitowa liczba całkowita); SUMA KONTROLNA (16 bit): Służy do kontroli poprawności transmisji danych i nagłówka (16 bitów). Do jej obliczenia także stosuje się pseudonagłówek. WSKAŹNIK PILNYCH DANYCH (16 bit): Oznacza miejsce w segmencie gdzie kończą się pilne dane. Pilne dane powinny zostać dostarczone do programu po stronie odbiorcy poza strumieniem tak szybko jak to jest tylko możliwe. OPCJE: Jedna z opcji służy do ustalenia maksymalnego rozmiaru segmentu. Rozmiar segmentu zależy od: buforów jednostki nadawcy i odbiorcy; rodzaju sieci przez, którą będzie podróżował segment. Projektowanie i Realizacja Sieci Komputerowych 72

73 TCP - Nawiązywanie połączenie między punktami końcowymi Oba punkty końcowe muszą zgodzić się na współpracę. Jeden z punktów wykonuje funkcję pasywnego otwarcia (sygnalizując gotowość do nawiązania połączenia). Drugi używa funkcji aktywnego otwarcia aby ustalić połączenie. Nawiązanie połączenia TCP: Węzeł 1: Wysyła segment, w którym pole kodu ma ustawiony bit SYN; Węzeł 2: Wysyła segment, w którym pole kodu ma ustawione bity SYN i ACK; Węzeł 1: Wysyła segment, w którym pole kodu ma ustawiony bit ACK. Zamykanie połączenia: Węzeł 1: Wysyła segment, w którym pole kodu ma ustawiony bit FIN; Węzeł 2: Wysyła segment, w którym pole kodu ma ustawiony bit ACK; Węzeł 2: Wysyła segment, w którym pole kodu ma ustawione bity FIN i ACK; Węzeł 1: Wysyła segment, w którym pole kodu ma ustawiony bit ACK. Projektowanie i Realizacja Sieci Komputerowych 73

74 TCP - Realizacja niezawodnego połączenie Metoda Pozytywne potwierdzanie z retransmisją : Nadawca zapisuje informacje o każdym wysłanym pakiecie (uruchamia także licznik czasowy) i przed wysłaniem następnego pakietu czeka na potwierdzenie (komunikat ACK). Wykrywanie duplikatów: Każdy pakiet ma przydzielany numer identyfikacyjny, który musi być odesłany przez odbiorcę (potwierdzenie otrzymania pakietu). Technika Przesuwających się okien : Umożliwia przesyłanie wielu pakietów zanim nadawca otrzyma potwierdzenie. Technika Zmiennych rozmiarów okien : Nadawca i odbiorca ustalają w czasie transmisji rozmiar okna, dzięki temu można płynnie regulować generowany ruch. Uwaga: W TCP mechanizm okien działa na poziomie oktetów a nie segmentów. Projektowanie i Realizacja Sieci Komputerowych 74

75 TCP Identyfikacja jednostek Protokół TCP jest zorientowany na połączenie, które musi nastąpić pomiędzy dwoma jednostkami końcowymi przed rozpoczęciem transmisji. Każdy punkt końcowy jest identyfikowany przez adres IP i port węzła np.: :80 Ten zapis oznacza port 80 węzła o adresie IP Uwaga: Połączenie identyfikowane jest przez parę punktów końcowych stąd np. punkt :80 może występować w dwóch różnych połączeniach. Projektowanie i Realizacja Sieci Komputerowych 75

76 UDP - Właściwości Minimalna, dodatkowa ilość przesyłanych danych przez sieć (małe obciążenie). Programy użytkowe biorą na siebie całą odpowiedzialność za rozwiązywanie problemów niezawodności, czyli: gubienie komunikatów; duplikowanie; opóźnienia; dostarczanie w niewłaściwej kolejności; utratę łączności z adresatem. Projektowanie i Realizacja Sieci Komputerowych 76

77 Segment UDP Port UDP nadawcy Długość komunikatu UDP DANE... Port UDP odbiorcy Suma kontrolna UDP PORTY (16 bitów): Używane do odnajdywania procesu oczekującego na dany segment. DŁUGOŚĆ (16 bitów): Liczba oktetów segmentu UDP (min. 8). SUMA KONTROLNA (16 bitów): (może być zero, gdy nie używana). W celu obliczenia sumy kontrolnej stosuje się pseudonagłówek. Projektowanie i Realizacja Sieci Komputerowych 77

78 UDP - Problemy Uwaga: Aplikacje wykorzystujące UDP, napisane bez obsługi błędów transmisji, ale testowane w środowisku sieci lokalnej, mogą działać bardzo dobrze, podczas gdy w sieci rozległej praktycznie przestaną funkcjonować. Projektowanie i Realizacja Sieci Komputerowych 78

79 Numery portów TCP i UDP korzystają z numerów portów by dostarczyć dane do wyższych warstw modelu. Programiści używają numerów portów zgodnie z dokumentem RFC Podział: Porty poniżej 255 dla publicznych aplikacji Porty od 255 do 1023 dla firm i ich komercyjnych aplikacji Porty powyżej 1023 niezarezerwowane Projektowanie i Realizacja Sieci Komputerowych 79

80 Najpopularniejsze numery portów Numer portu Usługa 7 ECHO 13 DAYTIME 20 FTP-DATA 21 FTP 23 TELNET 25 SMTP 37 TIME 42 NAMESERVER 53 DOMAIN 69 TFTP 113 AUTH 161 SNMP 162 SNMP-TRAP Projektowanie i Realizacja Sieci Komputerowych 80

81 Projektowanie i Realizacja Sieci Komputerowych Wykład 8 i 9 KONIEC Projektowanie i Realizacja Sieci Komputerowych 81

Sieci komputerowe W4. Warstwa sieciowa Modelu OSI

Sieci komputerowe W4. Warstwa sieciowa Modelu OSI Sieci komputerowe W4 Warstwa sieciowa Modelu OSI 1 Warstwa sieciowa Odpowiada za transmisję bloków informacji poprzez sieć. Podstawową jednostką informacji w warstwie sieci jest pakiet. Określa, jaką drogą

Bardziej szczegółowo

ZiMSK. Routing dynamiczny 1

ZiMSK. Routing dynamiczny 1 ZiMSK dr inż. Łukasz Sturgulewski, luk@kis.p.lodz.pl, http://luk.kis.p.lodz.pl/ dr inż. Artur Sierszeń, asiersz@kis.p.lodz.pl dr inż. Andrzej Frączyk, a.fraczyk@kis.p.lodz.pl Routing dynamiczny 1 Wykład

Bardziej szczegółowo

Sieci komputerowe Zjazd 3

Sieci komputerowe Zjazd 3 Sieci komputerowe Zjazd 3 Warstwa sieciowa Modelu OSI Dr inż. Robert Banasiak Sieci Komputerowe 2011/2012 Studia niestacjonarne 1 Warstwa sieciowa Odpowiada za transmisję bloków informacji poprzez sieć.

Bardziej szczegółowo

Enkapsulacja RARP DANE TYP PREAMBUŁA SFD ADRES DOCELOWY ADRES ŹRÓDŁOWY TYP SUMA KONTROLNA 2 B 2 B 1 B 1 B 2 B N B N B N B N B Typ: 0x0835 Ramka RARP T

Enkapsulacja RARP DANE TYP PREAMBUŁA SFD ADRES DOCELOWY ADRES ŹRÓDŁOWY TYP SUMA KONTROLNA 2 B 2 B 1 B 1 B 2 B N B N B N B N B Typ: 0x0835 Ramka RARP T Skąd dostać adres? Metody uzyskiwania adresów IP Część sieciowa Jeśli nie jesteśmy dołączeni do Internetu wyssany z palca. W przeciwnym przypadku numer sieci dostajemy od NIC organizacji międzynarodowej

Bardziej szczegółowo

Skąd dostać adres? Metody uzyskiwania adresów IP. Statycznie RARP. Część sieciowa. Część hosta

Skąd dostać adres? Metody uzyskiwania adresów IP. Statycznie RARP. Część sieciowa. Część hosta Sieci komputerowe 1 Sieci komputerowe 2 Skąd dostać adres? Metody uzyskiwania adresów IP Część sieciowa Jeśli nie jesteśmy dołączeni do Internetu wyssany z palca. W przeciwnym przypadku numer sieci dostajemy

Bardziej szczegółowo

ZiMSK dr inż. Łukasz Sturgulewski, luk@kis.p.lodz.pl, http://luk.kis.p.lodz.pl/ DHCP

ZiMSK dr inż. Łukasz Sturgulewski, luk@kis.p.lodz.pl, http://luk.kis.p.lodz.pl/ DHCP ZiMSK dr inż. Łukasz Sturgulewski, luk@kis.p.lodz.pl, http://luk.kis.p.lodz.pl/ dr inż. Artur Sierszeń, asiersz@kis.p.lodz.pl dr inż. Andrzej Frączyk, a.fraczyk@kis.p.lodz.pl DHCP 1 Wykład Dynamiczna konfiguracja

Bardziej szczegółowo

Podstawy Transmisji Danych. Wykład IV. Protokół IPV4. Sieci WAN to połączenia pomiędzy sieciami LAN

Podstawy Transmisji Danych. Wykład IV. Protokół IPV4. Sieci WAN to połączenia pomiędzy sieciami LAN Podstawy Transmisji Danych Wykład IV Protokół IPV4 Sieci WAN to połączenia pomiędzy sieciami LAN 1 IPv4/IPv6 TCP (Transmission Control Protocol) IP (Internet Protocol) ICMP (Internet Control Message Protocol)

Bardziej szczegółowo

MODEL WARSTWOWY PROTOKOŁY TCP/IP

MODEL WARSTWOWY PROTOKOŁY TCP/IP MODEL WARSTWOWY PROTOKOŁY TCP/IP TCP/IP (ang. Transmission Control Protocol/Internet Protocol) protokół kontroli transmisji. Pakiet najbardziej rozpowszechnionych protokołów komunikacyjnych współczesnych

Bardziej szczegółowo

Protokoły sieciowe - TCP/IP

Protokoły sieciowe - TCP/IP Protokoły sieciowe Protokoły sieciowe - TCP/IP TCP/IP TCP/IP (Transmission Control Protocol / Internet Protocol) działa na sprzęcie rożnych producentów może współpracować z rożnymi protokołami warstwy

Bardziej szczegółowo

Algorytmy routingu. Kontynuacja wykładu

Algorytmy routingu. Kontynuacja wykładu Algorytmy routingu Kontynuacja wykładu Algorytmy routingu Wektor odległości (distnace vector) (algorytm Bellmana-Forda): Określa kierunek i odległość do danej sieci. Stan łącza (link state): Metoda najkrótszej

Bardziej szczegółowo

Sieci komputerowe Warstwa transportowa

Sieci komputerowe Warstwa transportowa Sieci komputerowe Warstwa transportowa 2012-05-24 Sieci komputerowe Warstwa transportowa dr inż. Maciej Piechowiak 1 Wprowadzenie umożliwia jednoczesną komunikację poprzez sieć wielu aplikacjom uruchomionym

Bardziej szczegółowo

TCP/IP formaty ramek, datagramów, pakietów...

TCP/IP formaty ramek, datagramów, pakietów... SIECI KOMPUTEROWE DATAGRAM IP Protokół IP jest przeznaczony do sieci z komutacją pakietów. Pakiet jest nazywany przez IP datagramem. Każdy datagram jest podstawową, samodzielną jednostką przesyłaną w sieci

Bardziej szczegółowo

Sieci komputerowe. Zajęcia 3 c.d. Warstwa transportu, protokoły UDP, ICMP

Sieci komputerowe. Zajęcia 3 c.d. Warstwa transportu, protokoły UDP, ICMP Sieci komputerowe Zajęcia 3 c.d. Warstwa transportu, protokoły UDP, ICMP Zadania warstwy transportu Zapewnienie niezawodności Dostarczanie danych do odpowiedniej aplikacji w warstwie aplikacji (multipleksacja)

Bardziej szczegółowo

Plan wykładu. Warstwa sieci. Po co adresacja w warstwie sieci? Warstwa sieci

Plan wykładu. Warstwa sieci. Po co adresacja w warstwie sieci? Warstwa sieci Sieci komputerowe 1 Sieci komputerowe 2 Plan wykładu Warstwa sieci Miejsce w modelu OSI/ISO unkcje warstwy sieciowej Adresacja w warstwie sieciowej Protokół IP Protokół ARP Protokoły RARP, BOOTP, DHCP

Bardziej szczegółowo

Stos protokołów TCP/IP (ang. Transmission Control Protocol/Internet Protocol)

Stos protokołów TCP/IP (ang. Transmission Control Protocol/Internet Protocol) Stos protokołów TCP/IP (ang. Transmission Control Protocol/Internet Protocol) W latach 1973-78 Agencja DARPA i Stanford University opracowały dwa wzajemnie uzupełniające się protokoły: połączeniowy TCP

Bardziej szczegółowo

Przesyłania danych przez protokół TCP/IP

Przesyłania danych przez protokół TCP/IP Przesyłania danych przez protokół TCP/IP PAKIETY Protokół TCP/IP transmituje dane przez sieć, dzieląc je na mniejsze porcje, zwane pakietami. Pakiety są często określane różnymi terminami, w zależności

Bardziej szczegółowo

ZiMSK. Routing statyczny, ICMP 1

ZiMSK. Routing statyczny, ICMP 1 ZiMSK dr inż. Łukasz Sturgulewski, luk@kis.p.lodz.pl, http://luk.kis.p.lodz.pl/ dr inż. Artur Sierszeń, asiersz@kis.p.lodz.pl dr inż. Andrzej Frączyk, a.fraczyk@kis.p.lodz.pl Routing statyczny, ICMP 1

Bardziej szczegółowo

ARP Address Resolution Protocol (RFC 826)

ARP Address Resolution Protocol (RFC 826) 1 ARP Address Resolution Protocol (RFC 826) aby wysyłać dane tak po sieci lokalnej, jak i pomiędzy różnymi sieciami lokalnymi konieczny jest komplet czterech adresów: adres IP nadawcy i odbiorcy oraz adres

Bardziej szczegółowo

Sieci komputerowe - Wstęp do intersieci, protokół IPv4

Sieci komputerowe - Wstęp do intersieci, protokół IPv4 Piotr Kowalski KAiTI Internet a internet - Wstęp do intersieci, protokół IPv Plan wykładu Informacje ogólne 1. Ogólne informacje na temat sieci Internet i protokołu IP (ang. Internet Protocol) w wersji.

Bardziej szczegółowo

Warstwa sieciowa rutowanie

Warstwa sieciowa rutowanie Warstwa sieciowa rutowanie Protokół IP - Internet Protocol Protokoły rutowane (routed) a rutowania (routing) Rutowanie statyczne i dynamiczne (trasowanie) Statyczne administrator programuje trasy Dynamiczne

Bardziej szczegółowo

Routing. mgr inż. Krzysztof Szałajko

Routing. mgr inż. Krzysztof Szałajko Routing mgr inż. Krzysztof Szałajko Modele odniesienia 7 Aplikacji 6 Prezentacji 5 Sesji 4 Transportowa 3 Sieciowa 2 Łącza danych 1 Fizyczna Aplikacji Transportowa Internetowa Dostępu do sieci Wersja 1.0

Bardziej szczegółowo

DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ PODSTAWY RUTINGU IP. WSTĘP DO SIECI INTERNET Kraków, dn. 7 listopada 2016 r.

DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ PODSTAWY RUTINGU IP. WSTĘP DO SIECI INTERNET Kraków, dn. 7 listopada 2016 r. DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ PODSTAWY RUTINGU IP WSTĘP DO SIECI INTERNET Kraków, dn. 7 listopada 2016 r. PLAN Ruting a przełączanie Klasyfikacja rutingu Ruting statyczny Ruting dynamiczny

Bardziej szczegółowo

Adresy w sieciach komputerowych

Adresy w sieciach komputerowych Adresy w sieciach komputerowych 1. Siedmio warstwowy model ISO-OSI (ang. Open System Interconnection Reference Model) 7. Warstwa aplikacji 6. Warstwa prezentacji 5. Warstwa sesji 4. Warstwa transportowa

Bardziej szczegółowo

Routing i protokoły routingu

Routing i protokoły routingu Routing i protokoły routingu Po co jest routing Proces przesyłania informacji z sieci źródłowej do docelowej poprzez urządzenie posiadające co najmniej dwa interfejsy sieciowe i stos IP. Routing przykład

Bardziej szczegółowo

Sieci komputerowe - Protokoły wspierające IPv4

Sieci komputerowe - Protokoły wspierające IPv4 2013-06-20 Piotr Kowalski KAiTI Plan i problematyka wykładu 1. Odwzorowanie adresów IP na sprzętowe i odwrotnie protokoły ARP i RARP. - Protokoły wspierające IPv4 2. Routing IP Tablice routingu, routing

Bardziej szczegółowo

Warstwa sieciowa. Model OSI Model TCP/IP. Aplikacji. Aplikacji. Prezentacji. Sesji. Transportowa. Transportowa

Warstwa sieciowa. Model OSI Model TCP/IP. Aplikacji. Aplikacji. Prezentacji. Sesji. Transportowa. Transportowa Warstwa sieciowa Model OSI Model TCP/IP Aplikacji Prezentacji Aplikacji podjęcie decyzji o trasowaniu (rutingu) na podstawie znanej, lokalnej topologii sieci ; - podział danych na pakiety Sesji Transportowa

Bardziej szczegółowo

Sieci komputerowe - administracja

Sieci komputerowe - administracja Sieci komputerowe - administracja warstwa sieciowa Andrzej Stroiński andrzej.stroinski@cs.put.edu.pl http://www.cs.put.poznan.pl/astroinski/ warstwa sieciowa 2 zapewnia adresowanie w sieci ustala trasę

Bardziej szczegółowo

SEGMENT TCP CZ. II. Suma kontrolna (ang. Checksum) liczona dla danych jak i nagłówka, weryfikowana po stronie odbiorczej

SEGMENT TCP CZ. II. Suma kontrolna (ang. Checksum) liczona dla danych jak i nagłówka, weryfikowana po stronie odbiorczej SEGMENT TCP CZ. I Numer portu źródłowego (ang. Source port), przeznaczenia (ang. Destination port) identyfikują aplikacje wysyłającą odbierającą dane, te dwie wielkości wraz adresami IP źródła i przeznaczenia

Bardziej szczegółowo

Aby lepiej zrozumieć działanie adresów przedstawmy uproszczony schemat pakietów IP podróżujących w sieci.

Aby lepiej zrozumieć działanie adresów przedstawmy uproszczony schemat pakietów IP podróżujących w sieci. Struktura komunikatów sieciowych Każdy pakiet posiada nagłówki kolejnych protokołów oraz dane w których mogą być zagnieżdżone nagłówki oraz dane protokołów wyższego poziomu. Każdy protokół ma inne zadanie

Bardziej szczegółowo

Plan wykładu. Warstwa sieci. Po co adresacja w warstwie sieci? Warstwa sieci

Plan wykładu. Warstwa sieci. Po co adresacja w warstwie sieci? Warstwa sieci Sieci komputerowe 1 Sieci komputerowe 2 Plan wykładu Warstwa sieci Miejsce w modelu OSI/ISO Funkcje warstwy sieciowej Adresacja w warstwie sieciowej Protokół IP Protokół ARP Protokoły RARP, BOOTP, DHCP

Bardziej szczegółowo

Sieci komputerowe. Routing. dr inż. Andrzej Opaliński. Akademia Górniczo-Hutnicza w Krakowie. www.agh.edu.pl

Sieci komputerowe. Routing. dr inż. Andrzej Opaliński. Akademia Górniczo-Hutnicza w Krakowie. www.agh.edu.pl Sieci komputerowe Routing Akademia Górniczo-Hutnicza w Krakowie dr inż. Andrzej Opaliński Plan wykładu Wprowadzenie Urządzenia Tablice routingu Typy protokołów Wstęp Routing Trasowanie (pl) Algorytm Definicja:

Bardziej szczegółowo

Programowanie sieciowe

Programowanie sieciowe Programowanie sieciowe Wykład dla studentów Informatyki Stosowanej i Fizyki Komputerowej UJ 2014/2015 Michał Cieśla pok. D-2-47, email: michal.ciesla@uj.edu.pl konsultacje: środy 10-12 http://users.uj.edu.pl/~ciesla/

Bardziej szczegółowo

PBS. Wykład Routing dynamiczny OSPF EIGRP 2. Rozwiązywanie problemów z obsługą routingu.

PBS. Wykład Routing dynamiczny OSPF EIGRP 2. Rozwiązywanie problemów z obsługą routingu. PBS Wykład 5 1. Routing dynamiczny OSPF EIGRP 2. Rozwiązywanie problemów z obsługą routingu. mgr inż. Roman Krzeszewski roman@kis.p.lodz.pl mgr inż. Artur Sierszeń asiersz@kis.p.lodz.pl mgr inż. Łukasz

Bardziej szczegółowo

DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ ADRESACJA W SIECIACH IP. WSTĘP DO SIECI INTERNET Kraków, dn. 24 października 2016r.

DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ ADRESACJA W SIECIACH IP. WSTĘP DO SIECI INTERNET Kraków, dn. 24 października 2016r. DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ ADRESACJA W SIECIACH IP WSTĘP DO SIECI INTERNET Kraków, dn. 24 października 2016r. PLAN Reprezentacja liczb w systemach cyfrowych Protokół IPv4 Adresacja w sieciach

Bardziej szczegółowo

Referencyjny model OSI. 3 listopada 2014 Mirosław Juszczak 37

Referencyjny model OSI. 3 listopada 2014 Mirosław Juszczak 37 Referencyjny model OSI 3 listopada 2014 Mirosław Juszczak 37 Referencyjny model OSI Międzynarodowa Organizacja Normalizacyjna ISO (International Organization for Standarization) opracowała model referencyjny

Bardziej szczegółowo

DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ

DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ PROTOKOŁY TCP I UDP WSTĘP DO SIECI INTERNET Kraków, dn. 12 grudnia 2016 r. PLAN TCP: cechy protokołu schemat nagłówka znane numery portów UDP: cechy protokołu

Bardziej szczegółowo

MODEL OSI A INTERNET

MODEL OSI A INTERNET MODEL OSI A INTERNET W Internecie przyjęto bardziej uproszczony model sieci. W modelu tym nacisk kładzie się na warstwy sieciową i transportową. Pozostałe warstwy łączone są w dwie warstwy - warstwę dostępu

Bardziej szczegółowo

Zestaw ten opiera się na pakietach co oznacza, że dane podczas wysyłania są dzielone na niewielkie porcje. Wojciech Śleziak

Zestaw ten opiera się na pakietach co oznacza, że dane podczas wysyłania są dzielone na niewielkie porcje. Wojciech Śleziak Protokół TCP/IP Protokół TCP/IP (Transmission Control Protokol/Internet Protokol) to zestaw trzech protokołów: IP (Internet Protokol), TCP (Transmission Control Protokol), UDP (Universal Datagram Protokol).

Bardziej szczegółowo

Internet Control Messaging Protocol

Internet Control Messaging Protocol Protokoły sieciowe ICMP Internet Control Messaging Protocol Protokół komunikacyjny sterowania siecią Internet. Działa na warstwie IP (bezpośrednio zaimplementowany w IP) Zastosowanie: Diagnozowanie problemów

Bardziej szczegółowo

RUTERY. Dr inŝ. Małgorzata Langer

RUTERY. Dr inŝ. Małgorzata Langer RUTERY Dr inŝ. Małgorzata Langer Co to jest ruter (router)? Urządzenie, które jest węzłem komunikacyjnym Pracuje w trzeciej warstwie OSI Obsługuje wymianę pakietów pomiędzy róŝnymi (o róŝnych maskach)

Bardziej szczegółowo

Routing dynamiczny... 2 Czym jest metryka i odległość administracyjna?... 3 RIPv1... 4 RIPv2... 4 Interfejs pasywny... 5 Podzielony horyzont...

Routing dynamiczny... 2 Czym jest metryka i odległość administracyjna?... 3 RIPv1... 4 RIPv2... 4 Interfejs pasywny... 5 Podzielony horyzont... Routing dynamiczny... 2 Czym jest metryka i odległość administracyjna?... 3 RIPv1... 4 RIPv2... 4 Interfejs pasywny... 5 Podzielony horyzont... 5 Podzielony horyzont z zatruciem wstecz... 5 Vyatta i RIP...

Bardziej szczegółowo

PORADNIKI. Routery i Sieci

PORADNIKI. Routery i Sieci PORADNIKI Routery i Sieci Projektowanie routera Sieci IP są sieciami z komutacją pakietów, co oznacza,że pakiety mogą wybierać różne trasy między hostem źródłowym a hostem przeznaczenia. Funkcje routingu

Bardziej szczegółowo

Sieci komputerowe w sterowaniu informacje ogólne, model TCP/IP, protokoły warstwy internetowej i sieciowej

Sieci komputerowe w sterowaniu informacje ogólne, model TCP/IP, protokoły warstwy internetowej i sieciowej ieci komputerowe w sterowaniu informacje ogólne, model TCP/IP, protokoły warstwy internetowej i sieciowej 1969 ARPANET sieć eksperymentalna oparta na wymianie pakietów danych: - stabilna, - niezawodna,

Bardziej szczegółowo

Plan wykładu. Wyznaczanie tras. Podsieci liczba urządzeń w klasie C. Funkcje warstwy sieciowej

Plan wykładu. Wyznaczanie tras. Podsieci liczba urządzeń w klasie C. Funkcje warstwy sieciowej Wyznaczanie tras (routing) 1 Wyznaczanie tras (routing) 2 Wyznaczanie tras VLSM Algorytmy rutingu Tablica rutingu CIDR Ruting statyczny Plan wykładu Wyznaczanie tras (routing) 3 Funkcje warstwy sieciowej

Bardziej szczegółowo

Routing - wstęp... 2 Routing statyczny... 3 Konfiguracja routingu statycznego IPv Konfiguracja routingu statycznego IPv6...

Routing - wstęp... 2 Routing statyczny... 3 Konfiguracja routingu statycznego IPv Konfiguracja routingu statycznego IPv6... Routing - wstęp... 2 Routing statyczny... 3 Konfiguracja routingu statycznego IPv4... 3 Konfiguracja routingu statycznego IPv6... 3 Sprawdzenie połączenia... 4 Zadania... 4 Routing - wstęp O routowaniu

Bardziej szczegółowo

Akademickie Centrum Informatyki PS. Wydział Informatyki PS

Akademickie Centrum Informatyki PS. Wydział Informatyki PS Akademickie Centrum Informatyki PS Wydział Informatyki PS Akademickie Centrum Informatyki Wydział Informatyki P.S. Warstwy transmisyjne Protokoły sieciowe Krzysztof Bogusławski tel. 449 41 82 kbogu@man.szczecin.pl

Bardziej szczegółowo

Akademia Techniczno-Humanistyczna w Bielsku-Białej

Akademia Techniczno-Humanistyczna w Bielsku-Białej Akademia Techniczno-Humanistyczna w Bielsku-Białej Wydział Budowy Maszyn i Informatyki Laboratorium z sieci komputerowych Ćwiczenie numer: 5 Temat ćwiczenia: Badanie protokołów rodziny TCP/IP 1. Wstęp

Bardziej szczegółowo

Sieci komputerowe - Protokoły warstwy transportowej

Sieci komputerowe - Protokoły warstwy transportowej Piotr Kowalski KAiTI - Protokoły warstwy transportowej Plan i problematyka wykładu 1. Funkcje warstwy transportowej i wspólne cechy typowych protokołów tej warstwy 2. Protokół UDP Ogólna charakterystyka,

Bardziej szczegółowo

TCP/IP (Transmission Control Protocol / Internet Protocol) komunikacji otwartej stosem protokołów

TCP/IP (Transmission Control Protocol / Internet Protocol) komunikacji otwartej stosem protokołów TCP/IP TCP/IP (Transmission Control Protocol / Internet Protocol) jest pakietem najbardziej rozpowszechnionych protokołów komunikacyjnych sieci komputerowych. TCP/IP - standard komunikacji otwartej (możliwość

Bardziej szczegółowo

Wykład 2: Budowanie sieci lokalnych. A. Kisiel, Budowanie sieci lokalnych

Wykład 2: Budowanie sieci lokalnych. A. Kisiel, Budowanie sieci lokalnych Wykład 2: Budowanie sieci lokalnych 1 Budowanie sieci lokalnych Technologie istotne z punktu widzenia konfiguracji i testowania poprawnego działania sieci lokalnej: Protokół ICMP i narzędzia go wykorzystujące

Bardziej szczegółowo

Struktura adresu IP v4

Struktura adresu IP v4 Adresacja IP v4 E13 Struktura adresu IP v4 Adres 32 bitowy Notacja dziesiętna - każdy bajt (oktet) z osobna zostaje przekształcony do postaci dziesiętnej, liczby dziesiętne oddzielone są kropką. Zakres

Bardziej szczegółowo

System operacyjny Linux

System operacyjny Linux Paweł Rajba pawel.rajba@continet.pl http://kursy24.eu/ Zawartość modułu 15 DHCP Rola usługi DHCP Proces generowania dzierżawy Proces odnawienia dzierżawy Konfiguracja Agent przekazywania DHCP - 1 - Rola

Bardziej szczegółowo

Model OSI. mgr inż. Krzysztof Szałajko

Model OSI. mgr inż. Krzysztof Szałajko Model OSI mgr inż. Krzysztof Szałajko Protokół 2 / 26 Protokół Def.: Zestaw reguł umożliwiający porozumienie 3 / 26 Komunikacja w sieci 101010010101101010101 4 / 26 Model OSI Open Systems Interconnection

Bardziej szczegółowo

Plan wykładu. 1. Sieć komputerowa 2. Rodzaje sieci 3. Topologie sieci 4. Karta sieciowa 5. Protokoły używane w sieciach LAN 6.

Plan wykładu. 1. Sieć komputerowa 2. Rodzaje sieci 3. Topologie sieci 4. Karta sieciowa 5. Protokoły używane w sieciach LAN 6. Plan wykładu 1. Sieć komputerowa 2. Rodzaje sieci 3. Topologie sieci 4. Karta sieciowa 5. Protokoły używane w sieciach LAN 6. Modem analogowy Sieć komputerowa Siecią komputerową nazywa się grupę komputerów

Bardziej szczegółowo

Model sieci OSI, protokoły sieciowe, adresy IP

Model sieci OSI, protokoły sieciowe, adresy IP Model sieci OSI, protokoły sieciowe, adresy IP Podstawę działania internetu stanowi zestaw protokołów komunikacyjnych TCP/IP. Wiele z używanych obecnie protokołów zostało opartych na czterowarstwowym modelu

Bardziej szczegółowo

Uproszczony opis obsługi ruchu w węźle IP. Trasa routingu. Warunek:

Uproszczony opis obsługi ruchu w węźle IP. Trasa routingu. Warunek: Uproszczony opis obsługi ruchu w węźle IP Poniższa procedura jest dokonywana dla każdego pakietu IP pojawiającego się w węźle z osobna. W routingu IP nie wyróżniamy połączeń. Te pojawiają się warstwę wyżej

Bardziej szczegółowo

DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ

DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ DR INŻ. ROBERT WÓJCIK DR INŻ. JERZY DOMŻAŁ INTERNET PROTOCOL (IP) INTERNET CONTROL MESSAGE PROTOCOL (ICMP) WSTĘP DO SIECI INTERNET Kraków, dn. 7 listopada 2016 r. PLAN IPv4: schemat nagłówka ICMP: informacje

Bardziej szczegółowo

3. Routing z wykorzystaniem wektora odległości, RIP

3. Routing z wykorzystaniem wektora odległości, RIP 3. Routing z wykorzystaniem wektora odległości, RIP 3.1. Aktualizacje routingu z wykorzystaniem wektora odległości W routingu z wykorzystaniem wektora odległości tablice routingu są aktualizowane okresowo.

Bardziej szczegółowo

Systemy operacyjne i sieci komputerowe Szymon Wilk Adresowanie w sieciach Klasy adresów IP a) klasa A

Systemy operacyjne i sieci komputerowe Szymon Wilk Adresowanie w sieciach Klasy adresów IP a) klasa A i sieci komputerowe Szymon Wilk Adresowanie w sieciach 1 1. Klasy adresów IP a) klasa A sieć host 0 mało sieci (1 oktet), dużo hostów (3 oktety) pierwszy bit równy 0 zakres adresów dla komputerów 1.0.0.0-127.255.255.255

Bardziej szczegółowo

Funkcje warstwy sieciowej. Podstawy wyznaczania tras. Dostarczenie pakietu od nadawcy od odbiorcy (RIP, IGRP, OSPF, EGP, BGP)

Funkcje warstwy sieciowej. Podstawy wyznaczania tras. Dostarczenie pakietu od nadawcy od odbiorcy (RIP, IGRP, OSPF, EGP, BGP) Wyznaczanie tras (routing) 1 Wyznaczanie tras (routing) 17 Funkcje warstwy sieciowej Podstawy wyznaczania tras Routing statyczny Wprowadzenie jednolitej adresacji niezaleŝnej od niŝszych warstw (IP) Współpraca

Bardziej szczegółowo

Sieci komputerowe - adresacja internetowa

Sieci komputerowe - adresacja internetowa Sieci komputerowe - adresacja internetowa mgr inż. Rafał Watza Katedra Telekomunikacji AGH 1 Wprowadzenie Co to jest adresacja? Przedmioty adresacji Sposoby adresacji Układ domenowy, a układ numeryczny

Bardziej szczegółowo

host, aby móc działać w Internecie, host musi otrzymać globalnie unikatowy adres

host, aby móc działać w Internecie, host musi otrzymać globalnie unikatowy adres 1 adresacja IPv4 host, aby móc działać w Internecie, host musi otrzymać globalnie unikatowy adres istnieją dwie możliwości przypisania adresu IP o statycznie o dynamicznie przypisanie statyczne administrator

Bardziej szczegółowo

Pytanie 1 Z jakich protokołów korzysta usługa WWW? (Wybierz prawidłowe odpowiedzi)

Pytanie 1 Z jakich protokołów korzysta usługa WWW? (Wybierz prawidłowe odpowiedzi) Pytanie 1 Z jakich protokołów korzysta usługa WWW? (Wybierz prawidłowe odpowiedzi) Pytanie 2 a) HTTPs, b) HTTP, c) POP3, d) SMTP. Co oznacza skrót WWW? a) Wielka Wyszukiwarka Wiadomości, b) WAN Word Works,

Bardziej szczegółowo

Architektura INTERNET

Architektura INTERNET Internet, /IP Architektura INTERNET OST INTERNET OST OST BRAMA (ang. gateway) RUTER (ang. router) - lokalna sieć komputerowa (ang. Local Area Network) Bramy (ang. gateway) wg ISO ruter (ang. router) separuje

Bardziej szczegółowo

Sieci komputerowe. Wykład 3: Protokół IP. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski. Sieci komputerowe (II UWr) Wykład 3 1 / 25

Sieci komputerowe. Wykład 3: Protokół IP. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski. Sieci komputerowe (II UWr) Wykład 3 1 / 25 Sieci komputerowe Wykład 3: Protokół IP Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 3 1 / 25 W poprzednim odcinku Podstawy warstwy pierwszej (fizycznej)

Bardziej szczegółowo

Sieci Komputerowe. Wykład 1: TCP/IP i adresowanie w sieci Internet

Sieci Komputerowe. Wykład 1: TCP/IP i adresowanie w sieci Internet Sieci Komputerowe Wykład 1: TCP/IP i adresowanie w sieci Internet prof. nzw dr hab. inż. Adam Kisiel kisiel@if.pw.edu.pl Pokój 114 lub 117d 1 Kilka ważnych dat 1966: Projekt ARPANET finansowany przez DOD

Bardziej szczegółowo

Konfiguracja połączenia G.SHDSL punkt-punkt w trybie routing w oparciu o routery P-791R.

Konfiguracja połączenia G.SHDSL punkt-punkt w trybie routing w oparciu o routery P-791R. Konfiguracja połączenia G.SHDSL punkt-punkt w trybie routing w oparciu o routery P-791R. Topologia sieci: Lokalizacja B Lokalizacja A Niniejsza instrukcja nie obejmuje konfiguracji routera dostępowego

Bardziej szczegółowo

Sieci komputerowe. Wykład 5: Warstwa transportowa: TCP i UDP. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski

Sieci komputerowe. Wykład 5: Warstwa transportowa: TCP i UDP. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe Wykład 5: Warstwa transportowa: TCP i UDP Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 5 1 / 22 Warstwa transportowa Cechy charakterystyczne:

Bardziej szczegółowo

Akademickie Centrum Informatyki PS. Wydział Informatyki PS

Akademickie Centrum Informatyki PS. Wydział Informatyki PS Akademickie Centrum Informatyki PS Wydział Informatyki PS Akademickie Centrum Informatyki Wydział Informatyki P.S. Warstwy transmisyjne Protokoły sieciowe Krzysztof Bogusławski tel. 449 41 82 kbogu@man.szczecin.pl

Bardziej szczegółowo

Sieci komputerowe. Wykład 3: Protokół IP. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski. Sieci komputerowe (II UWr) Wykład 3 1 / 24

Sieci komputerowe. Wykład 3: Protokół IP. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski. Sieci komputerowe (II UWr) Wykład 3 1 / 24 Sieci komputerowe Wykład 3: Protokół IP Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 3 1 / 24 Przypomnienie W poprzednim odcinku Podstawy warstwy pierwszej

Bardziej szczegółowo

Protokół ICMP. Autor: Grzegorz Burgiel 4FDS

Protokół ICMP. Autor: Grzegorz Burgiel 4FDS Protokół ICMP Autor: Grzegorz Burgiel 4FDS 2 Streszczenie Niniejsze opracowanie opisuje protokół ICMP : formaty komunikatów kontrolnych i zastosowanie protokołu. 3 Spis treści 1. Wstęp. 4 2. Dostarczanie

Bardziej szczegółowo

ZiMSK NAT, PAT, ACL 1

ZiMSK NAT, PAT, ACL 1 ZiMSK dr inż. Łukasz Sturgulewski, luk@kis.p.lodz.pl, http://luk.kis.p.lodz.pl/ dr inż. Artur Sierszeń, asiersz@kis.p.lodz.pl dr inż. Andrzej Frączyk, a.fraczyk@kis.p.lodz.pl NAT, PAT, ACL 1 Wykład Translacja

Bardziej szczegółowo

Warstwy i funkcje modelu ISO/OSI

Warstwy i funkcje modelu ISO/OSI Warstwy i funkcje modelu ISO/OSI Organizacja ISO opracowała Model Referencyjny Połączonych Systemów Otwartych (model OSI RM - Open System Interconection Reference Model) w celu ułatwienia realizacji otwartych

Bardziej szczegółowo

Rozległe Sieci Komputerowe

Rozległe Sieci Komputerowe Rozległe Sieci Komputerowe Rozległe Sieci Komputerowe Literatura: D.E. Conner Sieci komputerowe i intersieci R. W. McCarty Cisco WAN od podstaw R. Wright Elementarz routingu IP Interconnecting Cisco Network

Bardziej szczegółowo

Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej

Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej Politechnika Łódzka Instytut Systemów Inżynierii Elektrycznej Laboratorium komputerowych systemów pomiarowych Ćwiczenie 7 Wykorzystanie protokołu TCP do komunikacji w komputerowym systemie pomiarowym 1.

Bardziej szczegółowo

Sieci komputerowe Warstwa sieci i warstwa transportowa

Sieci komputerowe Warstwa sieci i warstwa transportowa Sieci komputerowe Warstwa sieci i warstwa transportowa Ewa Burnecka / Janusz Szwabiński ewa@ift.uni.wroc.pl / szwabin@ift.uni.wroc.pl Sieci komputerowe (C) 2003 Janusz Szwabiński p.1/43 Model ISO/OSI Warstwa

Bardziej szczegółowo

Zarządzanie ruchem w sieci IP. Komunikat ICMP. Internet Control Message Protocol DSRG DSRG. DSRG Warstwa sieciowa DSRG. Protokół sterujący

Zarządzanie ruchem w sieci IP. Komunikat ICMP. Internet Control Message Protocol DSRG DSRG. DSRG Warstwa sieciowa DSRG. Protokół sterujący Zarządzanie w sieci Protokół Internet Control Message Protocol Protokół sterujący informacje o błędach np. przeznaczenie nieosiągalne, informacje sterujące np. przekierunkowanie, informacje pomocnicze

Bardziej szczegółowo

Internet Control Message Protocol (ICMP) Łukasz Trzciałkowski

Internet Control Message Protocol (ICMP) Łukasz Trzciałkowski Internet Control Message Protocol (ICMP) Łukasz Trzciałkowski Czym jest ICMP? Protokół ICMP jest protokołem działającym w warstwie sieciowej i stanowi integralną część protokołu internetowego IP, a raczej

Bardziej szczegółowo

Protokoły wspomagające. Mikołaj Leszczuk

Protokoły wspomagające. Mikołaj Leszczuk Protokoły wspomagające Mikołaj Leszczuk Spis treści wykładu Współpraca z warstwą łącza danych: o o ICMP o o ( ARP ) Protokół odwzorowania adresów ( RARP ) Odwrotny protokół odwzorowania adresów Opis protokołu

Bardziej szczegółowo

Warstwa sieciowa. mgr inż. Krzysztof Szałajko

Warstwa sieciowa. mgr inż. Krzysztof Szałajko Warstwa sieciowa mgr inż. Krzysztof Szałajko Modele odniesienia 7 Aplikacji 6 Prezentacji 5 Sesji 4 Transportowa 3 Sieciowa 2 Łącza danych 1 Fizyczna Aplikacji Transportowa Internetowa Dostępu do sieci

Bardziej szczegółowo

1. Podstawy routingu IP

1. Podstawy routingu IP 1. Podstawy routingu IP 1.1. Routing i adresowanie Mianem routingu określa się wyznaczanie trasy dla pakietu danych, w taki sposób aby pakiet ten w możliwie optymalny sposób dotarł do celu. Odpowiedzialne

Bardziej szczegółowo

Warstwa transportowa. mgr inż. Krzysztof Szałajko

Warstwa transportowa. mgr inż. Krzysztof Szałajko Warstwa transportowa mgr inż. Krzysztof Szałajko Modele odniesienia 7 Aplikacji 6 Prezentacji 5 Sesji 4 Transportowa 3 Sieciowa 2 Łącza danych 1 Fizyczna Aplikacji Transportowa Internetowa Dostępu do sieci

Bardziej szczegółowo

Test sprawdzający wiadomości z przedmiotu Systemy operacyjne i sieci komputerowe.

Test sprawdzający wiadomości z przedmiotu Systemy operacyjne i sieci komputerowe. Literka.pl Test sprawdzający wiadomości z przedmiotu Systemy operacyjne i sieci komputerowe Data dodania: 2010-06-07 09:32:06 Autor: Marcin Kowalczyk Test sprawdzający wiadomości z przedmiotu Systemy operacyjne

Bardziej szczegółowo

Akademia Techniczno-Humanistyczna w Bielsku-Białej

Akademia Techniczno-Humanistyczna w Bielsku-Białej Akademia Techniczno-Humanistyczna w Bielsku-Białej Wydział Budowy Maszyn i Informatyki Laboratorium z sieci komputerowych Ćwiczenie numer: 3 Temat ćwiczenia: Narzędzia sieciowe w systemie Windows 1. Wstęp

Bardziej szczegółowo

Protokoły sieciowe model ISO-OSI Opracował: Andrzej Nowak

Protokoły sieciowe model ISO-OSI Opracował: Andrzej Nowak Protokoły sieciowe model ISO-OSI Opracował: Andrzej Nowak OSI (ang. Open System Interconnection) lub Model OSI to standard zdefiniowany przez ISO oraz ITU-T, opisujący strukturę komunikacji sieciowej.

Bardziej szczegółowo

Podstawy sieci komputerowych

Podstawy sieci komputerowych mariusz@math.uwb.edu.pl http://math.uwb.edu.pl/~mariusz Uniwersytet w Białymstoku 2018/2019 Skąd się wziął Internet? Komutacja pakietów (packet switching) Transmisja danych za pomocą zaadresowanych pakietów,

Bardziej szczegółowo

Wykład Nr 4. 1. Sieci bezprzewodowe 2. Monitorowanie sieci - polecenia

Wykład Nr 4. 1. Sieci bezprzewodowe 2. Monitorowanie sieci - polecenia Sieci komputerowe Wykład Nr 4 1. Sieci bezprzewodowe 2. Monitorowanie sieci - polecenia Sieci bezprzewodowe Sieci z bezprzewodowymi punktami dostępu bazują na falach radiowych. Punkt dostępu musi mieć

Bardziej szczegółowo

Akademickie Centrum Informatyki PS. Wydział Informatyki PS

Akademickie Centrum Informatyki PS. Wydział Informatyki PS kademickie Centrum Informatyki PS Wydział Informatyki PS Wydział Informatyki Sieci komputerowe i Telekomunikacyjne Transmisja w protokole IP Krzysztof ogusławski tel. 4 333 950 kbogu@man.szczecin.pl 1.

Bardziej szczegółowo

Sieci Komputerowe Modele warstwowe sieci

Sieci Komputerowe Modele warstwowe sieci Sieci Komputerowe Modele warstwowe sieci mgr inż. Rafał Watza Katedra Telekomunikacji AGH Al. Mickiewicza 30, 30-059 Kraków, Polska tel. +48 12 6174034, fax +48 12 6342372 e-mail: watza@kt.agh.edu.pl Wprowadzenie

Bardziej szczegółowo

ZiMSK. VLAN, trunk, intervlan-routing 1

ZiMSK. VLAN, trunk, intervlan-routing 1 ZiMSK dr inż. Łukasz Sturgulewski, luk@kis.p.lodz.pl, http://luk.kis.p.lodz.pl/ dr inż. Artur Sierszeń, asiersz@kis.p.lodz.pl dr inż. Andrzej Frączyk, a.fraczyk@kis.p.lodz.pl VLAN, trunk, intervlan-routing

Bardziej szczegółowo

Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 13 Topologie sieci i urządzenia

Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 13 Topologie sieci i urządzenia Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 13 Topologie sieci i urządzenia Topologie sieci magistrali pierścienia gwiazdy siatki Zalety: małe użycie kabla Magistrala brak dodatkowych urządzeń

Bardziej szczegółowo

Laboratorium 6.7.2: Śledzenie pakietów ICMP

Laboratorium 6.7.2: Śledzenie pakietów ICMP Topologia sieci Tabela adresacji Urządzenie Interfejs Adres IP Maska podsieci Domyślna brama R1-ISP R2-Central Serwer Eagle S0/0/0 10.10.10.6 255.255.255.252 Nie dotyczy Fa0/0 192.168.254.253 255.255.255.0

Bardziej szczegółowo

SIECI KOMPUTEROWE Adresowanie IP

SIECI KOMPUTEROWE  Adresowanie IP Adresowanie IP Podstawowa funkcja protokołu IP (Internet Protocol) polega na dodawaniu informacji o adresie do pakietu danych i przesyłaniu ich poprzez sieć do właściwych miejsc docelowych. Aby umożliwić

Bardziej szczegółowo

Akademia Techniczno-Humanistyczna w Bielsku-Białej

Akademia Techniczno-Humanistyczna w Bielsku-Białej Akademia Techniczno-Humanistyczna w Bielsku-Białej Wydział Budowy Maszyn i Informatyki Laboratorium z sieci komputerowych Ćwiczenie numer: 1 Temat ćwiczenia: Adresacja w sieciach komputerowych podstawowe

Bardziej szczegółowo

Protokół IP. III warstwa modelu OSI (sieciowa) Pakowanie i adresowanie przesyłanych danych RFC 791 Pakiet składa się z:

Protokół IP. III warstwa modelu OSI (sieciowa) Pakowanie i adresowanie przesyłanych danych RFC 791 Pakiet składa się z: Protokoły Protokół IP III warstwa modelu OSI (sieciowa) Pakowanie i adresowanie przesyłanych danych RFC 791 Pakiet składa się z: Adresu źródłowego Adresu docelowego W sieciach opartych o Ethernet protokół

Bardziej szczegółowo

SIECI KOMPUTEROWE. Dariusz CHAŁADYNIAK Józef WACNIK

SIECI KOMPUTEROWE. Dariusz CHAŁADYNIAK Józef WACNIK MODUŁ: SIECI KOMPUTEROWE Dariusz CHAŁADYNIAK Józef WACNIK NIE ARACHNOFOBII!!! Sieci i komputerowe są wszędzie WSZECHNICA PORANNA Wykład 1. Podstawy budowy i działania sieci komputerowych WYKŁAD: Role

Bardziej szczegółowo

Instrukcja 5 - Zastosowania protokołu ICMP

Instrukcja 5 - Zastosowania protokołu ICMP Instrukcja 5 - Zastosowania protokołu ICMP 5.1 Wstęp Protokół ICMP (ang. Internet Control Message Protocol) to protokół internetowych komunikatów sterujących. Jest nierozerwalnie związany z inkapsulującym

Bardziej szczegółowo

Serwer DHCP (dhcpd). Linux OpenSuse.

Serwer DHCP (dhcpd). Linux OpenSuse. 2015 Serwer DHCP (dhcpd). Linux OpenSuse. PIOTR KANIA Spis treści Wstęp.... 2 Instalacja serwera DHCP w OpenSuse.... 2 Porty komunikacyjne.... 2 Uruchomienie, restart, zatrzymanie serwera DHCP... 2 Sprawdzenie

Bardziej szczegółowo

OBSŁUGA I KONFIGURACJA SIECI W WINDOWS

OBSŁUGA I KONFIGURACJA SIECI W WINDOWS OBSŁUGA I KONFIGURACJA SIECI W WINDOWS Jak skonfigurować komputer pracujący pod kontrolą systemu operacyjnego Windows 7, tak aby uzyskać dostęp do internetu? Zakładamy, że komputer pracuje w małej domowej

Bardziej szczegółowo

Zadania z sieci Rozwiązanie

Zadania z sieci Rozwiązanie Zadania z sieci Rozwiązanie Zadanie 1. Komputery połączone są w sieci, z wykorzystaniem routera zgodnie ze schematem przedstawionym poniżej a) Jak się nazywa ten typ połączenia komputerów? (topologia sieciowa)

Bardziej szczegółowo