Ćwiczenie 5P. Rozmywanie widma zaburzeń. Wpływ dynamiki diod na parametry przekształników.
|
|
- Wacława Jóźwiak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Optymalizacja parametrów przekształtników Ćwiczenie 5P. Rozmywanie widma zaburzeń. Wpływ dynamiki diod na parametry przekształników. opracowanie: Łukasz Starzak Katedra Mikroelektroniki i Technik Informatycznych Politechniki Łódzkiej, 2013, wer. 1.1 A. Wprowadzenie Redukcja zaburzeń elektromagnetycznych przez rozmywanie widma W przekształtniku o działaniu przełączającym potencjały dużej części węzłów obwodu mają przebieg impulsowy. Jego widmo (rys. 1) zawiera prążek w częstotliwości podstawowej f s = 1/T s oraz szereg prążków dla całkowitych wielokrotności tej częstotliwości (harmonicznych) n f s, o amplitudzie malejącej ze wzrostem częstotliwości. Rozwijając taki przebieg w szereg Fouriera można wykazać, że amplituda obwiedni tych prążków posiada miejsca zerowe w częstotliwościach n 1/t p, a także n 1/t sw, gdzie t p jest czasem trwania impulsu, zaś t sw czasem przełączania (przejścia między stanem wysokim a niskim i odwrotnie). Z kolei maksima tej obwiedni posiadają obwiednię nadrzędną; jest to linia początkowo pozioma, a następnie załamująca się do 20 db/dec w częstotliwości 1/(πtp) oraz do 40 db/dec w 1/(πt sw ). 1/πt p 1/πt sw 1/T s 2/T s 1/tp 1/t sw Rys. 1. Widmo częstotliwościowe przebiegu impulsowego. Każda ze składowych widma może działać zakłócająco na układ i jego otoczenie. Siłę tego oddziaływania rozpatruje się zwykle przez pryzmat mocy czynnej niesionej przez daną składową. Jest więc to analiza uśredniona w czasie. Podejście to leży także u podstaw norm kompatybilności elektromagnetycznej i powiązanej z nimi zasady działania analizatorów widma, która obejmuje obserwację uśrednioną za określony, długi przedział czasu (zwykle 1 s). Gdyby więc częstotliwość przebiegu impulsowego stała się zmienna w czasie, to zamiast każdego prążka widma analizator zarejestrowałby niezerowe amplitudy w całym przedziale (paśmie) częstotliwości, w granicach którego częstotliwość ta by się zmieniała. Określamy to mianem rozmycia OPP ćw. 5P wer
2 widma. Można wykazać, że amplituda widma w tym paśmie będzie mniejsza niż poprzednio rejestrowana amplituda pojedynczego prążka. To zaś może pozwolić na zmieszczenie się widma zaburzeń w granicach określonych w normach kompatybilności elektromagnetycznej, a przynajmniej stanowić jeden ze sposobów na zbliżenie się do tych granic. Również zakłócający potencjał przebiegu o zmiennej częstotliwości o ile rozpatrujemy go w sposób uśredniony, co dla wielu układów jest słuszne będzie mniejszy. Rys. 2. Widmo pojedynczej składowej harmonicznej po zmodulowaniu jej częstotliwości, dla trzech różnych kształtów funkcji modulującej. Jedną z najprostszych metod realizacji zmiennej częstotliwości przełączania jest jej modulacja określoną funkcją (FM Frequency Modulation lub ściślej PFM Pulse Frequency Modulation). Aby zapewnić sensowne działanie przekształtnika jednocześnie zastosowana musi być modulacja szerokości impulsu (PWM Pulse Width Modulation). Te dwie modulacje są jednak niezależne od siebie, dlatego możliwe jest przeanalizowanie samej tylko modulacji PFM, co najwyżej dla kilku wybranych wartości współczynnika wypełnienia D (czyli czasu t p ), które wynikłyby z jednoczesnego działania modulatora PWM. Wybór funkcji modulującej ma wpływ na obwiednię widma rozmytego (rys. 2). Natomiast na szerokość pasma rozmytego B mają wpływ parametry modulacji: f c częstotliwość nośna, tj. częstotliwość przebiegu niezmodulowanego (impulsowego), a więc środkowa częstotliwość przełączania, wokół której odbywają się zmiany częstotliwości w czasie; f m częstotliwość funkcji modulującej, a więc częstotliwość, z jaką odbywają się zmiany OPP ćw. 5P wer
3 częstotliwości przebiegu impulsowego; f c szerokość pasma modulacji, tj. pasma, w którym zawiera się (wewnątrz którego zmienia się) częstotliwość przebiegu w wyniku modulacji jego częstotliwości; m f wskaźnik modulacji, definiowany jako (1) δ współczynnik modulacji, definiowany jako (2) Używając powyższych parametrów, szerokość pasma dla składowej podstawowej można wyrazić wzorem: zaś ogólnie dla harmonicznej o numerze h: (3) (4) Oznacza to, że szerokość pasma rośnie dla kolejnych prążków widma pierwotnego. Od pewnego rzędu harmonicznej zaczną się więc one nakładać, co prowadzi do anulowania pozytywnego efektu zmniejszenia amplitudy widma. Można obliczyć, że rząd harmonicznej, przy której to nastąpi, wyraża się wzorem: (5) Moc strat dynamicznych w diodzie i jej wpływ na sprawność układu W większości aplikacji (choć nie wszystkich) można przyjąć, że w stratach dynamicznych dominuje energia wydzielana w stanie wyłączania. W przybliżeniu energia ta jest wprost proporcjonalna do ładunku, jaki odpływa z diody podczas jej wyłączania. W przypadku diod bipolarnych PIN jest to praktycznie ładunek związany z nośnikami nadmiarowymi obecnymi w bazie diody w stanie przewodzenia. W przypadku diod unipolarnych Schottky ego, w których brak nośników nadmiarowych, jest to ładunek nośników związanych z domieszkami, które należy usunąć z odpowiednio szerokiego obszaru półprzewodnika w celu wytworzenia obszaru ładunku przestrzennego odpowiadającego przyłożonemu napięciu wstecznemu (ta składowa ładunku występuje także w diodach PIN, jednak jest tam stosunkowo nieznacząca względem dużego ładunku nadmiarowego). Przybliżona zależność energii strat od ładunku, zaniedbująca ewentualne przepięcia, ma postać: E rr = 0,5 Q rr U R (6) gdzie Q rr ładunek przejściowy przy wyłączaniu, U R napięcie wsteczne po wyłączeniu. Oczywiście całkowita moc strat w diodzie jest sumą mocy strat dynamicznych i statycznych: P tot = P stat + P dyn = P stat + f s E rr (7) Istotne jest spostrzeżenie, że moc strat statycznych nie zależy od częstotliwości, podczas gdy moc strat dynamicznych jest do niej proporcjonalna. Rozpatrując wpływ mocy strat w diodzie na sprawność przekształtnika łatwo zauważyć, że sprawność będzie maleć z częstotliwością, gdyż: η = P o / P i = P o / (P o + P c ) (8) OPP ćw. 5P wer
4 gdzie P c jest mocą strat w przekształtniku, w której udział ma moc strat w diodzie. Zakładając (co jest uprawnione w przypadku badanego układu), że wśród strat mocy zależnych od częstotliwości dominują straty w przyrządach półprzewodnikowych, moc strat w przekształtniku można wyrazić analogicznie do (7): P c = P stat + P dyn = P stat + f s E sw = P stat + f s (E ts + E rr ) (9) gdzie E sw jest sumaryczną energią wydzielaną podczas przełączania (we wszystkich przyrządach i w obu stanach dynamicznych), zaś E ts energią wydzielaną podczas przełączania tranzystora. OPP ćw. 5P wer
5 B. Konfiguracja układu pomiarowego Do badań posłuży układ przetwornicy podwyższającej napięcie przystosowany do pracy z megahercowymi częstotliwościami przełączania. Wykorzystane zostaną 3 diody podane w tab. 1, z których jedna jest diodą Schottky ego (a dokładniej mieszaną) wykonaną z węglika krzemu (SiC). Tab. 1. Wykorzystywane diody i ich parametry (ładunek Q rr dotyczy nominalnych, tj. zbliżonych do znamionowych, warunków pracy) Oznaczenie Materiał Rodzaj I F(av) [A] U rrm [V] Q rr(nom) [nc] C3D06060A SiC MPS MUR860 Si PIN BY Si PIN Zamontować w niebieskiej listwie diodę C3D06060A (radiator skierowany jak radiator tranzystora; tak samo pozostałe diody). 2. W obwodzie umieścić, poprzez przelutowanie, dodatkowy opornik bramkowy 100 Ω (na płytce obecny jest już na stałe opornik 10 Ω). 3. Jako obciążenie przyłączyć opornik regulowany 25 Ω początkowo ustawiony na 25 Ω (sprawdzić omomierzem ze względu na niestandardowe połączenie wewnętrzne). Na wejściu i wyjściu przetwornicy włączyć 2 identyczne multimetry w trybie amperomierza oraz 2 w trybie woltomierza. 4. Zasilanie zrealizować z zasilacza 2-sekcyjnego pracującego w trybie równoległym (PARALLEL). Oba gniazda + oraz oba gniazda należy zewrzeć ze sobą krótkimi przewodami. Ograniczenie prądowe w obu sekcjach nastawić na maksimum. 5. Z wyjścia generatora funkcyjnego Output (nie Output TTL) przyłączyć się do przewodów niebieskiego i czerwonego. 6. Na generatorze przy wyłączonym wyjściu (zgaszona kontrolka przycisku On): funkcja: Pulse Run Mode: Continuous Low 0 V High 5 V częstotliwość: 330 khz (częstotliwość centralna f c ) Duty: 50% Output Menu tryb wyjścia: High-Z 7. Oscyloskop: CH1 napięcie dren-źródło tranzystora (drucik do źródła, odpowiednia końcówka dławika) (nie przyłączać do samego tranzystora z powodu nagrzewania się nóżek). 8. Na sekcji Master zasilacza ustawić napięcie 12 V; prąd wyjściowy powinien wynieść ok. 0,5 A. OPP ćw. 5P wer
6 9. Uaktywnić wyjście generatora (On). Sprawdzić poprawność przebiegu napięcia u DS. 10. Opornik obciążający ustawić tak, by prąd wyjściowy I o = 1 A (obecnie i w kolejnych punktach nie musi to być dokładna wartość). Dezaktywować wyjście generatora ze względu na dużą moc wydzielaną w tranzystorze przy zamontowanym oporniku bramkowym. 12. Na oscyloskopie z menu Math wybrać Spectral Setup. Zdefiniować Math1 jako amplitudę widma CH1 (SpectralMag). Ustawić: Rec Length: ; Samp Rate: 500 Ms; Duration: 1 ms; Resolution: 2 ns; Window Type: Rectangular; Gate Pos: 0 (może się nadpisać małą wartością ujemną); Gate Dur: 1 ms. Kliknąć Apply. Następnie ustawić: Center Freq: 50 MHz; Freq Span: 100 MHz. Uwaga: Przy bieżących ustawieniach obraz będzie odświeżany z niską częstotliwością i z opóźnieniem 1 3 okresów odświeżania; należy to wziąć pod uwagę rejestrując przebiegi po dokonaniu zmian w układzie. 13. Uaktywnić wyjście generatora i sprawdzić, czy obraz na ekranie przypomina widmo przebiegu prostokątnego. Kliknąć przycisk Controls w celu umieszczenia kontrolek z prawej strony ekranu. OPP ćw. 5P wer
7 C. Pomiary 1. Na oscyloskopie zapisać obraz widma. Zanotować wskazania 4 mierników. Uwaga: Wskazania należy zawsze notować po ustaleniu się wskazań prądów, co może potrwać kilkadziesiąt sekund ze względu na nagrzewanie się elementów stosunkowo dużą mocą strat w badanych warunkach pracy. 2. Dezaktywować wyjście generatora. Wyłączyć zasilacz. Poprzez przelutowanie wyłączyć z obwodu dodatkowy opornik bramkowy 100 Ω (wykonać zwarcie do bramki tranzystora przez jego dolną nóżkę, zaś górną pozostawić w położeniu uniemożliwiającym przypadkowe zwarcie). 3. Włączyć zasilacz. Uaktywnić wyjście generatora. Na oscyloskopie zapisać obraz widma. Zanotować wskazania 4 mierników. 4. a) Zapisać obraz widma również dla D = 10% i 5% (zmiana parametru Duty na generatorze). b) Przywrócić D = 50%. 5. Zmodyfikować ustawienia analizy widmowej (kontrolki po lewej lub jeżeli znikły z menu górnego Math wybrać Spectral Setup): Samp Rate: 50 Ms; Rec Length: ; Duration: 10 ms; Resolution: 20 ns; Window Type: Rectangular; Gate Pos: 0 (może się nadpisać małą wartością ujemną); Gate Dur: 10 ms; Center Freq: 6 MHz; Freq Span: 12 MHz (o ile nie wypełni się samo). 6. Zapisać obraz widma. Kursorem (jeżeli są wyłączone: menu Cursors, zaznaczyć Cursors On) wyznaczyć częstotliwości f 1, f 2, f 3 trzech pierwszych prążków. 7. Wyłączyć wyjście generatora. OPP ćw. 5P wer
8 Przełączyć na funkcję Square, tryb na Modulation. Wybrać: Type: FM (modulacja częstotliwości); Source: Internal; kształt sinusoidalny Shape: Sine. Ustawić parametry modulacji (FM Freq, Deviation) takie, by: m f = 10, f m = 1,8 khz. Włączyć wyjście generatora. Zapisać widmo dla: bieżących ustawień (sinusoidalna funkcja modulująca); trójkątnego przebiegu modulującego Shape: Triangle; wykładniczego przebiegu modulującego Shape: Exp (ten przebieg znajduje się na pamięci USB dostępnej na stanowisku). 8. Wybrać trójkątny przebieg modulujący. Dla przypadków: bieżącego (m f = 10, f m = 1,8 khz) m f = 30, f m = 1,8 khz m f = 10, f m = 5,4 khz wykonać: zapisać widmo; kursorami wyznaczyć szerokości pasma B 1, B 2, B 3 pierwszych 3 prążków po ich rozmyciu; zapisać numer prążka h overlap, dla którego zaczyna się nakładanie pasm od sąsiednich prążków. 9. Przełączyć tryb generatora na Continuous. Na oscyloskopie wyłączyć funkcję Math1. Opornik ustawić tak, by prąd wyjściowy I o = 1 A (obecnie i w kolejnych punktach musi to być w miarę dokładna wartość, ±0,05 A). 10. Dla kilkunastu różnych częstotliwości z zakresu od 100 khz do 2 MHz, zanotować wskazania 4 mierników, przy czym: należy między innymi wykonać pomiar dla 330 khz, a dla tego przypadku oraz dla 2 MHz zmierzyć również temperaturę obudowy diody (metalowego radiatora wbudowanego). W każdym przypadku należy zaczekać na ustabilizowanie się wartości prądu, a w razie potrzeby zmienić nastawę opornika tak, by utrzymać I o = 1 A. 11. Uwaga: Przed wymianą diody dezaktywować wyjście generatora i wyłączyć zasilacz. Utrzymywać obciążenie (prąd wyjściowy) 1 A. Pomiary wskazań mierników i temperatury powtórzyć tylko dla 330 khz dla diod: MUR860 BY OPP ćw. 5P wer
9 OPP ćw. 5P wer
10 D. Opracowanie wyników 1. Na podstawie wyników pomiarów widma w paśmie 100 MHz (pkt 3 i 4) i w paśmie 12 MHz (pkt 6), opisać postać widma częstotliwościowego przebiegu potencjału v sw przełączanego węzła obwodu przetwornicy (napięcia u DS tranzystora), wskazując związki z przebiegiem sterującym tranzystorem zgodnie z przewidywaniami teoretycznymi (nie wszystkie właściwości widma będą widoczne na każdym oscylogramie). 2. Na podstawie wyników pomiarów widma w paśmie 5 MHz dla modulacji funkcją trójkątną (pkt 8) i bez modulacji (pkt 6): a) opisać skutki modulacji częstotliwości przełączania dla widma v sw w dziedzinie częstotliwości; b) porównać wyznaczone szerokości pasm B h z obliczonymi ze wzoru teoretycznego; c) dla każdego przypadku obliczyć szerokość pasma modulacji f c i współczynnik modulacji δ; d) stwierdzić, od których parametrów modulacji zależy szerokość pasm; e) z oscylogramów odczytać rząd harmonicznej h overlap, od którego zaczyna się nakładanie pasm i porównać z przewidywaniami teoretycznymi; f) przeanalizować skutki modulacji w dziedzinie amplitudy, w tym w zależności od parametrów modulacji; g) stwierdzić, czy modulacja częstotliwości przebiegu impulsowego jest skuteczną metodą poprawy kompatybilności elektromagnetycznej przekształtników impulsowych z punktu widzenia norm. 3. Na podstawie wyników pomiarów widma w paśmie 5 MHz dla modulacji różnymi funkcjami (pkt 7), scharakteryzować różnice między widmami uzyskiwanymi dla poszczególnych funkcji modulujących. Ocenić, która z funkcji jest najkorzystniejsza z punktu widzenia minimalizacji amplitud składowych widma zaburzeń. 4. Dla każdego z przypadków, w których notowane były wskazania mierników, obliczyć moc wejściową P i i wyjściową P o przetwornicy, a na tej podstawie całkowitą moc strat P c i sprawność η. 5. Na podstawie wyników pomiarów widma oraz parametrów energetycznych (obliczenia z pkt. D4), scharakteryzować skutki wydłużenia czasu przełączania t sw (poprzez zmianę rezystancji bramkowej R G pkt 1 w porównaniu do pkt. 3). 6. Przeanalizować wpływ zastosowanej diody na parametry energetyczne układu: a) na podstawie wyników pomiarów parametrów energetycznych dla diody C3D06060A dla różnych częstotliwości przełączania (pkt 10, obliczenia z pkt. D4), wykreślić sprawność przetwornicy w funkcji częstotliwości przełączania; b) powiązać przebieg zależności w funkcji częstotliwości z zależnościami teoretycznymi; c) uzasadnić obserwowane w wynikach z pkt. D4 różnice w sprawności układu z użyciem różnych diod, opierając się na parametrach podanych w tab. 1; d) biorąc pod uwagę powyższe wyniki, oraz że węglik krzemu (w odróżnieniu od krzemu) umożliwia produkcję wysokonapięciowych diod Schottky ego, wykazać, że wykorzystanie tego materiału jest jedną z istotnych innowacji na drodze do układów mocy o megahercowych częstotliwościach przełączania. OPP ćw. 5P wer
Ćwiczenie 5P. Rozmywanie widma zaburzeń. Wpływ dynamiki diod na parametry przekształników.
Optymalizacja parametrów przekształtników Ćwiczenie 5P. Rozmywanie widma zaburzeń. Wpływ dynamiki diod na parametry przekształników. opracowanie: Łukasz Starzak Katedra Mikroelektroniki i Technik Informatycznych
Ćwiczenie 5P. Rozmywanie widma zaburzeń. Wpływ dynamiki diod na parametry przekształników.
Optymalizacja parametrów przekształtników Ćwiczenie 5P. Rozmywanie widma zaburzeń. Wpływ dynamiki diod na parametry przekształników. opracowanie: Łukasz Starzak Katedra Mikroelektroniki i Technik Informatycznych
Przetwarzanie energii elektrycznej w fotowoltaice. Ćwiczenie 12 Metody sterowania falowników
Przetwarzanie energii elektrycznej w fotowoltaice Ćwiczenie 12 Metody sterowania falowników wer. 1.1.2, 2016 opracowanie: Łukasz Starzak Politechnika Łódzka, Katedra Mikroelektroniki i Technik Informatycznych
Wstęp. Doświadczenia. 1 Pomiar oporności z użyciem omomierza multimetru
Wstęp Celem ćwiczenia jest zaznajomienie się z podstawowymi przyrządami takimi jak: multimetr, oscyloskop, zasilacz i generator. Poznane zostaną również podstawowe prawa fizyczne a także metody opracowywania
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 BADANIE TRANZYSTORÓW BIAŁYSTOK 2015 1. CEL I ZAKRES
14 Modulatory FM CELE ĆWICZEŃ PODSTAWY TEORETYCZNE Podstawy modulacji częstotliwości Dioda pojemnościowa (waraktor)
14 Modulatory FM CELE ĆWICZEŃ Poznanie zasady działania i charakterystyk diody waraktorowej. Zrozumienie zasady działania oscylatora sterowanego napięciem. Poznanie budowy modulatora częstotliwości z oscylatorem
Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE
Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl
PRZEŁĄCZANIE DIOD I TRANZYSTORÓW
L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE PRZEŁĄCZANIE DIOD I TRANZYSTORÓW REV. 1.1 1. CEL ĆWICZENIA - obserwacja pracy diod i tranzystorów podczas przełączania, - pomiary charakterystycznych czasów
Ćw. 8 Bramki logiczne
Ćw. 8 Bramki logiczne 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi, poznanie ich rodzajów oraz najwaŝniejszych parametrów opisujących ich własności elektryczne.
Modulatory PWM CELE ĆWICZEŃ PODSTAWY TEORETYCZNE
Modulatory PWM CELE ĆWICZEŃ Poznanie budowy modulatora szerokości impulsów z układem A741. Analiza charakterystyk i podstawowych obwodów z układem LM555. Poznanie budowy modulatora szerokości impulsów
Badanie diody półprzewodnikowej
Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 2 Pracownia Elektroniki Badanie diody półprzewodnikowej Zakres materiału obowiązujący do ćwiczenia: (Oprac dr Radosław Gąsowski) półprzewodniki samoistne
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.
ELEKTRONICZNE UKŁADY STEROWANIA NASTAWNIKÓW. Ćwiczenie 1 (C11c) Przetwornica prądu stałego o działaniu ciągłym (liniowy stabilizator napięcia)
Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl
LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY
ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 9 WZMACNIACZ MOCY DO UŻYTKU
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 (EZ1C500 055) BADANIE DIOD I TRANZYSTORÓW Białystok 2006
Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki
Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Na podstawie instrukcji Wtórniki Napięcia,, Laboratorium układów Elektronicznych Opis badanych układów Spis Treści 1. CEL ĆWICZENIA... 2 2.
WZMACNIACZ NAPIĘCIOWY RC
WZMACNIACZ NAPIĘCIOWY RC 1. WSTĘP Tematem ćwiczenia są podstawowe właściwości jednostopniowego wzmacniacza pasmowego z tranzystorem bipolarnym. Zadaniem ćwiczących jest dokonanie pomiaru częstotliwości
Ćwiczenie 3p. Pomiar parametrów dynamicznych i statycznych diod szybkich OPTYMALIZACJA PARAMETRÓW PRZEKSZTAŁTNIKÓW
Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl
Podstawy Elektroniki dla Tele-Informatyki. Tranzystory unipolarne MOS
AGH Katedra Elektroniki Podstawy Elektroniki dla Tele-Informatyki Tranzystory unipolarne MOS Ćwiczenie 4 2014 r. 1. Wstęp. Celem ćwiczenia jest zapoznanie się z działaniem i zastosowaniami tranzystora
Rozwiązanie zadania opracowali: H. Kasprowicz, A. Kłosek
Treść zadania praktycznego Rozwiązanie zadania opracowali: H. Kasprowicz, A. Kłosek Opracuj projekt realizacji prac związanych z uruchomieniem i sprawdzeniem działania zasilacza impulsowego małej mocy
Politechnika Warszawska
Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.02. Woltomierz RMS oraz Analizator Widma 1. Woltomierz RMS oraz Analizator Widma Ćwiczenie to ma na celu poznanie
Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera.
ĆWICZENIE 5 Tranzystory bipolarne. Właściwości dynamiczne wzmacniaczy w układzie wspólnego emitera. I. Cel ćwiczenia Badanie właściwości dynamicznych wzmacniaczy tranzystorowych pracujących w układzie
Ćwiczenie nr 65. Badanie wzmacniacza mocy
Ćwiczenie nr 65 Badanie wzmacniacza mocy 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów wzmacniaczy oraz wyznaczenie charakterystyk opisujących ich właściwości na przykładzie wzmacniacza
Ćw. III. Dioda Zenera
Cel ćwiczenia Ćw. III. Dioda Zenera Zapoznanie się z zasadą działania diody Zenera. Pomiary charakterystyk statycznych diod Zenera. Wyznaczenie charakterystycznych parametrów elektrycznych diod Zenera,
Bierne układy różniczkujące i całkujące typu RC
Instytut Fizyki ul. Wielkopolska 15 70-451 Szczecin 6 Pracownia Elektroniki. Bierne układy różniczkujące i całkujące typu RC........ (Oprac. dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia:
Ćwiczenie 3 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH
LABORATORIUM ELEKTRONIKI Ćwiczenie 3 Wybór i stabilizacja punktu pracy tranzystorów bipolarnego el ćwiczenia elem ćwiczenia jest poznanie wpływu ustawienia punktu pracy tranzystora na pracę wzmacniacza
Część 3. Przegląd przyrządów półprzewodnikowych mocy. Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51
Część 3 Przegląd przyrządów półprzewodnikowych mocy Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 51 Budowa przyrządów półprzewodnikowych Struktura składa się z warstw Warstwa
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: UKŁADY ELEKTRONICZNE 2 (TS1C500 030) Tranzystor w układzie wzmacniacza
ELEMENTY ELEKTRONICZNE TS1C
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki nstrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENTY ELEKTRONCZNE TS1C300 018 BAŁYSTOK 013 1. CEL ZAKRES ĆWCZENA LABORATORYJNEGO
ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym
ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym 4. PRZEBIE ĆWICZENIA 4.1. Wyznaczanie parametrów wzmacniacza z tranzystorem unipolarnym złączowym w
Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS
Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS Cel ćwiczenia: Praktyczne wykorzystanie wiadomości do projektowania wzmacniacza z tranzystorami CMOS Badanie wpływu parametrów geometrycznych
Laboratorium Metrologii
Laboratorium Metrologii Ćwiczenie nr 3 Oddziaływanie przyrządów na badany obiekt I Zagadnienia do przygotowania na kartkówkę: 1 Zdefiniować pojęcie: prąd elektryczny Podać odpowiednią zależność fizyczną
IMPULSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM
Instrukcja do ćwiczenia laboratoryjnego. IMPSOWY PRZEKSZTAŁTNIK ENERGII Z TRANZYSTOREM SZEREGOWYM Przekształtnik impulsowy z tranzystorem szeregowym słuŝy do przetwarzania energii prądu jednokierunkowego
Część 4. Zagadnienia szczególne
Część 4 Zagadnienia szczególne a. Tryb nieciągłego prądu dławika Łukasz Starzak, Sterowanie przekształtników elektronicznych, zima 2011/12 1 Model przetwornicy w trybie nieciągłego prądu DC DC+AC Napięcie
POLITECHNIKA POZNAŃSKA
POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 1 Temat: Pomiar widma częstotliwościowego
Instrukcja do ćwiczenia laboratoryjnego nr 6b
Instrukcja do ćwiczenia laboratoryjnego nr 6b Temat: Charakterystyki i parametry półprzewodnikowych przyrządów optoelektronicznych. Cel ćwiczenia: Zapoznać z budową, zasadą działania, charakterystykami
Ćw. 7 Przetworniki A/C i C/A
Ćw. 7 Przetworniki A/C i C/A 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z zasadami przetwarzania sygnałów analogowych na cyfrowe i cyfrowych na analogowe poprzez zbadanie przetworników A/C i
Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą.
Ćwiczenie nr 9 Pomiar rezystancji metodą porównawczą. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne poznanie różnych metod pomiaru rezystancji, a konkretnie zapoznanie się z metodą porównawczą. 2. Dane
LABORATORIUM ELEKTRONIKI WZMACNIACZ MOCY
ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKACJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 9 WZMACNIACZ MOCY DO UŻYTKU
ANALOGOWE I MIESZANE STEROWNIKI PRZETWORNIC. Ćwiczenie 3. Przetwornica podwyższająca napięcie Symulacje analogowego układu sterowania
Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl
Ćwiczenie: "Mierniki cyfrowe"
Ćwiczenie: "Mierniki cyfrowe" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Próbkowanie
Podstawy Elektroniki dla Informatyki. Tranzystory unipolarne MOS
AGH Katedra Elektroniki Podstawy Elektroniki dla Informatyki Tranzystory unipolarne MOS Ćwiczenie 3 2014 r. 1 1. Wstęp. Celem ćwiczenia jest zapoznanie się z działaniem i zastosowaniami tranzystora unipolarnego
Ćwiczenie 2 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH
LABORATORIUM LKTRONIKI Ćwiczenie Parametry statyczne tranzystorów bipolarnych el ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów bipolarnych oraz metod identyfikacji
1 Badanie aplikacji timera 555
1 Badanie aplikacji timera 555 Celem ćwiczenia jest zapoznanie studenta z podstawowymi aplikacjami układu 555 oraz jego działaniem i właściwościami. Do badania wybrane zostały trzy podstawowe aplikacje
LABORATORIUM Sygnałów, Modulacji i Systemów ĆWICZENIE 2: Modulacje analogowe
Protokół ćwiczenia 2 LABORATORIUM Sygnałów, Modulacji i Systemów Zespół data: ĆWICZENIE 2: Modulacje analogowe Imię i Nazwisko: 1.... 2.... ocena: Modulacja AM 1. Zestawić układ pomiarowy do badań modulacji
3. Funktory CMOS cz.1
3. Funktory CMOS cz.1 Druga charakterystyczna rodzina układów cyfrowych to układy CMOS. W jej ramach występuje zbliżony asortyment funktorów i przerzutników jak dla układów TTL (wejście standardowe i wejście
NIEZBĘDNY SPRZĘT LABORATORYJNY
Temat: Własności diody p-n Cel ćwiczenia Ćwiczenie 30 Zrozumienie właściwości diod ze złączem p-n. Poznanie własności diod każdego typu. Nauka testowania parametrów diod każdego typu za pomocą różnych
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej
Ćwiczenie 4: Pomiar parametrów i charakterystyk wzmacniacza mocy małej częstotliwości REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU
REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie : Pomiar parametrów i charakterystyk wzmacniacza mocy małej
Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302)
Opis dydaktycznych stanowisk pomiarowych i przyrządów w lab. EE (paw. C-3, 302) 1. Elementy elektroniczne stosowane w ćwiczeniach Elementy elektroniczne będące przedmiotem pomiaru, lub służące do zestawienia
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 Kod: ES1C400 026 BADANIE WYBRANYCH DIOD I TRANZYSTORÓW BIAŁYSTOK
Ćwiczenie 2. Wartość skuteczna
Pomiary i modelowanie w elektronice mocy Ćwiczenie 2. Wartość skuteczna opracowanie: Łukasz Starzak Katedra Mikroelektroniki i Technik Informatycznych Politechniki Łódzkiej, 2011 Pomiary Przebieg sinusoidalny
Ćwiczenie 5. Pomiary parametrów sygnałów napięciowych. Program ćwiczenia:
Ćwiczenie 5 Pomiary parametrów sygnałów napięciowych Program ćwiczenia: 1. Pomiar wartości skutecznej, średniej wyprostowanej i maksymalnej sygnałów napięciowych o kształcie sinusoidalnym, prostokątnym
Instrukcja do ćwiczenia laboratoryjnego nr 11
Instrukcja do ćwiczenia laboratoryjnego nr 11 Temat: Charakterystyki i parametry tyrystora Cel ćwiczenia. Celem ćwiczenia jest poznanie właściwości elektrycznych tyrystora. I. Wymagane wiadomości. 1. Podział
Instrukcja do ćwiczenia laboratoryjnego nr 4
Instrukcja do ćwiczenia laboratoryjnego nr 4 Temat: Badanie własności przełączających diod półprzewodnikowych Cel ćwiczenia. Celem ćwiczenia jest poznanie własności przełączających złącza p - n oraz wybranych
Rys. 1. Układ informacji na wyświetlaczu układu MPPT
Przetwarzanie energii elektrycznej w fotowoltaice Poszukiwanie punktu mocy maksymalnej modułu fotowoltaicznego wer. 1.0.1, 2014 opracowanie: Łukasz Starzak Układ pomiarowy Układ śledzenia punktu mocy maksymalnej
Instrukcja do ćwiczenia laboratoryjnego nr 5
Instrukcja do ćwiczenia laboratoryjnego nr 5 Temat: Charakterystyki statyczne tranzystorów bipolarnych Cel ćwiczenia. Celem ćwiczenia jest poznanie charakterystyk prądowonapięciowych i wybranych parametrów
Podstaw Elektroniki Cyfrowej Wykonał zespół w składzie (nazwiska i imiona): Dzień tygodnia:
Wydział EAIiIB Katedra Laboratorium Metrologii i Elektroniki Podstaw Elektroniki Cyfrowej Wykonał zespół w składzie (nazwiska i imiona): Ćw. 5. Funktory CMOS cz.1 Data wykonania: Grupa (godz.): Dzień tygodnia:
Instrukcja do ćwiczenia laboratoryjnego
Instrukcja do ćwiczenia laboratoryjnego adanie parametrów statycznych i dynamicznych ramek Logicznych Opracował: mgr inż. ndrzej iedka Wymagania, znajomość zagadnień: 1. Parametry statyczne bramek logicznych
Pracownia pomiarów i sterowania Ćwiczenie 1 Pomiar wielkości elektrycznych z wykorzystaniem instrumentów NI ELVIS II
Małgorzata Marynowska Uniwersytet Wrocławski, I rok Fizyka doświadczalna II stopnia Prowadzący: dr M. Grodzicki Data wykonania ćwiczenia: 03.03.2015, 10.03.2015 Pracownia pomiarów i sterowania Ćwiczenie
Przetwarzanie energii elektrycznej w fotowoltaice. Ćwiczenie 11M Poszukiwanie punktu mocy maksymalnej modułu fotowoltaicznego
Przetwarzanie energii elektrycznej w fotowoltaice Ćwiczenie 11M Poszukiwanie punktu mocy maksymalnej modułu fotowoltaicznego wer. 1.2.2, 2016 opracowanie: Łukasz Starzak Politechnika Łódzka, Katedra Mikroelektroniki
TRANZYSTORY BIPOLARNE
Instrukcja do ćwiczenia laboratoryjnego TRANZYSTORY BIPOLARNE Instrukcję opracował: dr inż. Jerzy Sawicki Wymagania, znajomość zagadnień: 1. Tranzystory bipolarne rodzaje, typowe parametry i charakterystyki,
STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych
STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych Wstęp Celem ćwiczenia jest zapoznanie się z problemami związanymi z projektowaniem, realizacją i pomiarami
Państwowa Wyższa Szkoła Zawodowa
Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 5 WZMACNIACZ OPERACYJNY A. Cel ćwiczenia. - Przedstawienie właściwości wzmacniacza operacyjnego - Zasada
Państwowa Wyższa Szkoła Zawodowa
Państwowa Wyższa Szkoła Zawodowa w Legnicy Laboratorium Podstaw Elektroniki i Miernictwa Ćwiczenie nr 17 WZMACNIACZ OPERACYJNY A. Cel ćwiczenia. - Przedstawienie właściwości wzmacniacza operacyjnego -
Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia
Wrocław, 21.03.2017 r. Laboratorium Przyrządów Półprzewodnikowych test kompetencji zagadnienia Podczas testu kompetencji studenci powinni wykazać się znajomością zagadnień określonych w kartach kursów
Ćwiczenie 22. Temat: Przerzutnik monostabilny. Cel ćwiczenia
Temat: Przerzutnik monostabilny. Cel ćwiczenia Ćwiczenie 22 Poznanie zasady działania układu przerzutnika monostabilnego. Pomiar przebiegów napięć wejściowego wyjściowego w przerzutniku monostabilny. Czytanie
Ćwiczenie 23. Cyfrowe pomiary czasu i częstotliwości.
Ćwiczenie 23. Cyfrowe pomiary czasu i częstotliwości. Program ćwiczenia: 1. Pomiar częstotliwości z wykorzystaniem licznika 2. Pomiar okresu z wykorzystaniem licznika 3. Obserwacja działania pętli synchronizacji
Ćwiczenie 4p. Tłumiki przepięć dla szybkich tranzystorów mocy OPTYMALIZACJA PARAMETRÓW PRZEKSZTAŁTNIKÓW
Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl
Ćwiczenie 23. Cyfrowe pomiary czasu i częstotliwości.
Ćwiczenie 23. Cyfrowe pomiary czasu i częstotliwości. Program ćwiczenia: 1. Pomiar częstotliwości z wykorzystaniem licznika 2. Pomiar okresu z wykorzystaniem licznika 3. Obserwacja działania pętli synchronizacji
Analiza właściwości filtra selektywnego
Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..
1. Nadajnik światłowodowy
1. Nadajnik światłowodowy Nadajnik światłowodowy jest jednym z bloków światłowodowego systemu transmisyjnego. Przetwarza sygnał elektryczny na sygnał optyczny. Jakość transmisji w dużej mierze zależy od
Przyjazna instrukcja obsługi generatora funkcyjnego Agilent 33220A
Przyjazna instrukcja obsługi generatora funkcyjnego Agilent 33220A 1.Informacje wstępne 1.1. Przegląd elementów panelu przedniego 1.2. Ratunku, awaria! 1.3. Dlaczego generator kłamie? 2. Zaczynamy 2.1.
BADANIE ELEMENTÓW RLC
KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE BADANIE ELEMENTÓW RLC REV. 1.0 1. CEL ĆWICZENIA - zapoznanie się z systemem laboratoryjnym NI ELVIS II, - zapoznanie się z podstawowymi
Podstawowe zastosowania wzmacniaczy operacyjnych
ĆWICZENIE 0 Podstawowe zastosowania wzmacniaczy operacyjnych I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową i właściwościami wzmacniaczy operacyjnych oraz podstawowych układów elektronicznych
Ćwiczenie 7 PARAMETRY MAŁOSYGNAŁOWE TRANZYSTORÓW BIPOLARNYCH
Ćwiczenie 7 PRMETRY MŁOSYGNŁO TRNZYSTORÓW BIPOLRNYCH Wstęp Celem ćwiczenia jest wyznaczenie niektórych parametrów małosygnałowych hybrydowego i modelu hybryd tranzystora bipolarnego. modelu Konspekt przygotowanie
Imię i nazwisko (e mail): Rok: 2018/2019 Grupa: Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi:
Wydział: EAIiIB Imię i nazwisko (e mail): Rok: 2018/2019 Grupa: Zespół: Data wykonania: LABORATORIUM METROLOGII Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi: Wstęp
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 TRANZYSTORY JAKO ELEMENTY DWUSTANOWE BIAŁYSTOK
Badanie właściwości multipleksera analogowego
Ćwiczenie 3 Badanie właściwości multipleksera analogowego Program ćwiczenia 1. Sprawdzenie poprawności działania multipleksera 2. Badanie wpływu częstotliwości przełączania kanałów na pracę multipleksera
Ćwicz. 4 Elementy wykonawcze EWA/PP
1. Wprowadzenie Temat ćwiczenia: Przekaźniki półprzewodnikowe Istnieje kilka rodzajów przekaźników półprzewodnikowych. Zazwyczaj są one sterowane optoelektrycznie z pełną izolacja galwaniczną napięcia
Temat ćwiczenia: Przekaźniki półprzewodnikowe
Temat ćwiczenia: Przekaźniki półprzewodnikowe 1. Wprowadzenie Istnieje kilka rodzajów przekaźników półprzewodnikowych. Zazwyczaj są one sterowane optoelektrycznie z pełną izolacja galwaniczną napięcia
Ćwiczenie 1. Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym
Ćwiczenie 1 Sprawdzanie podstawowych praw w obwodach elektrycznych przy wymuszeniu stałym Wprowadzenie Celem ćwiczenia jest sprawdzenie podstawowych praw elektrotechniki w obwodach prądu stałego. Badaniu
ZŁĄCZOWY TRANZYSTOR POLOWY
L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE ZŁĄCZOWY TRANZYSTOR POLOWY RE. 2.0 1. CEL ĆWICZENIA - Pomiary charakterystyk prądowo-napięciowych tranzystora. - Wyznaczenie podstawowych parametrów tranzystora
Zakłócenia równoległe w systemach pomiarowych i metody ich minimalizacji
Ćwiczenie 4 Zakłócenia równoległe w systemach pomiarowych i metody ich minimalizacji Program ćwiczenia 1. Uruchomienie układu współpracującego z rezystancyjnym czujnikiem temperatury KTY81210 będącego
BADANIE MODULATORÓW I DEMODULATORÓW AMPLITUDY (AM)
Zespół Szkół Technicznych w Suwałkach Pracownia Sieci Teleinformatycznych Ćwiczenie Nr 1 BADANIE MODULATORÓW I DEMODULATORÓW AMPLITUDY (AM) Opracował Sławomir Zieliński Suwałki 2010 Cel ćwiczenia Pomiar
UKŁADY Z PĘTLĄ SPRZĘŻENIA FAZOWEGO (wkładki DA171A i DA171B) 1. OPIS TECHNICZNY UKŁADÓW BADANYCH
UKŁADY Z PĘTLĄ SPRZĘŻENIA FAZOWEGO (wkładki DA171A i DA171B) WSTĘP Układy z pętlą sprzężenia fazowego (ang. phase-locked loop, skrót PLL) tworzą dynamicznie rozwijającą się klasę układów, stosowanych głównie
DIODY PÓŁPRZEWODNIKOWE
Instrukcja do ćwiczenia laboratoryjnego DIODY PÓŁPRZEWODNIKOWE Instrukcję opracował: dr inż. Jerzy Sawicki Wymagania i wiedza konieczna do wykonania ćwiczenia: 1. Znajomość instrukcji do ćwiczenia, w tym
Pomiary napięć i prądów zmiennych
Ćwiczenie 1 Pomiary napięć i prądów zmiennych Instrukcja do ćwiczenia opracował: Wojciech Słowik 03.2015 ver. 03.2018 (LS, WS, LB, K) 1. Cel ćwiczenia Zapoznanie się z układami pomiarowymi napięć oraz
SILNIK INDUKCYJNY STEROWANY Z WEKTOROWEGO FALOWNIKA NAPIĘCIA
SILNIK INDUKCYJNY STEROWANY Z WEKTOROWEGO FALOWNIKA NAPIĘCIA Rys.1. Podział metod sterowania częstotliwościowego silników indukcyjnych klatkowych Instrukcja 1. Układ pomiarowy. Dane maszyn: Silnik asynchroniczny:
Ćwiczenie: "Pomiary rezystancji przy prądzie stałym"
Ćwiczenie: "Pomiary rezystancji przy prądzie stałym" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.
Tranzystory w pracy impulsowej
Tranzystory w pracy impulsowej. Cel ćwiczenia Celem ćwiczenia jest poznanie właściwości impulsowych tranzystorów. Wyniki pomiarów parametrów impulsowych tranzystora będą porównane z parametrami obliczonymi.
współczynnika wypełnienia (sprawdzamy to na nóżce bramki tranzystora). 2. Ustawić minimalny (zakładany) współczynnik wypełnienia.
Przekształtniki elektroniczne Moduł D Uruchamianie, testowanie i pomiary do wytycznych projektowych wer. 1.4.0 opracował: Łukasz Starzak Politechnika Łódzka, Katedra Mikroelektroniki i Technik Informatycznych
PRZEKSZTAŁTNIKI ELEKTRONICZNE. Ćwiczenie C52. Składowe prądu dławika Podejścia do sterowania. Opracowanie ćwiczenia i instrukcji: Łukasz Starzak
90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl PRZEKSZTAŁTNIKI ELEKTRONICZNE Ćwiczenie C52 Składowe prądu dławika
Politechnika Warszawska
Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.03 Podstawowe zasady modulacji amlitudy na przykładzie modulacji DSB 1. Podstawowe zasady modulacji amplitudy
BADANIE UKŁADÓW CYFROWYCH. CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA
BADANIE UKŁADÓW CYFROWYCH CEL: Celem ćwiczenia jest poznanie właściwości statycznych układów cyfrowych serii TTL. PRZEBIEG ĆWICZENIA 1. OGLĘDZINY Dokonać oględzin badanego układu cyfrowego określając jego:
Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS
Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS Cel ćwiczenia: Praktyczne wykorzystanie wiadomości do projektowania wzmacniacza z tranzystorami CMOS Badanie wpływu parametrów geometrycznych
2. Który oscylogram przedstawia przebieg o następujących parametrach amplitudowo-czasowych: Upp=4V, f=5khz.
1. Parametr Vpp zawarty w dokumentacji technicznej wzmacniacza mocy małej częstotliwości oznacza wartość: A. średnią sygnału, B. skuteczną sygnału, C. maksymalną sygnału, D. międzyszczytową sygnału. 2.
ĆWICZENIE LABORATORYJNE. TEMAT: Badanie wzmacniacza różnicowego i określenie parametrów wzmacniacza operacyjnego
ĆWICZENIE LABORATORYJNE TEMAT: Badanie wzmacniacza różnicowego i określenie parametrów wzmacniacza operacyjnego 1. WPROWADZENIE Przedmiotem ćwiczenia jest zapoznanie się ze wzmacniaczem różnicowym, który
POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI. Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n
POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI FAZY SKONDENSOWANEJ Ćwiczenie 9 Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n Cel ćwiczenia Celem ćwiczenia jest poznanie
Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?
Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie