m 0 + m Temat: Badanie ruchu jednostajnie zmiennego przy pomocy maszyny Atwooda.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "m 0 + m Temat: Badanie ruchu jednostajnie zmiennego przy pomocy maszyny Atwooda."

Transkrypt

1 msg M Temat: Badanie ruchu jednostajnie zmiennego przy pomocy maszyny Atwooda. Zagadnienia: prawa dynamiki Newtona, równania dynamiczne ruchu, siły tarcia, moment sił, moment bezwładności, opis kinematyczny ruchu jednostajnie zmiennego, przyspieszenie, prędkość i droga przemieszczenia. Koncepcja: Dwa jednakowe ciężarki połączone cienką, nierozciągliwą nitką, która jest przełożona przez swobodnie obracający się krążek. Jeśli do jednego z ciężarków dołożymy dodatkową masę (wystarczającą, by pokonać siły oporów ruchu krążka), to układ mas rozpocznie ruch przyspieszony, ze stałą wartością przyspieszenia. Możliwe jest zatem doświadczalne zbadanie zależności pomiędzy przebywaną drogą i czasem trwania ruchu jednostajnie zmiennego. O wartości przyspieszenia decyduje masa dodatkowego ciężarka. Zadania: A. Wyznaczanie zależności pomiędzy przebywaną drogą i czasem trwania ruchu jednostajnie zmiennego. Sprawdzenie poprawności modelu fizycznego. B. Wyznaczenie zależności przyspieszenia od masy dodatkowego ciężarka. Możliwość wyznaczenia momentu sił tarcia związanego z ruchem obrotowym krążka. Układ pomiarowy i procedura wykonania. 2R m 0 + m s Rys.1. Układ doświadczalny badania ruchu jednostajnie zmiennego pomiaru czasu przebycia zadanej drogi w ruchu ze stałym przyspieszeniem, zależnym od masy dodatkowej. m 0

2 msg M W zestawie doświadczalnym znajdują się dwa jednakowe ciężarki, każdy o masie =50 g, połączone cienką, nierozciągliwą nitką, z możliwością przewieszenia przez krążek obrotowy o promieniu =6,3 cm. Ponadto dysponujemy ciężarkami dodatkowymi o masach: ,10 g 3,47 g 5,00 g 5,55 g 6,57 g 8,10 g oraz przyrządem elektronicznym do pomiaru czasu i miarką milimetrową pozwalającą mierzyć drogę przebywaną przez układ ciężarków. Zadanie A A.1. Przekładamy nitkę łączącą ciężarki przez krawędź obrotowego krążka. Dobieramy odpowiednie położenie poziomej półki metalowej, która ogranicza ruch ciężarka opadającego, aby w ten sposób ustalić drogę, jaką przebędzie ciężarek obciążony dodatkową masą. Do doświadczenia wybieramy jeden z ciężarków dodatkowych. A.2. Drogę należy dobierać w przybliżeniu, jako wzrastającą o wartość ok. 10 cm. Dokładną wartość mierzymy jako odległość od miejsca startu ciężarka nieobciążonego (dolna krawędź ciężarka) do położenia górnego w chwili zatrzymania, bądź też mierząc analogiczną odległość dla ciężarka z masą dodatkową, od miejsca startu do miejsca zatrzymania. Mierzymy za każdym razem przemieszczenie dolnej krawędzi ciężarka. A.3. Dla kolejno wybieranych dróg wykonujemy pomiar czasu, w jakim ciężarek opadający pokona zadany odcinek drogi. Każdy pomiar czasu powtarzamy wielokrotnie tak, aby można było zarejestrować pięć wiarygodnych (pozbawionych błędu systematycznego) wyników, które posłużą do obliczenia wartości średniej, jako bardziej wiarygodnej. Wyniki rejestrujemy w tabeli: Pomiary dla ustalonej masy Wartość drogi s 0 = 0 = [cm] = g Pomiar czasu t np. pięciokrotny Wielokrotny pomiar czasu dla danej ; obliczenie czasu średniego [s] [s] = [s 2 ] A.4. W ramach opracowania sporządzamy wykres przedstawiający punkty pomiarowe zależności drogi od kwadratu czasu oraz metodą regresji liniowej wyznaczamy współczynnik kierunkowy dla przewidzianej teorią zależności (5, 6), zgodnie z opisem w dalszej części instrukcji (Rys.3.). Obliczamy wartość przyspieszenia dla badanego ruchu oraz dokonujemy oszacowania niepewności standardowej i rozszerzonej, dla otrzymanego wyniku.

3 msg M A.5. Dysponując wartością przyspieszenia w badanym ruchu jednostajnym, na wykresie przedstawiającym wyniki pomiarów drogi i czasu trwania ruchu wykreślamy wartości funkcji dopasowania, zgodnie z przewidzianym teorią równaniem kinematycznym ruchu jednostajnie zmiennego (7), jak to pokazano w opracowaniu na Rys.4. A.6. Opracowanie możemy uzupełnić oszacowaniem wartości t momentu sił tarcia na osi obrotowego krążka. W tym celu należy posłużyć się formułą (1), oraz do obliczeń wykorzystać wyznaczoną wartość przyspieszenia oraz znaną wartość wykorzystanej w doświadczeniu masy dodatkowej, a ponadto przyjąć promień krążka =6,3 cm, masę efektywną ciężarków i bloczka e 140 g oraz wartość standardową przyspieszenia ziemskiego = 9,8106 m s -2. Zadanie B B.1. Przekładamy nitkę łączącą ciężarki przez krawędź obrotowego krążka. Dobieramy odpowiednie położenie poziomej półki metalowej, która ogranicza ruch ciężarka opadającego, aby w ten sposób ustalić drogę, jaką będzie pokonywał ciężarek obciążony dodatkową masą. W doświadczeniu ustalamy wartość drogi wybierając ją z przedziału: 60 cm 100 cm B.2. Dokładną wartość mierzymy jako odległość od miejsca startu ciężarka nieobciążonego (dolna krawędź ciężarka) do położenia górnego w chwili zatrzymania, bądź też mierząc analogiczną odległość dla ciężarka z masą dodatkową, od miejsca startu do miejsca zatrzymania. Mierzymy przemieszczenie dolnej krawędzi ciężarka. B.3. Dla kolejnych mas dodatkowych dokonujemy pomiaru czasu, w jakim ciężarek opadający pokona zadany odcinek drogi. Każdy pomiar czasu powtarzamy wielokrotnie tak, aby można było zarejestrować pięć wiarygodnych (pozbawionych błędu systematycznego) wyników, które posłużą do obliczenia wartości średniej, jako bardziej wiarygodnej. Wyniki rejestrujemy w tabeli: Pomiary dla ustalonej drogi z przedziału: 60 cm 100 cm Wartość drogi =... Pomiar czasu t np. pięciokrotny ciężarek dodatk. 1 1 [g] Wielokrotny pomiar czasu dla danej ; obliczenie czasu średniego [s] [s] = 2 2 [cm s -2 ]

4 msg M B.4. W ramach opracowania, w oparciu o obliczony czas średni oraz znaną drogę, obliczamy wartość przyspieszenia = 2 % dla każdego z ciężarków dodatkowych. B.5. Dysponując wartościami przyspieszeń w badanym ruchu jednostajnym, na wykresie przedstawiamy wyniki pomiarów przyspieszenia w zależności od masy. Na tym samym wykresie wykreślamy liniową funkcję dopasowania, zgodnie z wyznaczonymi metodą regresji liniowej parametrami prostej. Funkcję dopasowania ekstrapolujemy dla malejących wartości masy, aż do otrzymania na wykresie wartości zerowej przyspieszenia (przecięcie osi odciętych), jak to pokazano w opracowaniu na Rys.5. B.6. Znane wartości parametrów regresji dla linii prostej dopasowania pozwalają na wyznaczenie, zgodnie z wzorami (10 13), wartości t momentu sił tarcia na osi krążka obrotowego. Ponadto, obliczyć należy niepewność standardową &( t ), a następnie niepewność rozszerzoną dla otrzymanego wyniku, z odpowiednim współczynnikiem rozszerzenia ) * przy poziomie ufności + 95%. Do obliczeń przyjąć promień krążka = 6,3 cm oraz wartość standardową przyspieszenia ziemskiego = 9,8106 m s -2. B.7. Opracowanie możemy uzupełnić oszacowaniem wartości e masy efektywnej dla układu ciężarków i krążka obrotowego. W tym celu wystarczy posłużyć się formułą (11), oraz do obliczeń wykorzystać wyznaczoną wartość współczynnika kierunkowego prostej oraz wartość standardową przyspieszenia ziemskiego = 9,8106 m s -2. Dodatek Współczynniki rozszerzenia -. dla różnych ilości / stopni swobody oraz poziomu ufności. = 01, 21% / ,97 4,53 3,31 2,87 2,65 2,52 2,43 2,37 2,32 2,28 2,13 2,05 2,00

5 msg M Teoria i wyniki pomiarów. W prowadzonym doświadczeniu można się przekonać, że do tego, aby rozpoczął się ruch układu ciężarków nie wystarczy dodanie dowolnej masy dodatkowej, czyli nie wystarcza warunek, by wartość siły 4 > 4. Konieczne jest by wartość wypadkowego momentu sił (związanego z siłami ciężkości) dla krążka (4 4 ) = była większa od momentu sił tarcia t na osi krążka. m 0 F 0 F 2R m 0 + m Rys.2. Układ mas poruszających się pod działaniem sił s Przyjmując szereg upraszczających założeń (pominięcie siły oporu ruchu w powietrzu, zaniedbanie rozciągliwości nitki i jej poślizgu na bloczku oraz nieuwzględnianie masy nitki i założenie stałego momentu sił tarcia) otrzymuje się z równań dynamicznych ruchu rozwiązanie dla stałego przyspieszenia układu mas: = t e + = 9 e t e : 91 + ;< : e gdzie wprowadzono oznaczenia: t - moment sił tarcia na osi bloczka; - promień bloczka; = - moment bezwładności bloczka; - przyspieszenie ziemskie; - masa każdego z dwóch ciężarków; - masa dodatkowego ciężarka; e - masa efektywna ciężarków i bloczka (1) e = 2 + = (2) W doświadczeniu masy ciężarków m 0 = 50 g oraz masa efektywna e 140 g, co przy masie ciężarka dodatkowego 8 g oznacza, < 0,06, (3) gdzie pierwsza z nierówności jest warunkiem zaistnienia ruchu, gdyż wtedy dopiero ciężarek dodatkowy powoduje wystąpienie na bloczku takiego momentu sił, który przewyższa statyczny moment sił tarcia wytworzony na osi krążka. Druga nierówność wynika z ograniczenia wartości masy dodatkowego ciężarka, co z kolei ogranicza maksymalną wartość przyspieszenia w badanym ruchu, aby czas ruchu nie był zbyt krótki. Zadanie A polega na sprawdzeniu oczekiwanej zależności pomiędzy drogą przebywaną w ruchu jednostajnie zmiennym (ze stałym przyspieszeniem) a czasem trwania ruchu. Zgodnie z modelem fizycznym wynikającym z zastosowania praw Newtona do ruchu brył i zgodnie z przyjętymi uproszczeniami, przyspieszenie w rozważanym układzie jest stałe przy ustalonej wartości masy dodatkowej m i można obliczyć jego przewidywaną wartość za pomocą wzoru (1). W konsekwencji tego, rozwiązania równań ruchu prowadzą do następującej zależności przebywanej drogi s od czasu t trwania ruchu (przy braku prędkości początkowej): = (4)

6 msg M Dysponujemy zatem modelem fizycznym zjawiska, w którym zmierzone wartości przebywanych odległości s powinny być liniowo zależne od kwadratu czasu t 2 trwania ruchu. Aby przeanalizować zgodność tego modelu z wynikami pomiarów, można zbadać przewidywaną zależność liniową: jeśli =, = FG HIIIIIJ = + K (5) Jeśli przyjmiemy, że spełniony musi być warunek b = 0 równoważny założeniu zerowej wartości = 0 dla odległości początkowej, to wynikające z modelu fizycznego równanie upraszcza się do postaci: =, gdzie = (6) 2 Systematyczne niedoszacowanie, bądź przeszacowanie mierzonych odległości s wiązałoby się z koniecznością przyjęcia wartości drogi początkowej 0 różnej od zera, a tym samym stałej K 0. Badanie zależności drogi y = s od kwadratu czasu x = t 2 trwania ruchu = Współczynnik kierunkowy Współczynnik korelacji Niepewność standardowa prostej = PR< PR< P P P PR< P P S = T PR< P T PR< P &() = U V = S W 1 S X 2 Przy wyznaczaniu parametru a zależności liniowej można posłużyć się funkcjami dostępnymi w kalkulatorze z obsługą statystyki dwóch zmiennych, albo np. wbudowaną funkcją REGLINP w arkuszu kalkulacyjnym typu MS Excel (instrukcja w pkt. - dla prostej y=a x funkcja REGLINP(znane_Y;znane_X;0;1). s [cm] Wykres wyników pomiaru badania zależności liniowej pomiędzy drogą s i kwadratem czasu t 2 w ruchu jednostajnie zmiennym y = 3,002 x r² = 0, t 2 [s 2 ] Rys.3. Na wykresie przedstawiono punkty pomiarowe zależności drogi od kwadratu czasu w celu sprawdzenia przewidzianej teorią zależności (4,5 i 6) oraz wprowadzono wykres lini prostej regresji liniowej dla danych wartości pomiarów.

7 msg M Ocena otrzymanej wartości współczynnika korelacji pozwala na określenie skali zgodności z wynikami pomiarów modelu teoretycznego, wskazującego na zależność liniową drogi y = s od kwadratu czasu x = t 2 skala zgodności tym większa, im bliższy wartości 1 jest współczynnik korelacji (wartość r = 1 oznaczałaby idealną zależność liniową, tzn. punkty pomiaru ułożone ściśle wzdłuż jednej prostej). Obliczona wartość współczynnika kierunkowego pozwala na wyznaczenie przyspieszenia oraz oszacowanie niepewności standardowej i rozszerzonej tego pomiaru (przy p = 95,45% współczynnik rozszerzenia k p = 2,52 stosownie do liczby stopni swobody Y = X 1 = 6 w podanym przykładzie): = 2 &( ) = 2 &() Z( ) = ) * &( ) = 6,0041 cm s -2 &( ) = 0,07813 cm s -2 Z( ) = 0,1969 cm s -2 co pozwala podać wynik dla przyspieszenia w badanym ruchu jednostajnie zmiennym: = (6,00 ± 0,20) 10 ; m s -2. Dysponując wartością przyspieszenia w badanym ruchu jednostajnym możemy na wykresie (Rys.4.) przedstawiającym wyniki pomiarów drogi i czasu trwania ruchu wykreślić wartości funkcji dopasowania, zgodnie z przewidzianym teorią równaniem kinematycznym ruchu jednostajnie zmiennego: () = 1 2 (7) Wykres przedstawiający wyniki pomiarów (s, t) oraz funkcję teoretyczną s(t) drogi w zależności od czasu s( t) = a0 t 2 2 s [cm] t [s] Rys.4. Na wykresie przedstawiono zbiór punktów pomiarowych otrzymanych w doświadczeniu oraz wykreślono funkcję teoretyczną zależności drogi od czasu dla obliczonej wartości przyspieszenia w badanym ruchu jednostajnie zmiennym.

8 msg M Zadanie B wiąże się z wyznaczeniem zależności przyspieszenia od masy dodatkowego ciężarka oraz możliwością wyznaczenia momentu sił tarcia związanego z ruchem obrotowym krążka. Zależność przyspieszenia układu mas od masy dodatkowego ciężarka wyrażona wzorem (1) można wyrazić w postaci przybliżonej następująco: t 9 e = e : ]1 + _ t e e `, (8) e^ gdzie wzór przybliżony otrzymujemy po uwzględnieniu warunku określonego nierównościami (3), z których wynika a < 0,06, który to warunek będzie spełniony w przypadku wykonywania pomiarów dla ciężarków o masach 8 g (przy założeniu, że masa efektywna e 140 g). Badanie przyspieszenia układu mas na bloczku - Przyjmujemy, że ruch układu mas odbywa się ze stałym, zależnym od masy dodatkowej, przyspieszeniem () i można je opisać za pomocą przybliżonej zależności, która zgodnie ze wzorem (8) jest następująca: () a? a. (9) Wyniki pomiarów oraz obliczone wartości przyspieszeń pozwalają na doświadczalne przeanalizowanie zależności (), co uwidocznione zostało na wykresie Rys Przyspieszenie a 0 (m) w zależności od masy m ciężarka dodatkowego oraz prosta regresji liniowej pomiary Liniowy (pomiary) a 0 (m) = 6,5374 m - 13,296 a 30 0 [cm/s 2 ] m [g] Rys.5. Na wykresie przedstawiono zbiór punktów pomiarowych (, ) otrzymanych w doświadczeniu oraz wykreślono prostą regresji liniowej zgodnie z założonym modelem (9) zależności liniowej przyspieszenia () od masy dodatkowego ciężarka w badanym ruchu jednostajnie zmiennym.

9 msg M Z równania (9) wynika, że przyspieszenie różne od zera () 0 wystąpi tylko dla takich wartości masy dodatkowej, które są większe od wartości granicznej z, która zgodnie z (9) wyrażona jest formułą: z =?. (10) Równocześnie możliwe jest wyznaczenie metodą regresji liniowej współczynników, K prostej dopasowania do wyników pomiaru, zgodnie z oznaczeniami =, = Współczynnik korelacji: HIIIJ = + K, gdzie = a, K =? a Parametry linii prostej (estymatory regresji liniowej): (11) X PR< P P PR< P PR< P S = TX PR< P ( PR< P ) TX PR< P ( PR< P = X PR< P P PR< P PR< P X PR< P ( PR< P ) K = X =1 X =1 X Niepewności standardowe: ) &() = U V = S W 1 S X 2 &(K) = U f = U W P PR< X Oszacowanie (przybliżone) estymatora współczynnika S(, K) korelacji parametrów i K regresji liniowej: S(, K) TX PR< P PR< P Przy wyznaczaniu parametrów zależności liniowej można posłużyć się funkcjami dostępnymi w kalkulatorze z obsługą statystyki dwóch zmiennych, albo np. wbudowaną funkcją REGLINP w arkuszu kalkulacyjnym typu MS Excel (instrukcja w pkt. - dla prostej y=a x + b funkcja REGLINP(znane_Y;znane_X;1;1). Wyznaczone w oparciu o wyniki pomiarów wartości współczynników i K pozwalają na obliczenie wartości masy granicznej z, zgodnie ze wzorem: z = K (12) W rezultacie, dla znanych wartości promienia krążka obrotowego, przyspieszenia ziemskiego oraz obliczonych wartości, K prostej, możemy wyznaczyć (za pomocą wzorów (10) i (12)) wartość momentu sił tarcia na osi krążka:? = K (13) oraz oszacować niepewność standardową &(? ) za pomocą wzoru, który przy zaniedbaniu niepewności związanych z wartościami i, ale z uwzględnieniem korelacji parametrów i K regresji, przyjmuje postać: &(? ) =? W_ &() ` + _ &(K) K ` 2 g_ &() ` _&(K) ` S(, K)g. (14) K

10 msg M Dla przykładowych danych pomiarowych, zilustrowanych na wykresie Rys.5., otrzymano następujące wartości liczbowe (ilość cyfr znaczących w wynikach dobrana tak, by zapewnić wystarczającą precyzję dalszych obliczeń): Współczynnik korelacji: S = 0,97546 Parametry linii prostej: = 6,5374 cm s -2 g -1 K = 13,2957 cm s -2 Niepewności standardowe: &() = 0,5184 cm s -2 g -1 &(K) = 2,8882 cm s -2 Współczynnik S(, K) korelacji parametrów i K : S(, K) 0,88206 Obliczone na podstawie wzorów (13) i (14) wartości momentu sił tarcia oraz niepewności standardowej (po uwzględnieniu = 6,3 cm oraz = 9,8106 m s -2 ):? = 1, ;h N m &(? ) = 0, ;h N m Warto tutaj podkreślić, że w tym przypadku pominięcie we wzorze (14) korelacji parametrów i K regresji liniowej prowadziłoby do radykalnego zawyżenia obliczanej wartości niepewności standardowej, bowiem powiększyłoby ją ok. trzykrotnie. Ostateczny wynik dla momentu sił tarcia? podajemy po obliczeniu niepewności rozszerzonej Z(? ) = ) * &(? ) ze współczynnikiem rozszerzenia ) * = 2,87 odpowiednim dla poziomu ufności + 95% oraz przy Y = X 2 = 4 stopniach swobody:? ± Z(? )? = (1,26 ± 0,29) 10 ;h N m Literatura H. Szydłowski Pracownia Fizyczna, PWN Warszawa 1973 i późn. J. Orear Fizyka, T.1 i 2, WNT Warszawa 1990 R.Resnick, D.Halliday, J.Walker Podstawy fizyki, Materiały pomocnicze dostępne w formie elektronicznej: o Instrukcje opisujące algorytm opracowania wyników pomiaru, o Jednostki, stałe fizyczne, liczby, o Metody oszacowania niepewności pomiaru. Opracowanie: M.Gajdek, Katedra Fizyki, PŚk

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych.

Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych. msg O 7 - - Temat: Badanie soczewek, wyznaczanie odległości ogniskowej. Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego Ćwiczenie M6 Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego M6.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przyspieszenia ziemskiego poprzez analizę ruchu wahadła prostego. M6..

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) Wprowadzenie Wartość współczynnika sztywności użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić pionowo

Bardziej szczegółowo

Doświadczalne sprawdzenie drugiej zasady dynamiki ruchu obrotowego za pomocą wahadła OBERBECKA.

Doświadczalne sprawdzenie drugiej zasady dynamiki ruchu obrotowego za pomocą wahadła OBERBECKA. Dowiadczalne sprawdzenie drugiej zasady dynamiki ruchu obrotowego za pomocą wahadła OBERBECKA. Wprowadzenie Wahadło Oberbecka jest bryłą sztywną utworzoną przez tuleję (1) i cztery identyczne wkręcone

Bardziej szczegółowo

Anna Nagórna Wrocław, r. nauczycielka chemii i fizyki

Anna Nagórna Wrocław, r. nauczycielka chemii i fizyki Anna Nagórna Wrocław, 1.09.2015 r. nauczycielka chemii i fizyki Plan pracy dydaktycznej na fizyce wraz z wymaganiami edukacyjnymi na poszczególne oceny w klasach pierwszych w roku szkolnym 2015/2016 na

Bardziej szczegółowo

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

Zadanie bloczek. Rozwiązanie. I sposób rozwiązania - podział na podukłady.

Zadanie bloczek. Rozwiązanie. I sposób rozwiązania - podział na podukłady. Zadanie bloczek Przez zamocowany bloczek o masie m przerzucono nierozciągliwą nitkę na której zawieszono dwa obciąŝniki o masach odpowiednio m i m. Oblicz przyspieszenie z jakim będą poruszać się obciąŝniki.

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia

Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia Doświadczenie: Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia Cele doświadczenia Celem doświadczenia jest zbadanie zależności drogi przebytej w ruchu przyspieszonym od czasu dla kuli bilardowej

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment

Bardziej szczegółowo

KLASA I PROGRAM NAUCZANIA DLA GIMNAZJUM TO JEST FIZYKA M.BRAUN, W. ŚLIWA (M. Małkowska)

KLASA I PROGRAM NAUCZANIA DLA GIMNAZJUM TO JEST FIZYKA M.BRAUN, W. ŚLIWA (M. Małkowska) KLASA I PROGRAM NAUZANIA LA GIMNAZJUM TO JEST FIZYKA M.RAUN, W. ŚLIWA (M. Małkowska) Kursywą oznaczono treści dodatkowe Temat lekcji ele operacyjne - uczeń: Kategoria celów podstawowe Wymagania ponadpodstawowe

Bardziej szczegółowo

Badanie ciał na równi pochyłej wyznaczanie współczynnika tarcia statycznego

Badanie ciał na równi pochyłej wyznaczanie współczynnika tarcia statycznego Ćwiczenie M8 Badanie ciał na równi pochyłej wyznaczanie współczynnika tarcia statycznego M8.1. Cel ćwiczenia Celem ćwiczenia jest analiza sił działających na ciało spoczywające na równi pochyłej i badanie

Bardziej szczegółowo

BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO

BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO ĆWICZENIE 36 BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO Cel ćwiczenia: Wyznaczenie podstawowych parametrów drgań tłumionych: okresu (T), częstotliwości (f), częstotliwości kołowej (ω), współczynnika tłumienia

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie 11B Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym 11B.1. Zasada ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera) Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Bardziej szczegółowo

Ćwiczenie: "Ruch po okręgu"

Ćwiczenie: Ruch po okręgu Ćwiczenie: "Ruch po okręgu" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Kinematyka

Bardziej szczegółowo

Podstawy niepewności pomiarowych Ćwiczenia

Podstawy niepewności pomiarowych Ćwiczenia Podstawy niepewności pomiarowych Ćwiczenia 1. Zaokrąglij podane wartości pomiarów i ich niepewności. = (334,567 18,067) m/s = (153 450 000 1 034 000) km = (0,0004278 0,0000556) A = (2,0555 0,2014) s =

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Jedno z doświadczeń obowiązkowych ujętych w podstawie programowej fizyki - Badanie ruchu prostoliniowego jednostajnie zmiennego.

SCENARIUSZ LEKCJI. Jedno z doświadczeń obowiązkowych ujętych w podstawie programowej fizyki - Badanie ruchu prostoliniowego jednostajnie zmiennego. Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH

Bardziej szczegółowo

Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.

Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera. ĆWICZENIE WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Opis ćwiczenia Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Bardziej szczegółowo

Dopasowanie prostej do wyników pomiarów.

Dopasowanie prostej do wyników pomiarów. Dopasowanie prostej do wyników pomiarów. Graficzna analiza zależności liniowej Założenie: każdy z pomiarów obarczony jest taką samą niepewnością pomiarową (takiej samej wielkości prostokąty niepewności).

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo

Bardziej szczegółowo

Temat: SZACOWANIE NIEPEWNOŚCI POMIAROWYCH

Temat: SZACOWANIE NIEPEWNOŚCI POMIAROWYCH Temat: SZCOWNIE NIEPEWNOŚCI POMIROWYCH - Jak oszacować niepewność pomiarów bezpośrednich? - Jak oszacować niepewność pomiarów pośrednich? - Jak oszacować niepewność przeciętną i standardową? - Jak zapisywać

Bardziej szczegółowo

SZCZEGÓŁOWE CELE EDUKACYJNE

SZCZEGÓŁOWE CELE EDUKACYJNE Program nauczania: Fizyka z plusem, numer dopuszczenia: DKW 4014-58/01 Plan realizacji materiału nauczania fizyki w klasie I wraz z określeniem wymagań edukacyjnych DZIAŁ PRO- GRA- MOWY Pomiary i Siły

Bardziej szczegółowo

KARTA INFORMACYJNA PRZEDMIOTU

KARTA INFORMACYJNA PRZEDMIOTU Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU

Bardziej szczegółowo

JAK PROSTO I SKUTECZNIE WYKORZYSTAĆ ARKUSZ KALKULACYJNY DO OBLICZENIA PARAMETRÓW PROSTEJ METODĄ NAJMNIEJSZYCH KWADRATÓW

JAK PROSTO I SKUTECZNIE WYKORZYSTAĆ ARKUSZ KALKULACYJNY DO OBLICZENIA PARAMETRÓW PROSTEJ METODĄ NAJMNIEJSZYCH KWADRATÓW JAK PROSTO I SKUTECZNIE WYKORZYSTAĆ ARKUSZ KALKULACYJNY DO OBLICZENIA PARAMETRÓW PROSTEJ METODĄ NAJMNIEJSZYCH KWADRATÓW Z tego dokumentu dowiesz się jak wykorzystać wbudowane funkcje arkusza kalkulacyjnego

Bardziej szczegółowo

1. II zasada dynamiki Newtona

1. II zasada dynamiki Newtona 1 1. II zasada dynamiki Newtona 1.1. Cel ćwiczenia Cel ćwiczenia: Sprawdzenie II zasady dynamiki dla ruchu dla ciała po poziomym torze pozbawionym tarcia. Zagadnienia praktyki laboratoryjnej: Pomiar czasu

Bardziej szczegółowo

WYZNACZENIE WSPÓŁCZYNNIKA OPORU TOCZENIA I WSPÓŁCZYNNIKA OPORU POWIETRZA

WYZNACZENIE WSPÓŁCZYNNIKA OPORU TOCZENIA I WSPÓŁCZYNNIKA OPORU POWIETRZA Cel ćwiczenia WYZNACZENIE WSPÓŁCZYNNIKA OPORU TOCZENIA I WSPÓŁCZYNNIKA OPORU POWIETRZA Celem cwiczenia jest wyznaczenie współczynników oporu powietrza c x i oporu toczenia f samochodu metodą wybiegu. Wprowadzenie

Bardziej szczegółowo

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu.

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu. 1 1 x (m/s) 4 0 4 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 t (s) a) Narysuj wykres a x (t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka

Bardziej szczegółowo

ĆWICZENIE 3 REZONANS AKUSTYCZNY

ĆWICZENIE 3 REZONANS AKUSTYCZNY ĆWICZENIE 3 REZONANS AKUSTYCZNY W trakcie doświadczenia przeprowadzono sześć pomiarów rezonansu akustycznego: dla dwóch różnych gazów (powietrza i CO), pięć pomiarów dla powietrza oraz jeden pomiar dla

Bardziej szczegółowo

Analiza zderzeń dwóch ciał sprężystych

Analiza zderzeń dwóch ciał sprężystych Ćwiczenie M5 Analiza zderzeń dwóch ciał sprężystych M5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar czasu zderzenia kul stalowych o różnych masach i prędkościach z nieruchomą, ciężką stalową przeszkodą.

Bardziej szczegółowo

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym

Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika

Bardziej szczegółowo

Człowiek najlepsza inwestycja FENIKS

Człowiek najlepsza inwestycja FENIKS Człowiek najlepsza inwestycja ENIKS - długofalowy program odbudowy, popularyzacji i wspomagania fizyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i informatycznych

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała

Bardziej szczegółowo

VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1)

VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1) 1 VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1) 1. Opis ruchu postępowego 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)

Bardziej szczegółowo

Ćwiczenie: "Kinematyka"

Ćwiczenie: Kinematyka Ćwiczenie: "Kinematyka" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Ruch punktu

Bardziej szczegółowo

Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Obowiązkowa znajomość zagadnień Charakterystyka drgań gasnących i niegasnących, ruch harmoniczny. Wahadło fizyczne, długość zredukowana

Bardziej szczegółowo

Uwaga: Nie przesuwaj ani nie pochylaj stołu, na którym wykonujesz doświadczenie.

Uwaga: Nie przesuwaj ani nie pochylaj stołu, na którym wykonujesz doświadczenie. Mając do dyspozycji 20 kartek papieru o gramaturze 80 g/m 2 i wymiarach 297mm na 210mm (format A4), 2 spinacze biurowe o masie 0,36 g każdy, nitkę, probówkę, taśmę klejącą, nożyczki, zbadaj, czy maksymalna

Bardziej szczegółowo

Ć W I C Z E N I E N R M-2

Ć W I C Z E N I E N R M-2 INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Ćwiczenie nr 43: HALOTRON

Ćwiczenie nr 43: HALOTRON Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel

Bardziej szczegółowo

Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki?

Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki? 1 Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki? Sprawozdania należny oddać na kolejnych zajęciach laboratoryjnych. Każde opóźnienie powoduje obniżenie oceny za sprawozdanie o 0,

Bardziej szczegółowo

Fizyka Podręcznik: Świat fizyki, cz.1 pod red. Barbary Sagnowskiej. 4. Jak opisujemy ruch? Lp Temat lekcji Wymagania konieczne i podstawowe Uczeń:

Fizyka Podręcznik: Świat fizyki, cz.1 pod red. Barbary Sagnowskiej. 4. Jak opisujemy ruch? Lp Temat lekcji Wymagania konieczne i podstawowe Uczeń: Fizyka Podręcznik: Świat fizyki, cz.1 pod red. Barbary Sagnowskiej 4. Jak opisujemy ruch? Lp Temat lekcji Wymagania konieczne i podstawowe Wymagania rozszerzone i dopełniające 1 Układ odniesienia opisuje

Bardziej szczegółowo

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika

Bardziej szczegółowo

Rozdział 1. Prędkość i przyspieszenie... 5 Rozdział 2. Składanie ruchów Rozdział 3. Modelowanie zjawisk fizycznych...43 Numeryczne całkowanie,

Rozdział 1. Prędkość i przyspieszenie... 5 Rozdział 2. Składanie ruchów Rozdział 3. Modelowanie zjawisk fizycznych...43 Numeryczne całkowanie, Rozdział 1. Prędkość i przyspieszenie... 5 Rozdział. Składanie ruchów... 11 Rozdział 3. Modelowanie zjawisk fizycznych...43 Rozdział 4. Numeryczne całkowanie, czyli obliczanie pracy w polu grawitacyjnym

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem.

Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem. Przykładowy zestaw zadań z fizyki i astronomii Poziom podstawowy 11 Zadanie 18. Współczynnik sprężystości (4 pkt) Masz do dyspozycji statyw, sprężynę, linijkę oraz ciężarek o znanej masie z uchwytem. 18.1

Bardziej szczegółowo

CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI

CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - 7 CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE

Bardziej szczegółowo

WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH

WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY METODĄ DRGAŃ SKRĘTNYCH I. Cel ćwiczenia: wyznaczenie momentu bezwładności bryły przez pomiar okresu drgań skrętnych, zastosowanie twierdzenia Steinera. II. Przyrządy:

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

Ekpost=mv22. Ekobr=Iω22, mgh =mv22+iω22,

Ekpost=mv22. Ekobr=Iω22, mgh =mv22+iω22, Koło Maxwella Cel ćwiczenia Celem ćwiczenia jest badanie prawa zachowania energii w polu grawitacyjnym, a także zapoznanie się z prawami rządzącymi ruchem obrotowym. Wstęp Wahadło Maxwella Wahadło Maxwella

Bardziej szczegółowo

Podstawy fizyki. [T.] 1 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2. Warszawa, Spis treści

Podstawy fizyki. [T.] 1 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2. Warszawa, Spis treści Podstawy fizyki. [T.] 1 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2. Warszawa, 2015 Spis treści Od Wydawcy do drugiego wydania polskiego Przedmowa Podziękowania xi xiii xxi 1. Pomiar 1 1.1.

Bardziej szczegółowo

SPRAWDZENIE PRAWA STEFANA - BOLTZMANA

SPRAWDZENIE PRAWA STEFANA - BOLTZMANA Agnieszka Głąbała Karol Góralczyk Wrocław 5 listopada 008r. SPRAWDZENIE PRAWA STEFANA - BOLTZMANA LABORATORIUM FIZYKI OGÓLNEJ SPRAWOZDANIE z Ćwiczenia 88 1.Temat i cel ćwiczenia: Celem niniejszego ćwiczenia

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II Energia mechaniczna Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

Kołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt)

Kołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt) Kołowrót -11pkt. Kołowrót w kształcie walca, którego masa wynosi 10 kg, zamocowany jest nad studnią (rys.). Na kołowrocie nawinięta jest nieważka i nierozciągliwa linka, której górny koniec przymocowany

Bardziej szczegółowo

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników 1. Podstawowe pojęcia związane z niewyważeniem Stan niewyważenia stan wirnika określony takim rozkładem masy, który w czasie wirowania wywołuje

Bardziej szczegółowo

Przedmiotowy system oceniania z fizyki

Przedmiotowy system oceniania z fizyki Przedmiotowy system oceniania z fizyki Klasa II semestr I Szczegółowe wymagania na poszczególne stopnie (oceny) 1. Kinematyka wskazuje w otaczającej rzeczywistości przykłady ruchu odróżnia pojęcia: tor,

Bardziej szczegółowo

Plan wynikowy fizyka rozszerzona klasa 2

Plan wynikowy fizyka rozszerzona klasa 2 Plan wynikowy fizyka rozszerzona klasa 2 1. Opis ruchu postępowego Temat lekcji Elementy działań na wektorach dostateczną uczeń podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy

Bardziej szczegółowo

PRZYRZĄD DO BADANIA RUCHU JEDNOSTAJNEGO l JEDNOSTANIE ZMIENNEGO V 5-143

PRZYRZĄD DO BADANIA RUCHU JEDNOSTAJNEGO l JEDNOSTANIE ZMIENNEGO V 5-143 Przyrząd do badania ruchu jednostajnego i jednostajnie zmiennego V 5-43 PRZYRZĄD DO BADANIA RUCHU JEDNOSTAJNEGO l JEDNOSTANIE ZMIENNEGO V 5-43 Oprac. FzA, IF US, 2007 Rys. Przyrząd stanowi równia pochyła,

Bardziej szczegółowo

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa Włodzimierz Wolczyński Przyspieszenie kątowe 1 RUCH OROTOWY RYŁY SZTYWNEJ I = = ε przyspieszenie kątowe [ ] ω prędkość kątowa = = T okres, = - częstotliwość s=αr v=ωr a=εr droga = kąt x promień prędkość

Bardziej szczegółowo

Wymagania edukacyjne z fizyki poziom rozszerzony część 1

Wymagania edukacyjne z fizyki poziom rozszerzony część 1 1 Wymagania edukacyjne z fizyki poziom rozszerzony część 1 Kinematyka podaje przykłady zjawisk fizycznych występujących w przyrodzie wyjaśnia, w jaki sposób fizyk zdobywa wiedzę o zjawiskach fizycznych

Bardziej szczegółowo

Ć w i c z e n i e K 3

Ć w i c z e n i e K 3 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

BADANIE RUCHU POSTĘPOWEGO I OBROTOWEGO CIAŁ 16 PRZY UŻYCIU KOMPUTERA

BADANIE RUCHU POSTĘPOWEGO I OBROTOWEGO CIAŁ 16 PRZY UŻYCIU KOMPUTERA BADANIE RUCHU POSTĘPOWEGO I OBROTOWEGO CIAŁ 16 PRZY UŻYCIU KOMPUTERA I. ZAGADNIENIA TEORETYCZNE Zasady dynamiki Newtona. Kinematyka i dynamika ruchu postępowego i obrotowego. Spadek swobodny. Ruch postępowy

Bardziej szczegółowo

Rozwiązanie: Część teoretyczna

Rozwiązanie: Część teoretyczna Zgodnie z prawem Hooke a idealnie sprężysty pręt o długości L i polu przekroju poprzecznego S pod wpływem przyłożonej wzdłuż jego osi siły F zmienia swoją długość o L = L F/(S E), gdzie współczynnik E

Bardziej szczegółowo

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Wyznaczanie krzywej ładowania kondensatora

Wyznaczanie krzywej ładowania kondensatora Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.

Bardziej szczegółowo

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres

Bardziej szczegółowo

Wymagania edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka

Wymagania edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka 1 edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka *W nawiasie podano alternatywny temat lekcji (jeśli nazwa zagadnienia jest długa) bądź tematy lekcji

Bardziej szczegółowo

Treści dopełniające Uczeń potrafi:

Treści dopełniające Uczeń potrafi: P Lp. Temat lekcji Treści podstawowe 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać wektory, odjąć wektor od wektora, pomnożyć

Bardziej szczegółowo

Plan wynikowy (propozycja 61 godzin)

Plan wynikowy (propozycja 61 godzin) 1 Plan wynikowy (propozycja 61 godzin) Kinematyka (19 godzin) *W nawiasie podano alternatywny temat lekcji (jeśli nazwa zagadnienia jest długa) bądź tematy lekcji realizowanych w ramach danego zagadnienia.

Bardziej szczegółowo

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1

DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1 DOKŁADNOŚĆ POMIARU DŁUGOŚCI 1 I. ZAGADNIENIA TEORETYCZNE Niepewności pomiaru standardowa niepewność wyniku pomiaru wielkości mierzonej bezpośrednio i złożona niepewność standardowa. Przedstawianie wyników

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu

Bardziej szczegółowo

13. WYZNACZANIE CHARAKTERYSTYK ORAZ PRZEŁOŻENIA UKŁADU KIEROWNICZEGO

13. WYZNACZANIE CHARAKTERYSTYK ORAZ PRZEŁOŻENIA UKŁADU KIEROWNICZEGO 13. WYZNACZANIE CHARAKTERYSTYK ORAZ PRZEŁOŻENIA UKŁADU KIEROWNICZEGO 13.0. Uwagi dotyczące bezpieczeństwa podczas wykonywania ćwiczenia 1. Studenci są zobowiązani do przestrzegania ogólnych przepisów BHP

Bardziej szczegółowo

Niepewności pomiarów

Niepewności pomiarów Niepewności pomiarów Międzynarodowa Organizacja Normalizacyjna (ISO) w roku 1995 opublikowała normy dotyczące terminologii i sposobu określania niepewności pomiarów [1]. W roku 1999 normy zostały opublikowane

Bardziej szczegółowo

WYKŁAD 8 ANALIZA REGRESJI

WYKŁAD 8 ANALIZA REGRESJI WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej

Bardziej szczegółowo

Wyznaczanie modułu sztywności metodą Gaussa

Wyznaczanie modułu sztywności metodą Gaussa Ćwiczenie M13 Wyznaczanie modułu sztywności metodą Gaussa M13.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu sztywności stali metodą dynamiczną Gaussa. M13.2. Zagadnienia związane z

Bardziej szczegółowo

Kinematyka. zmiennym(przeprowadza złożone. kalkulatora)

Kinematyka. zmiennym(przeprowadza złożone. kalkulatora) Kinematyka Ocena podaje przykłady zjawisk fizycznych występujących w przyrodzie wyjaśnia, w jaki sposób fizyk zdobywa wiedzę o zjawiskach fizycznych wymienia przyczyny wprowadzenia Międzynarodowego Układu

Bardziej szczegółowo

konieczne podstawowe rozszerzające dopełniające dopuszczający dostateczny dobry bardzo dobry I 2 3 4 Rozdział I. Pierwsze spotkania z fizyką

konieczne podstawowe rozszerzające dopełniające dopuszczający dostateczny dobry bardzo dobry I 2 3 4 Rozdział I. Pierwsze spotkania z fizyką Przedmiotowy system oceniania (propozycja) Kursywa oznaczono treści dodatkowe Wymagania na poszczególne oceny konieczne podstawowe rozszerzające dopełniające dopuszczający dostateczny dobry bardzo dobry

Bardziej szczegółowo

DOŚWIADCZENIE MILLIKANA

DOŚWIADCZENIE MILLIKANA DOŚWIADCZENIE MILLIKANA Wyznaczenie wartości ładunku elementarnego metodą Millikana Cel ćwiczenia: Celem ćwiczenia jest wyznaczenie ładunku elementarnego ( ładunku elektronu) metodą zastosowaną przez R.A

Bardziej szczegółowo

konieczne podstawowe rozszerzające dopełniające dopuszczający dostateczny dobry bardzo dobry I Rozdział I. Pierwsze spotkania z fizyką pomiaru

konieczne podstawowe rozszerzające dopełniające dopuszczający dostateczny dobry bardzo dobry I Rozdział I. Pierwsze spotkania z fizyką pomiaru Przedmiotowy system oceniania (propozycja) Kursywa oznaczono treści dodatkowe Wymagania na poszczególne oceny konieczne podstawowe rozszerzające dopełniające dopuszczający dostateczny dobry bardzo dobry

Bardziej szczegółowo

Test powtórzeniowy nr 1

Test powtórzeniowy nr 1 Test powtórzeniowy nr 1 Grupa C... imię i nazwisko ucznia...... data klasa W zadaniach 1. 19. wstaw krzyżyk w kwadracik obok wybranej odpowiedzi. Informacja do zadań 1. 5. Wykres przedstawia zależność

Bardziej szczegółowo

EGZAMIN MATURALNY Z FIZYKI Z ASTRONOMIĄ

EGZAMIN MATURALNY Z FIZYKI Z ASTRONOMIĄ Miejsce na naklejkę z kodem (Wpisuje zdający przed rozpoczęciem pracy) KOD ZDAJĄCEGO MFA-W2D1P-021 EGZAMIN MATURALNY Z FIZYKI Z ASTRONOMIĄ Instrukcja dla zdającego Czas pracy 120 minut 1. Proszę sprawdzić,

Bardziej szczegółowo

Mierzymy długość i szybkość fali dźwiękowej. rezonans w rurze.

Mierzymy długość i szybkość fali dźwiękowej. rezonans w rurze. 1 Mierzymy długość i szybkość fali dźwiękowej rezonans w rurze. Czas trwania zajęć: 2h Określenie wiedzy i umiejętności wymaganej u uczniów przed przystąpieniem do realizacji zajęć: Uczeń: - opisuje mechanizm

Bardziej szczegółowo

BŁĘDY W POMIARACH BEZPOŚREDNICH

BŁĘDY W POMIARACH BEZPOŚREDNICH Podstawy Metrologii i Technik Eksperymentu Laboratorium BŁĘDY W POMIARACH BEZPOŚREDNICH Instrukcja do ćwiczenia nr 2 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy Metrologii

Bardziej szczegółowo

Fizyka (Biotechnologia)

Fizyka (Biotechnologia) Fizyka (Biotechnologia) Wykład I Marek Kasprowicz dr Marek Jan Kasprowicz pokój 309 marek.kasprowicz@ur.krakow.pl www.ar.krakow.pl/~mkasprowicz Marek Jan Kasprowicz Fizyka 013 r. Literatura D. Halliday,

Bardziej szczegółowo

Skoki na linie czyli jak TI pomaga w badaniu ruchu

Skoki na linie czyli jak TI pomaga w badaniu ruchu KONKURS KOMPUTEROWE WSPOMAGANIE NAUCZANIA EKSPERYMENTU PRZYRODNICZEGO Skoki na linie czyli jak TI pomaga w badaniu ruchu Jan Dunin Borkowski, Elżbieta Kawecka, Ośrodek Edukacji Informatycznej i Zastosowań

Bardziej szczegółowo

Równania różniczkowe opisujące ruch fotela z pilotem:

Równania różniczkowe opisujące ruch fotela z pilotem: . Katapultowanie pilota z samolotu Równania różniczkowe opisujące ruch fotela z pilotem: gdzie D - siłą ciągu, Cd współczynnik aerodynamiczny ciągu, m - masa pilota i fotela, g przys. ziemskie, ρ - gęstość

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

TRANSPORT NIEELEKTROLITÓW PRZEZ BŁONY WYZNACZANIE WSPÓŁCZYNNIKA PRZEPUSZCZALNOŚCI

TRANSPORT NIEELEKTROLITÓW PRZEZ BŁONY WYZNACZANIE WSPÓŁCZYNNIKA PRZEPUSZCZALNOŚCI Ćwiczenie nr 7 TRANSPORT NIEELEKTROLITÓW PRZEZ BŁONY WYZNACZANIE WSPÓŁCZYNNIKA PRZEPUSZCZALNOŚCI Celem ćwiczenia jest zapoznanie się z podstawami teorii procesów transportu nieelektrolitów przez błony.

Bardziej szczegółowo

MECHANIKA PŁYNÓW LABORATORIUM

MECHANIKA PŁYNÓW LABORATORIUM MECANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 4 Współpraca pompy z układem przewodów. Celem ćwiczenia jest sporządzenie charakterystyki pojedynczej pompy wirowej współpracującej z układem przewodów, przy różnych

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo