Miernik częstotliwości 100 MHz
|
|
- Aleksander Jakubowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Miernik częstotliwości 100 MHz Marek SP9XUH W pierwszym zamyśle układ ten, miał posłużyć do sprawdzenia możliwości prostego i w miarę dokładnego pomiaru częstotliwości wyjściowej transceivera KF. Chcę go wykorzystać do sterowania automatyczną zmianą pasm we wzmacniaczu mocy KF. Po porównaniu wskazań z fabrycznymi miernikami częstotliwości okazało się, że dokładność pomiaru, jak na tak prosty układ, jest dobra. Jak wspomniałem, miernik ma mierzyć częstotliwości z zakresu KF, dlatego zastosowałem w nim dzielniki na układach serii 74LSxx. Po wymianie na szybsze 74Fxx, możliwości pomiaru wzrosły do około 100 MHz.. Układ testowy miał tylko jedno wejście. Ostatecznie, rozbudowałem go o dodatkowe dwa wejścia pomiarowe oraz dwa gniazda, na które wyprowadzone zostały wolne linie portów mikrokontrolera. Wejścia pomiarowe: 1. TTL prostokąt 100 MHz 2. sinusoida 100 MHz 3. sinusoida MHz dla 74HC14, 100 MHz 74LVG14 Schemat ideowy miernika częstotliwości Mierzony sygnał możemy podać na jedno z trzech wejść: gniazdo G1 Pomiar przebiegu prostokątnego. Ze względu na zastosowanie tranzystora wejściowego T3, amplituda tego przebiegu może mieścić się w standardzie TTL i może być od niego zarówno mniejsza jak i większa gniazdo G2 Pomiar przebiegu sinusoidalnego. Sygnał poprzez kondensator C2, podawany jest na nóżkę 14 (wejście 2) układu U1 (NE592 - wzmacniacz video), pracującego jako wzmacniacz napięcia. Wzmocnienie napięciowe ustalane jest rezystorem R5. Przy wartości 150 Ohm, wynosi ono około 100. Sygnał trójkątny z wyjść 1 i 2 (nóżki 7 i 8) steruje bazami tranzystorów T1 i T2. Ich zadaniem jest uformowanie sygnału prostokątnego, potrzebnego dla prawidłowej pracy bramek TTL. gniazdo G3 Pomiar przebiegu sinusoidalnego. Zbudowane jest także na układzie NE592, z tym że jest to wersja 8-nóżkowa. Potencjometr P1 pozwala ustawić odpowiednia wartość amplitudy sygnału dla przerzutnika Schmitta. Przerzutnik (U6), tak jak tranzystory T1, T2 w wejściu drugim, formuje sygnał do kształtu prostokąta. Przełącznikiem S2 wybieramy wejście, z którego dokonywany będzie pomiar. Z przełącznika sygnał podawany jest na wejście wstępnego dzielnika częstotliwości- preskalera, zbudowanego na dwóch szybkich przerzutnikach D typu 74F74 (UC4). Są one połączone szeregowo i pracując w układzie dwójek liczących, dając na wyjściu Q drugiego przerzutnika częstotliwość podzielona przez 4. Dalszy podział następuje w liczniku binarnym typu 74HCT393 (UC5). Na wyjściu Q1 (4) układu UC5 otrzymujemy częstotliwość podzielona przez 4, a na wyjściu Q2(5) podzieloną przez 8. W zależności czy zwarta jest zworka Z3 czy Z4, na wejście licznika T1 procesora (U2, 11), podawany jest przebieg prostokątny o częstotliwości mierzonej podzielonej przez 16 (4x4) lub 32 (4x8). Ostatecznie pozostałem na podziale przez 32. Mikrokontroler Atmega8 zajmuje się zliczaniem impulsów przychodzących z preskalera i odpowiednim ich przeliczeniem na wartość częstotliwości. Wynik pomiaru wyświetlany jest na wyświetlaczu LCD 2x16 znaków, typu HY-1602F. Procesor taktowany jest zegarem o częstotliwości 16 MHz, w którym wykorzystano standardowy rezonator kwarcowy. Aby zwiększyć dokładność pomiaru, można zastosować bardziej dokładny i stabilny generator kwarcowy. Układ DS U3, powoduje reset sprzętowy mikrokontrolera w przypadku spadku napięcia zasilającego poniżej 4,75 V. Wolne linie portów PB i PD, wyprowadzone zostały na gniazda G6 i G7. W razie potrzeby, do każdej z tych linii, można dołączyć rezystor podciągający do +5V; R26 do R33 przygotowane miejsce na płytce. Gniazdo ISP (G5), umożliwia nam programowanie procesora bez jego wyciągania z układu. Zasilacz, zbudowany na typowych stabilizatorach napięcia 78xx (U7, U8), dostarcza dwóch napięć: +12V i +5V. Mostek Gretza (D3), pozwala zasilać częstościomierz ze źródła napięcia stałego jak i zmiennego. Transformator pomiarowy Do pomiaru częstotliwości wyjściowej TRX, pracującego z mocą od 5 do 150W, wykonałem transformator pomiarowy. Jako rdzeń zastosowałem pierścionek Amidon FT43-50, na którym nawinięte jest 30 zwoi drutu DNE 0,3 mm. Przez otwór rdzenia przechodzi gorąca żyła kabla koncentrycznego RG58, której końce przylutowane są do gniazd UC-1. 1
2 2
3 Płytka drukowana miernika częstotliwości Płytka zaprojektowana została w Protelu i wykonana metodą termotransferu. Wymiary płytki, szer. 84mm x wys. 98mm, dostosowane zostały do typowej plastykowej obudowy KM-35. Płytka drikowana Odbicie lustrzane Negatyw płytki Rozmieszczenie elementów 3
4 Oprogramowanie Bardzo prosty program, napisany został w języku BASCOM. Ogólnie, jego zadaniem jest przeliczenie impulsów zliczonych przez liczniki mikrokontrolera na wartość częstotliwości i wyświetlenie jej na wyświetlaczu LCD. Pomiar, jak i odświeżanie wyświetlacza, odbywa się w cyklu jednosekundowym. Dlatego, tak ważna jest tu dokładna i stabilna częstotliwość rezonatora kwarcowego. W przypadku, gdy częstotliwość rezonatora różni się od 16 MHz, zmieniamy wartość zmiennej przerwanie_timer0, tak aby uzyskać prawidłowe odliczenie 1 sekundy, a co za tym idzie prawidłowy wynik pomiaru. Możemy także zastosować inny rezonator, pamiętając o tym, aby jego częstotliwość, przy pomiarach do 100 MHz i preskalerze 32, była nie mniejsza niż 8 MHz. Wynika to ze sposobu zliczania impulsów przez liczniki procesora. W tm przypadku musimy wyliczyć wartość przypisywaną zmiennej przerwanie_timer0. Jeżeli mierzona częstotliwość jest mniejsza od 2 MHz, to wyświetlana jest w khz. Natomiast jeżeli jest większa od 2 MHz, to w MHz. Wartość przy której następuje zmiana wyświetlania z khz na MHz, jest zależna od liczby wpisanej w warunku if wynik_pomiaru < (31250 to 2 MHz, dla kwarcu 16MHz). frq_meter_zrodlo_bascom.bas źródło programu w BASCOM frq_meter_wsad_atmega8.hex wsad do procesora frq_meter_zrodlo_bascom.txt źródło programu w pliku txt ************************************************************ Program miernika częstotliwo ci 100 MHz Marek SP9XUH strona: poczta@sp9xuh.pl Przerwanie_timer0 = sekunda dla zegara 16 MHz Wynik_pomiaru < MHz dla zegara 16 MHz dla innego kwarcu należy odpowiednio przeliczyć warto ć ************************************************************* $regfile = "m8def.dat" $crystal = typ procesora Atmega8 Config Lcd = 16 * 2 konfiguracja Lcd. Config Lcdpin = Pin, Db4 = Portc.3, Db5 = Portc.2, Db6 = Portc.1, Db7 = Portc.0, E = Portc.4, Rs = Portc.5 Cursor Off Config Timer0 = Timer, Prescale = 1 Timer0 jako Timer z podziałem przez 1. Config Timer1 = Counter, Edge = Falling Timer1 jako licznik działający od zbocza opadajšcego. On Timer0 Odmierz_1s On Timer1 Zlicz_przep_tim1 podprogram wywoływany od Timera0 podprogram wywoływany do Timera1. Dim Przerwanie_timer0 As Long Dim Przepelnienie_timer1 As Word Dim Lcd_flaga As Bit Dim Wynik_pomiaru As Single Dim X As String * 7 Declare Sub Wylicz() Reset Lcd_flaga deklaracje zmiennych siedmio miejscowa zmienna słowna. deklaracja procedury skasowanie flagi 4
5 Cls Upperline : Lcd "CZESTOSCIOMIERZ " Lowerline : Lcd " by MARO SP9XUH " Wait 3 Enable Interrupts Enable Timer0 Enable Timer1 Stop Timer0 Stop Timer1 odblokowanie szystkich przerwań odblokowujemy przerwanie Timera0. odblokowujemy przerwanie Timera1. zatrzymujemy Timer0. zatrzymujemy Timer1. Timer0 = 0 wpisanie do timerów wartości 0 Timer1 = 0 Wynik_pomiaru = 0 wpisanie do zmiennych wartości 0 Przerwanie_timer0 = 0. Przepelnienie_timer1 = 0. Start Timer1 Start Timer0 uruchomienie timerów Do If Lcd_flaga = 1 Then Lcd_flaga = 0 Cls If Wynik_pomiaru = 0 Then Lcd Wynik_pomiaru ; " Hz" Locate 2, 1... Lcd " Brak sygnalu" Waitms 160. Else Call Wylicz Loop End pętla główna. aktualizacji Lcd, co 1 sekundę zeruj flagę. jeśli brak sygnału na wejściu oblicz częstotliwość koniec pętli Odmierz_1s: Incr Przerwanie_timer0 If Przerwanie_timer0 = Then Stop Timer0 Stop Timer1 Przerwanie_timer0 = 0 Wynik_pomiaru = * Przepelnienie_timer1 Wynik_pomiaru = Wynik_pomiaru + Timer1 Lcd_flaga = 1 Przepelnienie_timer1 = 0 Timer1 = 0 Timer0 = 0. Start Timer0 Start Timer1 podprogram dla Timera0 (wyznaczanie 1sek). zwiększ licznik o jeden. jeśli 1 sekunda (62591 dla 16MHz) zatrzymaj timery wyzeruj zmienną. wylicz ilość przerwań ustaw flagę aktualizacji LCD Zeruj zmienną zeruj timery uruchom timery Return 5
6 Zlicz_przep_tim1: Enable Interrupts Incr Przepelnienie_timer1 podprogram Timera1. odblokuj przerwania. zwiększ zmienną liczby przepełnień Timer1 Return Sub Wylicz If Wynik_pomiaru < Then Wynik_pomiaru = Wynik_pomiaru * Wynik_pomiaru = Wynik_pomiaru * 8 Wynik_pomiaru = Wynik_pomiaru * 4 X = Str(wynik_pomiaru) Lcd X Locate 1, 10 Lcd " KHz " Else Wynik_pomiaru = Wynik_pomiaru * Wynik_pomiaru = Wynik_pomiaru * 8 Wynik_pomiaru = Wynik_pomiaru * 4 X = Str(wynik_pomiaru) Lcd X Locate 1, 10 Lcd " MHz " End Sub przeliczenie i wyświetlenie częstotliwości częstotliwość mniejsza od 2 MHz zamiana Hz na khz przelicz preskaler zamień wartość cyfrową na ciąg znaków wyświetl częstotliwość częstotliwość większa od 2 MHz zamiana Hz na MHz przelicz preskaler zamień wartość cyfrową na ciąg znaków wyświetl częstotliwość Pliki do pobrania frq_meter_sch.pdf frq_meter_bottom_pcb.pdf frq_meter_top_pcb.pdf frq_meter_elementy.pdf frq_meter_neg_bottom_pcb.pdf frq_meter_etykieta.pdf frq_meter_zrodlo_bascom.bas frq_meter_wsad_atmega8.hex frq_meter_zrodlo_bascom.txt frq_meter_artykul.pdf frq_meter_100mhz.zip schemat ideowy płytka drukowana odbicie lustrzane płytki rozmieszczenie elementów płytka drukowana - negatyw naklejka na obudowę źródło programu w BASCOM wsad do procesora źródło programu w pliku txt artykuł w formacie Acrobat Reader wszystkie pliki 6
start Program mikroprocesorowego miernika mocy generowanej $crystal = deklaracja
----------------------------start---------------------------- Program mikroprocesorowego miernika mocy generowanej $crystal = 8000000 deklaracja częstotliwości kwarcu taktującego uc $regfile "m8def.dat"
Listing_ $crystal = deklaracja
------------------------------------------------- Listing_4 ---------------------------------------------------- $crystal = 8000000 deklaracja częstotliwości kwarcu $regfile "m8def.dat" biblioteka mikrokontrolera
Programowanie mikrokontrolerów - laboratorium
Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Instytut Techniczny Programowanie mikrokontrolerów- laboratorium Nazwisko i imię 1. 2. Data wykonania ćwiczenia: Grupa: Ocena sprawozdania Zaliczenie: Symbol:
Synteza częstotliwości na układzie PLL LM7001
Synteza częstotliwości na układzie PLL LM7001 1 Do zaprojektowania i skonstruowania syntezy częstotliwości, jak to zazwyczaj bywa, zachęciła mnie dostępność na rynku radiotelefonów starszych typów. Do
Programowanie mikrokontrolerów - laboratorium
Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Instytut Techniczny Programowanie mikrokontrolerów- laboratorium Temat: Klawiatura szesnastkowa - menu. Nazwisko i imię 1. 2. Data wykonania ćwiczenia: Grupa:
Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski
Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej Systemy wbudowane Witold Kozłowski Zakład Fizyki i Technologii Struktur Nanometrowych 90-236 Łódź, Pomorska 149/153 https://std2.phys.uni.lodz.pl/mikroprocesory/
Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości
Politechnika Lubelska Wydział Elektrotechniki i Informatyki PRACA DYPLOMOWA MAGISTERSKA Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości Marcin Narel Promotor: dr inż. Eligiusz
Wizualizacja danych sensorycznych-projekt. Czujnik indukcyjny zbliżeniowy. Piotr Baluta 18 czerwca 2007
Wizualizacja danych sensorycznych-projekt. Czujnik indukcyjny zbliżeniowy. Piotr Baluta 18 czerwca 2007 1 Spis treści 1 Wstęp 3 2 Idea projektu 3 3 Część sprzętowa 4 3.1 Mikrokontroler............................
Miernik LC. Marek SP9XUH www.sp9xuh.pl poczta@sp9xuh.pl
Miernik LC Marek SP9XUH www.sp9xuh.pl poczta@sp9xuh.pl Rozpoczynając budowę wzmacniacza w.cz. natrafiłem na problem braku możliwości pomiaru indukcyjności. Przyrządy które posiadam niestety nie mierzą
ZL4PIC. Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC
ZL4PIC uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC (v.1.0) ZL4PIC Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC 1 Zestaw jest przeznaczony dla elektroników zajmujących się aplikacjami
SWITCH & Fmeter. Fmax 210MHz. opr. Piotrek SP2DMB. Aktualizacja
SWITCH & Fmeter Fmax 210MHz opr. Piotrek SP2DMB Aktualizacja 9.03.2015 www.sp2dmb.cba.pl www.sp2dmb.blogspot.com sp2dmb@gmail.com SWITCH & Fmeter przystawka o kilku twarzach Dedykowana do modernizacji
U 2 B 1 C 1 =10nF. C 2 =10nF
Dynamiczne badanie przerzutników - Ćwiczenie 3. el ćwiczenia Zapoznanie się z budową i działaniem przerzutnika astabilnego (multiwibratora) wykonanego w technice TTL oraz zapoznanie się z działaniem przerzutnika
WIZUALIZACJA DANYCH SENSORYCZNYCH MINISTACJA METEOROLOGICZNA
WIZUALIZACJA DANYCH SENSORYCZNYCH MINISTACJA METEOROLOGICZNA Prowadzący: dr inż. Bogdan Kreczmer Autor: Jakub Malewicz Wrocław, 15 VI 2007 SPIS TREŚCI 1. WSTĘP 3 2. DANE STACJI 3 3. SCHEMAT IDEOWY 4 4.
Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski
Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej Systemy wbudowane Witold Kozłowski Zakład Fizyki i Technologii Struktur Nanometrowych 9-236 Łódź, Pomorska 49/53 https://std2.phys.uni.lodz.pl/mikroprocesory/
Elektrolityczny kondensator filtrujący zasilanie stabilizatora U12 po stronie sterującej
Designator Part Type Description AM2 DC/DC QDC2WSIL 5V Przetwornica DC/DC 12V/5V zasilanie logiki AM3 DC/DC QDC2WSIL 5V Przetwornica DC/DC 12V/5V ujemne zasilanie drivera U23 Przetwornica DC/DC 12V/5V
W O J S K O W A A K A D E M I A T E C H N I C Z N A im. Jarosława Dąbrowskiego
W O J S K O W A A K A D E M I A T E C H N I C Z N A im. Jarosława Dąbrowskiego ZAKŁAD AWIONIKI I UZBROJENIA LOTNICZEGO Przedmiot: MIKROELEKTRONIKA SAMOCHODOWA Ćwiczenie laboratoryjne: Badanie układów wejścia-wyjścia
Generator tonów CTCSS, 1750Hz i innych.
Generator tonów CTCSS, 75Hz i innych. Rysunek. Schemat ideowy Generatora tonów CTCSS V6. Generator tonów CTCSS został zbudowany w oparciu o popularny mikrokontroler firmy Atmel z rodziny AVR, ATTINY33.
Układy czasowo-licznikowe w systemach mikroprocesorowych
Układy czasowo-licznikowe w systemach mikroprocesorowych 1 W każdym systemie mikroprocesorowym znajduje zastosowanie układ czasowy lub układ licznikowy Liczba liczników stosowanych w systemie i ich długość
Liniowe układy scalone. Elementy miernictwa cyfrowego
Liniowe układy scalone Elementy miernictwa cyfrowego Wielkości mierzone Czas Częstotliwość Napięcie Prąd Rezystancja, pojemność Przesunięcie fazowe Czasomierz cyfrowy f w f GW g N D L start stop SB GW
Programator mikrokontrolerów AVR
Programator mikrokontrolerów AVR Marek SP9XUH www.sp9xuh.pl poczta@sp9xuh.pl Moja przygoda z mikrokontrolerami firmy ATMEL zaczęła się w 1999 roku od układu AT89C2051. Minęło parę lat, pojawiły się nowe
ELEKTRONIKA WYPOSAŻENIE LABORATORIUM DYDAKTYCZNEGO POMOC DYDAKTYCZNA DLA STUDENTÓW WYDZIAŁU ELEKTRYCZNEGO SERIA: PODSTAWY ELEKTRONIKI
ELEKTRONIKA WYPOSAŻENIE LABORATORIUM DYDAKTYCZNEGO POMOC DYDAKTYCZNA DLA STUDENTÓW WYDZIAŁU ELEKTRYCZNEGO SERIA: PODSTAWY ELEKTRONIKI TEMAT: GENERATOR FUNKCYJNY GENERATOR FUNKCYJNY TYPOWY GENERATOR FUNKCYJNY
1. Przeznaczenie testera.
1. Przeznaczenie testera. Q- tester jest przeznaczony do badania kwarcowych analogowych i cyfrowych zegarków i zegarów. Q- tester służy do mierzenia odchyłki dobowej (s/d), odchyłki miesięcznej (s/m),
ZL4PIC. Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC
ZL4PIC uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC (v.1.0) ZL4PIC Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC 1 Zestaw jest przeznaczony dla elektroników zajmujących się aplikacjami
LITEcomp. Zestaw uruchomieniowy z mikrokontrolerem ST7FLITE19
LITEcomp Zestaw uruchomieniowy z mikrokontrolerem ST7FLITE19 Moduł LITEcomp to miniaturowy komputer wykonany na bazie mikrokontrolera z rodziny ST7FLITE1x. Wyposażono go w podstawowe peryferia, dzięki
ZASADA DZIAŁANIA miernika V-640
ZASADA DZIAŁANIA miernika V-640 Zasadniczą częścią przyrządu jest wzmacniacz napięcia mierzonego. Jest to układ o wzmocnieniu bezpośred nim, o dużym współczynniku wzmocnienia i dużej rezystancji wejściowej,
Częstościomierz wysokiej rozdzielczości
Zakład Elektroniczny SECURUS Marek Pyżalski ul. Poplińskich 11 61-573 Poznań www.securus.com.pl marekp@securus.com.pl Częstościomierz wysokiej rozdzielczości Precyzyjny pomiar częstotliwości klasyczną
Ćwiczenie 5 Zegar czasu rzeczywistego na mikrokontrolerze AT90S8515
Laboratorium Techniki Mikroprocesorowej Informatyka studia dzienne Ćwiczenie 5 Zegar czasu rzeczywistego na mikrokontrolerze AT90S8515 Cel ćwiczenia Celem ćwiczenia jest poznanie możliwości nowoczesnych
KURS BASCOM 8051 INDEX:
INDEX: Wstęp...2 Konfiguracja programu Bascom8051...3 Zmienne...4 Stałe...5 Tablice...6 Przypisanie nazwy do linii lub portu...7 Pętle...8 Podprogramy...9 Wyświetlacz alfanumeryczny LCD...10 Warunki IF...12
Język C. Wykład 9: Mikrokontrolery cz.2. Łukasz Gaweł Chemia C pokój 307
Język C Wykład 9: Mikrokontrolery cz.2 Łukasz Gaweł Chemia C pokój 307 lukasz.gawel@pg.edu.pl Pierwszy program- powtórka Częstotliwość zegara procesora μc (należy sprawdzić z kartą techniczną μc) Dodaje
1. Opis płyty czołowej multimetru METEX MS Uniwersalne zestawy laboratoryjne typu MS-9140, MS-9150, MS-9160 firmy METEX
Uniwersalne zestawy laboratoryjne typu MS-9140, MS-9150, MS-9160 firmy METEX Połączenie w jednej obudowie generatora funkcyjnego, częstościomierza, zasilacza stabilizowanego i multimetru. Generator funkcyjny
MCAR Robot mobilny z procesorem AVR Atmega32
MCAR Robot mobilny z procesorem AVR Atmega32 Opis techniczny Jakub Kuryło kl. III Ti Zespół Szkół Zawodowych nr. 1 Ul. Tysiąclecia 3, 08-530 Dęblin e-mail: jkurylo92@gmail.com 1 Spis treści 1. Wstęp..
LABORATORIUM ELEKTRONIKA I ENERGOELEKTRONIKA BADANIE GENERATORÓW PRZEBIEGÓW PROSTOKĄTNYCH I GENERATORÓW VCO
LABORATORIUM ELEKTRONIKA I ENERGOELEKTRONIKA BADANIE GENERATORÓW PRZEBIEGÓW PROSTOKĄTNYCH I GENERATORÓW VCO Opracował: mgr inż. Andrzej Biedka . Zapoznać się ze schematem ideowym płytki ćwiczeniowej 2.
Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki
Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Na podstawie instrukcji Wtórniki Napięcia,, Laboratorium układów Elektronicznych Opis badanych układów Spis Treści 1. CEL ĆWICZENIA... 2 2.
Uniwersalny sterownik silnika krokowego z portem szeregowym RS232 z procesorem AT90S2313 na płycie E200. Zestaw do samodzielnego montażu.
microkit E3 Uniwersalny sterownik silnika krokowego z portem szeregowym RS3 z procesorem AT90S33 na płycie E00. Zestaw do samodzielnego montażu..opis ogólny. Sterownik silnika krokowego przeznaczony jest
ZL28ARM. Zestaw uruchomieniowy dla mikrokontrolerów AT91SAM7XC
ZL28ARM Zestaw uruchomieniowy dla mikrokontrolerów AT91SAM7XC Zestaw ZL28ARM jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów AT91SAM7XC. Dzięki wyposażeniu w szeroką gamę układów peryferyjnych
WZMACNIACZ OPERACYJNY
1. OPIS WKŁADKI DA 01A WZMACNIACZ OPERACYJNY Wkładka DA01A zawiera wzmacniacz operacyjny A 71 oraz zestaw zacisków, które umożliwiają dołączenie elementów zewnętrznych: rezystorów, kondensatorów i zwór.
WZMACNIACZ NAPIĘCIOWY RC
WZMACNIACZ NAPIĘCIOWY RC 1. WSTĘP Tematem ćwiczenia są podstawowe właściwości jednostopniowego wzmacniacza pasmowego z tranzystorem bipolarnym. Zadaniem ćwiczących jest dokonanie pomiaru częstotliwości
Podstawy Elektroniki dla Teleinformatyki. Generator relaksacyjny
AGH Katedra Elektroniki Podstawy Elektroniki dla Teleinformatyki 2014 r. Generator relaksacyjny Ćwiczenie 6 1. Wstęp Celem ćwiczenia jest zapoznanie się, poprzez badania symulacyjne, z działaniem generatorów
Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów AVR
Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów AVR ZL10AVR Zestaw ZL10AVR umożliwia wszechstronne przetestowanie aplikacji wykonanych z wykorzystaniem mikrokontrolerów z rodziny AVR (ATtiny, ATmega,
Ćwiczenie 23. Cyfrowe pomiary czasu i częstotliwości.
Ćwiczenie 23. Cyfrowe pomiary czasu i częstotliwości. Program ćwiczenia: 1. Pomiar częstotliwości z wykorzystaniem licznika 2. Pomiar okresu z wykorzystaniem licznika 3. Obserwacja działania pętli synchronizacji
Enkoder z silnika HDD lub FDD
Enkoder z silnika HDD lub FDD 1 Do zaprojektowania i skonstruowania enkodera, jak to zazwyczaj bywa, zachęciła mnie dostępność starych napędów FDD i HDD. Do tego typu zastosowań doskonale nadają się silniki
UNO R3 Starter Kit do nauki programowania mikroprocesorów AVR
UNO R3 Starter Kit do nauki programowania mikroprocesorów AVR zestaw UNO R3 Starter Kit zawiera: UNO R3 (Compatible Arduino) x1szt. płytka stykowa 830 pól x1szt. zestaw 75 sztuk kabli do płytek stykowych
Podstawy Elektroniki dla Informatyki. Generator relaksacyjny
AGH Katedra Elektroniki Podstawy Elektroniki dla Informatyki 2015 r. Generator relaksacyjny Ćwiczenie 5 1. Wstęp Celem ćwiczenia jest zapoznanie się, poprzez badania symulacyjne, z działaniem generatorów
Uniwersalna płytka generatora tonów CTCSS, 1750Hz i innych.
1 Uniwersalna płytka generatora tonów CTCSS, 1750Hz i innych. Rysunek 1. Schemat ideowy Generatora tonów CTCSS V5. Generator tonów CTCSS został zbudowany w oparciu o popularny mikrokontroler firmy Atmel
Wstęp...9. 1. Architektura... 13
Spis treści 3 Wstęp...9 1. Architektura... 13 1.1. Schemat blokowy...14 1.2. Pamięć programu...15 1.3. Cykl maszynowy...16 1.4. Licznik rozkazów...17 1.5. Stos...18 1.6. Modyfikowanie i odtwarzanie zawartości
Ćwiczenie 23. Cyfrowe pomiary czasu i częstotliwości.
Ćwiczenie 23. Cyfrowe pomiary czasu i częstotliwości. Program ćwiczenia: 1. Pomiar częstotliwości z wykorzystaniem licznika 2. Pomiar okresu z wykorzystaniem licznika 3. Obserwacja działania pętli synchronizacji
Wyniki (prawie)końcowe - Elektroniczne warcaby
Wyniki (prawie)końcowe - Elektroniczne warcaby Zbigniew Duszeńczuk 14 czerwca 2008 Spis treści 1 Stan realizacji projektu na dzień 14 czerwca 2008 2 2 Najważniejsze cechy projektu 2 2.1 Użyte elementy..............................
Laboratorium Analogowych Układów Elektronicznych Laboratorium 6
Laboratorium Analogowych Układów Elektronicznych Laboratorium 6 1/6 Pętla synchronizacji fazowej W tym ćwiczeniu badany będzie układ pętli synchronizacji fazowej jako układu generującego przebieg o zadanej
4. Dane techniczne 4.1. Pomiar częstotliwości Zakres pomiaru Czas pomiaru/otwarcia bramki/
9 2. Przeznaczenie przyrządu Częstościomierz-czasomierz cyfrowy typ KZ 2025A, KZ 2025B, KZ2025C,K2026A, KZ2026B i KZ 2026C jest przyrządem laboratoryjnym przeznaczonym do cyfrowego pomiaru: - częstotliwości
Zestaw uruchomieniowy z mikrokontrolerem LPC1114 i wbudowanym programatorem ISP
Zestaw uruchomieniowy z mikrokontrolerem LPC1114 i wbudowanym programatorem ISP ZL32ARM ZL32ARM z mikrokontrolerem LPC1114 (rdzeń Cotrex-M0) dzięki wbudowanemu programatorowi jest kompletnym zestawem uruchomieniowym.
ISP ADAPTER. Instrukcja obsługi rev.1.1. Copyright 2009 SIBIT
Instrukcja obsługi rev.1.1 Spis treści 1.Wprowadzenie... 3 2. Rozmieszczenie elementów...4 3. Opis wyprowadzeń złącza ISP...6 4. Zasilanie adaptera...7 5. Wybór źródła taktowania...8 6. Wybór programowanego
Edukacyjny sterownik silnika krokowego z mikrokontrolerem AT90S1200 na płycie E100. Zestaw do samodzielnego montażu.
E113 microkit Edukacyjny sterownik silnika krokowego z mikrokontrolerem AT90S1200 na płycie E100 1.Opis ogólny. Zestaw do samodzielnego montażu. Edukacyjny sterownik silnika krokowego przeznaczony jest
ELEKTRONIKA WYPOSAŻENIE LABORATORIUM DYDAKTYCZNEGO POMOC DYDAKTYCZNA DLA STUDENTÓW WYDZIAŁU ELEKTRYCZNEGO SERIA: PODSTAWY ELEKTRONIKI
ELEKTRONIKA WYPOSAŻENIE LABORATORIUM DYDAKTYCZNEGO POMOC DYDAKTYCZNA DLA STUDENTÓW WYDZIAŁU ELEKTRYCZNEGO SERIA: PODSTAWY ELEKTRONIKI TEMAT: GENERATOR FUNKCYJNY GENERATOR FUNKCYJNY TYPOWY GENERATOR FUNKCYJNY
LABORATORIUM. TIMERY w mikrokontrolerach Atmega16-32
Zachodniopomorski Uniwersytet Technologiczny WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki LABORATORIUM TECHNIKA MIKROPROCESOROWA TIMERY w mikrokontrolerach Atmega16-32 Opracował:
ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym
ĆWICZENIE NR 1 TEMAT: Wyznaczanie parametrów i charakterystyk wzmacniacza z tranzystorem unipolarnym 4. PRZEBIE ĆWICZENIA 4.1. Wyznaczanie parametrów wzmacniacza z tranzystorem unipolarnym złączowym w
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA 2 Kod: ES1C400 026 UKŁADY UZALEŻNIEŃ CZASOWYCH Białystok 2014
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8
Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.
Dalmierze firmy SHARP na przykładzie 2D120XJ100F
Często w robotach zachodzi potrzeba zmierzenia dystansu, od robota do przeszkody. Wtedy z pomocą przychodzą nam gotowe dalmierze firmy SHARP. Zależnie od modelu mogą one mierzyć dystans z rożnych przedziałów.
Poradnik programowania procesorów AVR na przykładzie ATMEGA8
Poradnik programowania procesorów AVR na przykładzie ATMEGA8 Wersja 1.0 Tomasz Pachołek 2017-13-03 Opracowanie zawiera opis podstawowych procedur, funkcji, operatorów w języku C dla mikrokontrolerów AVR
Technika mikroprocesorowa. Konsola do gier
K r a k ó w 1 1. 0 2. 2 0 1 4 Technika mikroprocesorowa Konsola do gier W yk o n a l i : P r o w a d z ą c y: P a w e ł F l u d e r R o b e r t S i t k o D r i n ż. J a c e k O s t r o w s k i Opis projektu
SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701.
SigmaDSP - zestaw uruchomieniowy. SigmaDSP jest niedrogim zestawem uruchomieniowym dla procesora DSP ADAU1701 z rodziny SigmaDSP firmy Analog Devices, który wraz z programatorem USBi i darmowym środowiskiem
T 2000 Tester transformatorów i przekładników
T 2000 Tester transformatorów i przekładników T2000 - Wielozadaniowy system pomiaru przekładników prądowych, napięciowych, transformatorów, zabezpieczeń nadprądowych, liczników energii i przetworników.
Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS
Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS Cel ćwiczenia: Praktyczne wykorzystanie wiadomości do projektowania wzmacniacza z tranzystorami CMOS Badanie wpływu parametrów geometrycznych
LABORATORIUM PODSTAW ELEKTRONIKI MATERIAŁY POMOCNICZE SERIA PIERWSZA
LABORATORIUM PODSTAW ELEKTRONIKI MATERIAŁY POMOCNICZE SERIA PIERWSZA 1. Lutowanie lutowania ołowiowe i bezołowiowe, przebieg lutowania automatycznego (strefy grzania i przebiegi temperatur), narzędzia
LABORATORIUM. TIMERY w mikrokontrolerach Atmega16-32
Zachodniopomorski Uniwersytet Technologiczny WYDZIAŁ ELEKTRYCZNY Katedra Inżynierii Systemów, Sygnałów i Elektroniki LABORATORIUM TECHNIKA MIKROPROCESOROWA TIMERY w mikrokontrolerach Atmega16-32 Opracował:
Systemy wbudowane. Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej. Witold Kozłowski
Uniwersytet Łódzki Wydział Fizyki i Informatyki Stosowanej Systemy wbudowane Witold Kozłowski Zakład Fizyki i Technologii Struktur Nanometrowych 90-236 Łódź, Pomorska 149/153 https://std2.phys.uni.lodz.pl/mikroprocesory/
ZL16AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega8/48/88/168
ZL16AVR Zestaw uruchomieniowy dla mikrokontrolerów ATmega8/48/88/168 ZL16AVR jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerówavr w obudowie 28-wyprowadzeniowej (ATmega8/48/88/168). Dzięki
RZECZPOSPOLITA (12) OPIS PATENTOWY (19) PL (11)
RZECZPOSPOLITA (12) OPIS PATENTOWY (19) PL (11) 161259 (13) B1 (21) Numer zgłoszenia: 282353 (51) IntCl5: G01R 13/00 Urząd Patentowy (22) Data zgłoszenia: 16.11.1989 Rzeczypospolitej Polskiej (54)Charakterograf
Badanie właściwości multipleksera analogowego
Ćwiczenie 3 Badanie właściwości multipleksera analogowego Program ćwiczenia 1. Sprawdzenie poprawności działania multipleksera 2. Badanie wpływu częstotliwości przełączania kanałów na pracę multipleksera
ZL4PIC uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC (v.1.0) Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC
1 ZL4PIC Uniwersalny zestaw uruchomieniowy dla mikrokontrolerów PIC Zestaw jest przeznaczony dla elektroników zajmujących się aplikacjami mikrokontrolerów PIC. Jest on przystosowany do współpracy z mikrokontrolerami
ZL9AVR. Płyta bazowa dla modułów ZL7AVR (ATmega128) i ZL1ETH (RTL8019)
ZL9AVR Płyta bazowa dla modułów ZL7AVR (ATmega128) i ZL1ETH (RTL8019) ZL9AVR to płyta bazowa umożliwiająca wykonywanie różnorodnych eksperymentów związanych z zastosowaniem mikrokontrolerów AVR w aplikacjach
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7
Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej
Podstawy Elektroniki dla Informatyki. Pętla fazowa
AGH Katedra Elektroniki Podstawy Elektroniki dla Informatyki Pętla fazowa Ćwiczenie 6 2015 r. 1. Wstęp Celem ćwiczenia jest zapoznanie się, poprzez badania symulacyjne, z działaniem pętli fazowej. 2. Konspekt
UKŁADY Z PĘTLĄ SPRZĘŻENIA FAZOWEGO (wkładki DA171A i DA171B) 1. OPIS TECHNICZNY UKŁADÓW BADANYCH
UKŁADY Z PĘTLĄ SPRZĘŻENIA FAZOWEGO (wkładki DA171A i DA171B) WSTĘP Układy z pętlą sprzężenia fazowego (ang. phase-locked loop, skrót PLL) tworzą dynamicznie rozwijającą się klasę układów, stosowanych głównie
ZL25ARM. Płyta bazowa dla modułów diparm z mikrokontrolerami STR912. [rdzeń ARM966E-S]
ZL25ARM Płyta bazowa dla modułów diparm z mikrokontrolerami STR912 [rdzeń ARM966E-S] ZL25ARM to płyta bazowa umożliwiająca wykonywanie różnorodnych eksperymentów z mikrokontrolerami STR912 (ARM966E-S).
Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści
Podstawowe urządzenia peryferyjne mikrokontrolera ATmega8 Spis treści 1. Konfiguracja pinów2 2. ISP..2 3. I/O Ports..3 4. External Interrupts..4 5. Analog Comparator5 6. Analog-to-Digital Converter.6 7.
Badanie układów aktywnych część II
Ćwiczenie nr 10 Badanie układów aktywnych część II Cel ćwiczenia. Zapoznanie się z czwórnikami aktywnymi realizowanymi na wzmacniaczu operacyjnym: układem różniczkującym, całkującym i przesuwnikiem azowym,
Zawody II stopnia etap II - ćwiczenia laboratoryjne Grupa Elektroniczna
Zawody II stopnia etap II - ćwiczenia laboratoryjne Grupa Elektroniczna 1 z 13 Sterownik natężenia oświetlenia Cel: Celem ćwiczenia jest opracowanie programu pozwalającego na sterowanie natężeniem świecenia
Podstawy użytkowania i pomiarów za pomocą MULTIMETRU
Podstawy użytkowania i pomiarów za pomocą MULTIMETRU Spis treści Informacje podstawowe...2 Pomiar napięcia...3 Pomiar prądu...5 Pomiar rezystancji...6 Pomiar pojemności...6 Wartość skuteczna i średnia...7
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: UKŁADY ELEKTRONICZNE 2 (TS1C500 030) UKŁADY CZASOWE Białystok 2014 1. Cele
ZL15AVR. Zestaw uruchomieniowy dla mikrokontrolerów ATmega32
ZL15AVR Zestaw uruchomieniowy dla mikrokontrolerów ATmega32 ZL15AVR jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów ATmega32 (oraz innych w obudowie 40-wyprowadzeniowej). Dzięki wyposażeniu
LITEcompLPC1114. Zestaw ewaluacyjny z mikrokontrolerem LPC1114 (Cortex-M0) Sponsorzy:
LITEcompLPC1114 Zestaw ewaluacyjny z mikrokontrolerem LPC1114 (Cortex-M0) Bezpłatny zestaw dla Czytelników książki Mikrokontrolery LPC1100. Pierwsze kroki LITEcompLPC1114 jest doskonałą platformą mikrokontrolerową
dokument DOK 02-05-12 wersja 1.0 www.arskam.com
ARS3-RA v.1.0 mikro kod sterownika 8 Linii I/O ze zdalną transmisją kanałem radiowym lub poprzez port UART. Kod przeznaczony dla sprzętu opartego o projekt referencyjny DOK 01-05-12. Opis programowania
INSTRUKCJA OBSŁUGI SG1638N GENERATOR FUNKCYJNY Z CZĘSTOŚCIOMIERZEM SHANGHAI MCP CORP.
INSTRUKCJA OBSŁUGI SG1638N GENERATOR FUNKCYJNY Z CZĘSTOŚCIOMIERZEM SHANGHAI MCP CORP. Spis treści 1.WPROWADZENIE... 3 2. OSTRZEŻENIA I PROCEDURY DOTYCZĄCE BEZPIECZEŃSTWA... 3 3. OPIS GENERATORA... 3 4.
Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS
Wzmacniacze napięciowe z tranzystorami komplementarnymi CMOS Cel ćwiczenia: Praktyczne wykorzystanie wiadomości do projektowania wzmacniacza z tranzystorami CMOS Badanie wpływu parametrów geometrycznych
Cyfrowe Elementy Automatyki. Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem
Cyfrowe Elementy Automatyki Bramki logiczne, przerzutniki, liczniki, sterowanie wyświetlaczem Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów,
Mikrokontroler w roli generatora PWM. Wpisany przez Administrator piątek, 06 lipca :51 -
PWM - Pulse-width modulation - modulacja szerokości impulsu. Jest to jedna z metod regulacji sygnału prądowego lub napięciowego, polegająca na zmianie szerokości impulsów sygnału o stałej amplitudzie generowanego
Układy czasowo-licznikowe w systemach mikroprocesorowych
Układy czasowo-licznikowe w systemach mikroprocesorowych 1 W każdym systemie mikroprocesorowym znajduje zastosowanie układ czasowy lub układ licznikowy Liczba liczników stosowanych w systemie i ich długość
PILIGRIM SMD wg SP5JPB
PILIGRIM SMD wg SP5JPB WYKAZ CZĘŚCI PŁYTKI PODSTAWOWEJ. Piligrim SMD Rezystory SMD 0805 1% Układy scalone SMD Kondensatory SMD 0805 50V 10 ohm - 2 szt 180p -2 szt NE5532-6 szt 100 ohm -4 szt 430p -2 szt
E-TRONIX Sterownik Uniwersalny SU 1.2
Obudowa. Obudowa umożliwia montaż sterownika na szynie DIN. Na panelu sterownika znajduje się wyświetlacz LCD 16x2, sygnalizacja LED stanu wejść cyfrowych (LED IN) i wyjść logicznych (LED OUT) oraz klawiatura
Tab. 1. Zestawienie najważniejszych parametrów wybranych mikrokontrolerów z rodziny LPC2100, które można zastosować w zestawie ZL3ARM.
ZL3ARM płytka bazowa dla modułu diparm_2106 (ZL4ARM) ZL3ARM Płytka bazowa dla modułu diparm_2106 Płytkę bazową ZL3ARM opracowano z myślą o elektronikach chcących szybko poznać mozliwości mikrokontrolerów
STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych
STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych Wstęp Celem ćwiczenia jest zapoznanie się z problemami związanymi z projektowaniem, realizacją i pomiarami
Moduł Bluetooth WT12 w praktyce, część 2
Moduł Bluetooth WT12 w praktyce, część 2 Przykład bezprzewodowy wyświetlacz LCD Bluetooth W przykładowym projekcie bezprzewodowego wyświetlacza LCD, znaki do wyświetlenia mogą być wysyłane za pośrednictwem
Politechnika Białostocka
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 UKŁADY CZASOWE Białystok 2015 1. Cele ćwiczenia
TDWA-21 TABLICOWY DWUPRZEWODOWY WYŚWIETLACZ SYGNAŁÓW ANALOGOWYCH DOKUMENTACJA TECHNICZNO-RUCHOWA. Wrocław, listopad 1999 r.
TABLICOWY DWUPRZEWODOWY WYŚWIETLACZ SYGNAŁÓW ANALOGOWYCH DOKUMENTACJA TECHNICZNO-RUCHOWA Wrocław, listopad 1999 r. 50-305 WROCŁAW TEL./FAX (+71) 373-52-27 ul. S. Jaracza 57-57a TEL. 602-62-32-71 str.2
Dokumentacja Licznika PLI-2
Produkcja - Usługi - Handel PROGRES PUH Progres Bogdan Markiewicz ------------------------------------------------------------------- 85-420 Bydgoszcz ul. Szczecińska 30 tel.: (052) 327-81-90, 327-70-27,
Odbiór i dekodowanie znaków ASCII za pomocą makiety cyfrowej. Znaki wysyłane przez komputer za pośrednictwem łącza RS-232.
Odbiór i dekodowanie znaków ASCII za pomocą makiety cyfrowej. Znaki wysyłane przez komputer za pośrednictwem łącza RS-232. Opracowanie: Andrzej Grodzki Do wysyłania znaków ASCII zastosujemy dostępny w
Nadajnik Nokton NR4 MAXIM przeróbka do zastosowań APRS MHz
Nokton NR4 MAXIM Przystosowanie nadajnika VHF Nokton NR4 MAXIM do pracy APRS 144.800MHz. Poniżej przedstawiam program dzięki któremu można wykorzystać ten nadajnik do celów amatorskich, program powstał
MiniKIT. Miernik częstotliwości / skala cyfrowa wg. projektu DL4YHF
MiniKIT Miernik częstotliwości / skala cyfrowa wg. projektu DL4YHF (instrukcja montażu i uruchomienia dla wersji z płytkami SP5JNW ver.2) 1. Wstęp Pomysł przygotowania minikitu, a więc zestawu płytek drukowanych
ZL2AVR. Zestaw uruchomieniowy z mikrokontrolerem ATmega8
ZL2AVR Zestaw uruchomieniowy z mikrokontrolerem ATmega8 ZL2AVR jest uniwersalnym zestawem uruchomieniowym dla mikrokontrolerów ATmega8 (oraz innych w obudowie 28-wyprowadzeniowej). Dzięki wyposażeniu w