Optymalizacja zapytań. Proces przetwarzania i obliczania wyniku zapytania (wyrażenia algebry relacji) w SZBD

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Optymalizacja zapytań. Proces przetwarzania i obliczania wyniku zapytania (wyrażenia algebry relacji) w SZBD"

Transkrypt

1 Optymalizacja zapytań Proces przetwarzania i obliczania wyniku zapytania (wyrażenia algebry relacji) w SZBD

2 Elementy optymalizacji Analiza zapytania i przekształcenie go do lepszej postaci. Oszacowanie kosztu różnych opcji wykonania zapytania: informacje (statystyki) służące do szacowania kosztu; metody wykonania selekcji; metody złączeń; metody eliminacji duplikatów i sortowania Analizowanie i modyfikowanie planu wykonania zapytania.

3 Przekształcanie wyrażeń algebry relacji SELECT K.prow FROM Student S, Ocena O, Kurs K WHERE S.indeks=O.indeks AND O.przed=K.przed AND O.ocena>=K.ocenaKwal AND S.nazwisko="Abacki

4 Przekształcanie wyrażeń algebry relacji S1 = π indeks (S)) indeks (σ nazwisko="abacki (S)) O1 = π indeks,ocena,przed (Ocena) K1 = π prow,ocenakwal,przed (Kurs) SO = π ocena,przed (S1 >< O1) SOK = π prow (σ ocena>=ocenakwal (SO >< K))

5 Przekształcanie wyrażeń algebry relacji Wykonaj jak najwcześniej operacje selekcji (przemienność selekcji z innymi operacjami). Połącz iloczyn kartezjański z następującą po nim selekcją w złączenie (o ile to możliwe). Zastosuj łączność operacji złączenia tak, by wykonać złączenia w jak najbardziej ekonomicznej kolejności (algorytm dynamiczny wyznaczania optymalnej kolejności rozstawienia nawiasów). Wykonaj jak najwcześniej operacje rzutu. Wydziel wspólne podwyrażenia i obliczaj je tylko raz.

6 Statystyki i szacowanie kosztu Statystyki dla relacji R: ntuples(r) liczba krotek relacji R, bfactor(r) liczba krotek relacji mieszczących się w jednym bloku dyskowym, nblocks(r) liczba bloków, w których jest przechowywana relacja R. Statystyki dla atrybutu A relacji R: ndistinct A (R) liczba różnych wartości A w R, min A (R), max A (R) minimalna i maksymalna wartość A w R, SC A (R) selektywność A w R, czyli średnia liczba krotek spełniających warunek równości dla A. Statystyki dla indeksu I według atrybutu A: nlevels A (I) - liczba poziomów I (jeśli jest drzewem), nlfblocks A (I) - liczba bloków-liści w drzewie.

7 Statystyki i szacowanie kosztu Przyjmuje się SC A (R) = { 1 iff A klucz; ntuples(r)/ndistinct A (R) wpp } Dla innych warunków także można określić selektywność: ntuples(r)* ((max A (R)-c)/(max A (R)-min A (R))) dla warunku A>c ntuples(r)* ((c-min A (R))/(max A (R)-min A (R))) dla warunku A<c ntuples(r)*n/ndistinct A (R) dla warunku A in {c 1,c 2,...,c n } SC A (R)*SC B (R) dla warunku (A AND B) SC A (R)+SC B (R)- SC A (R)*SC B (R) dla warunku (A OR B) W przypadku gdy w systemie znajdują się histogramy dla wartości atrybutu, powyższe szacowania mogą być dokładniejsze

8 Sposoby wykonania selekcji σ w(a) (R), w(a) - warunek na A skanowanie całej relacji - nblocks(r), wybranie wszystkich krotek relacji za pomocą indeksu (np. dla relacji pamiętanej w klastrze)- ntuples(r)+nlevels A (I) wykorzystanie indeksu grupującego dla A - SC (R)/bFactor(R)+nLevels A (I), wykorzystanie indeksu niegrupującego dla A - SC w(a) (R)+nLevels A (I) SC w(a) SC w(a)

9 Wybór warunku do selekcji σ F1 AND... AND Fn (R), F 1,...,F n - proste warunki Dla każdego F i (1 <= i <= n) szacujemy koszt c i wykonania selekcji σ Fi. Wybieramy i, dla którego szacunkowy koszt był minimalny, i wybieramy (za pomocą indeksu lub bez) krotki spełniające warunek F i, przy okazji sprawdzając, czy spełniają pozostałe warunki selekcji F j (j<>i).

10 Wybór warunku do selekcji - przykład σ A=2 AND B>950 AND C=5 A=2 AND B>950 AND C=5 (R), dla R=ABCD R jest zapisana samodzielnie w nblocks(r)=1000 blokach dyskowych, ma krotek, po 50 w jednym bloku; koszt skanowania = 1000; R ma indeks niegrupujący dla A i ndistinct A (R)=10; koszt wyszukania wg A = 50000/10 = 5000; R ma indeks grupujący dla B i ndistinct B (R)=1000, min B (R)=1, max B (R)=1000; koszt wyszukania wg B = 50000*(50/1000)*(1/50) = 50; Dla C i D nie ma indeksów.

11 Obliczanie złączeń Szacunkowy rozmiar złączenia: R >< S, dla R = AB i S = BC wynosi: ndistinct B (?)* (ntuples(r)/ndistinct B (R)*nTuples(S)/nDistinct B (S)) = = ntuples(r)*ntuples(s)/ndistinct B (R), przy założeniu, że rozkład wartości B w R i S jest jednostajny.

12 Zagnieżdżone pętle po blokach for next M-2 blocks br 1,br 2,...,br M-2 in R do for each block bs in S do for i=1,..,m-1 return br i >< bs; Szacunkowy koszt czytania: nblocks(r) + (nblocks(r)/(m-2))*nblocks(s) zapisu wyniku (zawsze taki sam): nblocks(r)*nblocks(s)/ndistinct B (R)

13 Złączenia z wykorzystaniem indeksu: // 1. S ma indeks grupujący I wg. B for each t in R do search sx={s in S: s.b = t.b by I}; return sx >< {t}; // nblocks(r)+ ntuples(r)*(nlevels B (S)+nBlocks(S)/nDistinct B (S)) // 2. S ma ind. grup.(i1), R ma ind. niegrup. I1, I2 wg. B for each value x in I1 do search sx = {s in S: s.b = x by I1}; search tx = {t in R: t.b = x by I2}; return sx >< tx; // ndistinct B (S)*(nLevels B (I1)+nBlocks(S)/nDistinct B (S)+ nlevels B (I2)*nTuples(R)/nDistinct B (R))

14 Sort-Merge Join Sort(R wg B) // 2*nBlocks(R)* (log M-1 (nblocks(r)/(m-1)+1) Sort(S wg B) // 2*Blocks(S)* (log M-1 (nblocks(s)/(m-1)+1) Merge(R,S wg B) // nblocks(r)+nblocks(s) Sortowanie: w pierwszym przebiegu sortujemy serie złożone z M-1 bloków; potem log M-1 (nblocks(r)/(m-1) razy scalamy po M-1 uporządkowanych serii najpierw długości M-1, potem (M-1) 2, potem (M-1) 3 itd.

15 Hash-join // h - funkcja haszująca dla B przyjmująca wartości 1,...,M-1 Hash(R wg h(b)) into R 1,R 2,...,R M-1 // 2*nBlocks(R) Hash(S wg h(b)) into S 1,S 2,...,S M-1 // 2*nBlocks(S) // h' - funkcja haszująca dla B niezależna od h przyjmująca także wartości 1,...,M-1 for i=1,...,m-1 do Hash(R i wg h'(b)) into A 1,A 2,...,A M-1 // nblocks(r i )+M-1 Hash(S i wg h'(b)) into B 1,B 2,...,B M-1 // nblocks(s i ) for j=1,...,m-1 return Aj >< Bj; // M-1 // razem koszt: 3*(nBlocks(R)+nBlocks(S))+(2..4)*M

16 Sortowanie, grupowanie i eliminacja powtórzeń Operacje grupowania i eliminacji powtórzeń można wykonać poprzez sortowanie (M-1-krotny merge-sort, czyli multiway Merge-Sort) lub poprzez haszowanie połączone z sortowanie kubełków w pamięci.

17 Porównanie metod złączenia - przykład P - pracownik (klucz: id) ntuples(p) = 6000 bfactor(p) = 30 nblocks(p) = 200 ndistinct id (P) = 6000 ma indeks niegrupujący po id wys.3 Z - zlecenie (zawiera id pracownika) ntuples(z) = bfactor(z) = 50 nblocks(z) = 2000 ndistinct id (Z) = 16 M = 100 Pętle po blokach (P zewnętrzna): 200+(200/98)*2000=4281 Pętle po blokach (Z - zewnętrzna): 2000+(2000/98)*200=6081 Pętla z indeksem niegrupującym: *3=8000 Sort-Join: 2*200*(log 99 (200/99)+1) + 2*2000*((log 99 (2000/99)+1)) *200*2+2*2000* =( )=11000 Hash-Join: 3*( )+3*100=6900

18 Statystyki w SZBD Statystyki tabel, atrybutów i indeksów są najczęściej aktualizowane: co pewien czas lub przy okazji operacji przeglądających relację (np. budowa indeksu) lub na wyraźne życzenie użytkownika (np. polecenia z pakietu DBMS_STATS w Oracle). Oprócz podanych wcześniej, system może budować histogramy wartości atrybutów pozwalające trafnie oceniać koszt operacji nawet przy niejednostajnym rozkładzie wartości.

19 Plan wykonania EXPLAIN [ANALYZE] <zapytanie SQL> kolejność i metody wykonywania złączeń (NESTED LOOPS, HASH-JOIN, SORT-JOIN, INDEX NESTED LOOPS), warunek selekcji i ewentualnie użyty dla niego indeks (np. INDEX SCAN USING <atrybut> ON <relacja> lub FULL SCAN) końcowe sortowanie, grupowanie lub haszowanie w celu uporządkowania lub pogrupowania wyniku. szacunkowy czas wykonania poszczególnych operacji (jeżeli użyto ANALYZE, to zapytanie jest wykonywane) szacunkowy rozmiar wyniku operacji

20 Wskazówki (hints) Specjalne komentarze zamieszczane przy zapytaniu wskazujące, jakiej metody obliczania ma użyć system. W komentarzu tym można zapisać: jakiego optymalizatora ma użyć system (np. w Oracle można wybrać oparty na kosztach lub rankingu operacji), jakiego indeksu użyć przy obliczaniu selekcji, w jakiej kolejności wykonać złączenia, jakiego algorytmu złączenia użyć. Np. SELECT /*+ INDEX(wgMiasta)*/ nazwisko FROM Student WHERE miasto="chełm"

Wykład XII. optymalizacja w relacyjnych bazach danych

Wykład XII. optymalizacja w relacyjnych bazach danych Optymalizacja wyznaczenie spośród dopuszczalnych rozwiązań danego problemu, rozwiązania najlepszego ze względu na przyjęte kryterium jakości ( np. koszt, zysk, niezawodność ) optymalizacja w relacyjnych

Bardziej szczegółowo

Optymalizacja poleceń SQL

Optymalizacja poleceń SQL Optymalizacja poleceń SQL Przetwarzanie polecenia SQL użytkownik polecenie PARSER słownik REGUŁOWY RBO plan zapytania RODZAJ OPTYMALIZATORA? GENERATOR KROTEK plan wykonania statystyki KOSZTOWY CBO plan

Bardziej szczegółowo

Bazy danych wykład dwunasty. dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36

Bazy danych wykład dwunasty. dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36 Bazy danych wykład dwunasty Wykonywanie i optymalizacja zapytań SQL Konrad Zdanowski Uniwersytet Kardynała Stefana Wyszyńskiego, Warszawa dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36 Model kosztów

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 8b: Algebra relacyjna http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2009/tpi-2009 Prof. dr hab. Elżbieta Richter-Wąs 1 Algebra relacyjna Algebra relacyjna (ang.

Bardziej szczegółowo

Optymalizacja poleceń SQL Wprowadzenie

Optymalizacja poleceń SQL Wprowadzenie Optymalizacja poleceń SQL Wprowadzenie 1 Fazy przetwarzania polecenia SQL 2 Faza parsingu (1) Krok 1. Test składniowy weryfikacja poprawności składniowej polecenia SQL. Krok 2. Test semantyczny m.in. weryfikacja

Bardziej szczegółowo

Bazy danych. Plan wykładu. Przetwarzanie zapytań. Etapy przetwarzania zapytania. Translacja zapytań języka SQL do postaci wyrażeń algebry relacji

Bazy danych. Plan wykładu. Przetwarzanie zapytań. Etapy przetwarzania zapytania. Translacja zapytań języka SQL do postaci wyrażeń algebry relacji Plan wykładu Bazy danych Wykład 12: Optymalizacja zapytań. Język DDL, DML (cd) Etapy przetwarzania zapytania Implementacja wyrażeń algebry relacji Reguły heurystyczne optymalizacji zapytań Kosztowa optymalizacja

Bardziej szczegółowo

BAZY DANYCH algebra relacyjna. Opracował: dr inż. Piotr Suchomski

BAZY DANYCH algebra relacyjna. Opracował: dr inż. Piotr Suchomski BAZY DANYCH algebra relacyjna Opracował: dr inż. Piotr Suchomski Wprowadzenie Algebra relacyjna składa się z prostych, ale mocnych mechanizmów tworzenia nowych relacji na podstawie danych relacji. Hdy

Bardziej szczegółowo

Optymalizacja poleceń SQL Statystyki

Optymalizacja poleceń SQL Statystyki Optymalizacja poleceń SQL Statystyki 1 Statystyki (1) Informacje, opisujące dane i struktury obiektów bazy danych. Przechowywane w słowniku danych. Używane przez optymalizator do oszacowania: selektywności

Bardziej szczegółowo

Optymalizacja poleceń SQL Metody dostępu do danych

Optymalizacja poleceń SQL Metody dostępu do danych Optymalizacja poleceń SQL Metody dostępu do danych 1 Metody dostępu do danych Określają, w jaki sposób dane polecenia SQL są odczytywane z miejsca ich fizycznej lokalizacji. Dostęp do tabeli: pełne przeglądnięcie,

Bardziej szczegółowo

Optymalizacja poleceń SQL

Optymalizacja poleceń SQL Optymalizacja poleceń SQL Optymalizacja kosztowa i regułowa, dyrektywa AUTOTRACE w SQL*Plus, statystyki i histogramy, metody dostępu i sortowania, indeksy typu B* drzewo, indeksy bitmapowe i funkcyjne,

Bardziej szczegółowo

Optymalizacja. Plan wykonania polecenia SQL (1) Plan wykonania polecenia SQL (2) Rozdział 19 Wprowadzenie do optymalizacji poleceń SQL

Optymalizacja. Plan wykonania polecenia SQL (1) Plan wykonania polecenia SQL (2) Rozdział 19 Wprowadzenie do optymalizacji poleceń SQL Optymalizacja Rozdział 19 Wprowadzenie do optymalizacji poleceń SQL Pojęcie i cel optymalizacji, schemat optymalizacji, plan wykonania polecenia SQL, polecenie EXPLAIN PLAN, dyrektywa AUTOTRACE, wybór

Bardziej szczegółowo

Technologie baz danych

Technologie baz danych Plan wykładu Technologie baz danych Wykład 6: Algebra relacji. SQL - cd Algebra relacji operacje teoriomnogościowe rzutowanie selekcja przemianowanie Małgorzata Krętowska Wydział Informatyki Politechnika

Bardziej szczegółowo

Fazy przetwarzania zapytania zapytanie SQL. Optymalizacja zapytań. Klasyfikacja technik optymalizacji zapytań. Proces optymalizacji zapytań.

Fazy przetwarzania zapytania zapytanie SQL. Optymalizacja zapytań. Klasyfikacja technik optymalizacji zapytań. Proces optymalizacji zapytań. 1 Fazy przetwarzania zapytanie SQL 2 Optymalizacja zapytań część I dekompozycja optymalizacja generacja kodu wyraŝenie algebry relacji plan wykonania kod katalog systemowy statystyki bazy danych wykonanie

Bardziej szczegółowo

Systemy GIS Tworzenie zapytań w bazach danych

Systemy GIS Tworzenie zapytań w bazach danych Systemy GIS Tworzenie zapytań w bazach danych Wykład nr 6 Analizy danych w systemach GIS Jak pytać bazę danych, żeby otrzymać sensowną odpowiedź......czyli podstawy języka SQL INSERT, SELECT, DROP, UPDATE

Bardziej szczegółowo

Bazy danych. Andrzej Grzybowski. Instytut Fizyki, Uniwersytet Śląski

Bazy danych. Andrzej Grzybowski. Instytut Fizyki, Uniwersytet Śląski Bazy danych Andrzej Grzybowski Instytut Fizyki, Uniwersytet Śląski Wykład 5 Strukturalny język zapytań (SQL - Structured Query Language) Algebraiczny rodowód podstawowe działania w przykładach Bazy danych.

Bardziej szczegółowo

SZKOLENIE: Administrator baz danych. Cel szkolenia

SZKOLENIE: Administrator baz danych. Cel szkolenia SZKOLENIE: Administrator baz danych. Cel szkolenia Kurs Administrator baz danych skierowany jest przede wszystkim do osób zamierzających rozwijać umiejętności w zakresie administrowania bazami danych.

Bardziej szczegółowo

2011-01-20 PLAN WYKŁADU BAZY DANYCH ETAPY PRZETWARZANIA ZAPYTANIA OPTYMALIZACJA ZAPYTAŃ

2011-01-20 PLAN WYKŁADU BAZY DANYCH ETAPY PRZETWARZANIA ZAPYTANIA OPTYMALIZACJA ZAPYTAŃ PLAN WYKŁADU BAZY DANYCH Wykład 11 dr inż. Agnieszka Bołtuć Pojęcie optymalizacji Etapy wykonywania zapytania Etapy optymalizacji Rodzaje optymalizacji Reguły transformacji Procedury implementacyjne Koszty

Bardziej szczegółowo

Język SQL Złączenia. Laboratorium. Akademia Morska w Gdyni

Język SQL Złączenia. Laboratorium. Akademia Morska w Gdyni Akademia Morska w Gdyni Gdynia 2004 1. Złączenie definicja Złączenie (JOIN) to zbiór rekordów stanowiących wynik zapytania służącego pobraniu danych z połączonych tabel (związki jeden-do-jeden, jeden-do-wiele

Bardziej szczegółowo

SQL SERVER 2012 i nie tylko:

SQL SERVER 2012 i nie tylko: SQL SERVER 2012 i nie tylko: Wstęp do planów zapytań Cezary Ołtuszyk coltuszyk.wordpress.com Kilka słów o mnie Starszy Administrator Baz Danych w firmie BEST S.A. (Bazy danych > 1TB) Konsultant z zakresu

Bardziej szczegółowo

Przestrzenne bazy danych Podstawy języka SQL

Przestrzenne bazy danych Podstawy języka SQL Przestrzenne bazy danych Podstawy języka SQL Stanisława Porzycka-Strzelczyk porzycka@agh.edu.pl home.agh.edu.pl/~porzycka Konsultacje: wtorek godzina 16-17, p. 350 A (budynek A0) 1 SQL Język SQL (ang.structured

Bardziej szczegółowo

Cel przedmiotu. Wymagania wstępne w zakresie wiedzy, umiejętności i innych kompetencji 1 Język angielski 2 Inżynieria oprogramowania

Cel przedmiotu. Wymagania wstępne w zakresie wiedzy, umiejętności i innych kompetencji 1 Język angielski 2 Inżynieria oprogramowania Przedmiot: Bazy danych Rok: III Semestr: V Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 30 21 Ćwiczenia Laboratorium 30 21 Projekt Liczba punktów ECTS: 4 C1 C2 C3 Cel przedmiotu

Bardziej szczegółowo

Bazy danych. Dr inż. Paweł Kasprowski

Bazy danych. Dr inż. Paweł Kasprowski Plan wykładu Bazy danych Architektura systemów zarządzania bazami danych Realizacja zapytań algebra relacji Wielodostęp do danych - transakcje Dr inż. Paweł Kasprowski pawel@kasprowski.pl Aplkacja przechowująca

Bardziej szczegółowo

- język zapytań służący do zapisywania wyrażeń relacji, modyfikacji relacji, tworzenia relacji

- język zapytań służący do zapisywania wyrażeń relacji, modyfikacji relacji, tworzenia relacji 6. Język SQL Język SQL (Structured Query Language): - język zapytań służący do zapisywania wyrażeń relacji, modyfikacji relacji, tworzenia relacji - stworzony w IBM w latach 70-tych DML (Data Manipulation

Bardziej szczegółowo

Bazy danych 2013/14. Egzamin. (5 pkt). Baza danych przechowuje w relacji binarnej G graf skierowany.

Bazy danych 2013/14. Egzamin. (5 pkt). Baza danych przechowuje w relacji binarnej G graf skierowany. Bazy danych 2013/14. Egzamin Zadanie 1 (5 pkt). Baza danych przechowuje w relacji binarnej G graf skierowany. (a) Napisz formułę logiki pierwszego rzędu ϕ(x, y) bez kwantyfikatorów,, która definiuje zapytanie

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 15. Optymalizacja zapytań. 2009/ Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 15. Optymalizacja zapytań. 2009/ Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 15. Optymalizacja zapytań 1 Optymalizacja zapytań - Przykład Mamy następujące relacje: Dostawcy Id Nazwisko Imie 1 Kowalski Jan 2 Nowak Anna 3 Norek Tadeusz Dostawy Id_dostawcy Data

Bardziej szczegółowo

Optymalizacja wydajności SZBD

Optymalizacja wydajności SZBD Optymalizacja wydajności SZBD 1. Optymalizacja wydajności systemu bazodanowego Wydajność SZBD określana jest najczęściej za pomocą następujących parametrów: liczby operacji przeprowadzanych na sekundę,

Bardziej szczegółowo

Model relacyjny. Wykład II

Model relacyjny. Wykład II Model relacyjny został zaproponowany do strukturyzacji danych przez brytyjskiego matematyka Edgarda Franka Codda w 1970 r. Baza danych według definicji Codda to zbiór zmieniających się w czasie relacji

Bardziej szczegółowo

RBD Relacyjne Bazy Danych

RBD Relacyjne Bazy Danych Wykład 7 RBD Relacyjne Bazy Danych Bazy Danych - A. Dawid 2011 1 Selekcja σ C (R) W wyniku zastosowania operatora selekcji do relacji R powstaje nowa relacja T do której należy pewien podzbiór krotek relacji

Bardziej szczegółowo

Optymalizacja zapytań część I

Optymalizacja zapytań część I Optymalizacja zapytań część I Wykład przygotował: Tadeusz Morzy BD wykład 12 Wykład jest poświęcony problemom wykonywania i optymalizacji zapytań w systemach baz danych. Rozpoczniemy od krótkiego wprowadzenia

Bardziej szczegółowo

Konstruowanie Baz Danych SQL UNION, INTERSECT, EXCEPT

Konstruowanie Baz Danych SQL UNION, INTERSECT, EXCEPT Studia podyplomowe Inżynieria oprogramowania współfinansowane przez Unię Europejska w ramach Europejskiego Funduszu Społecznego Projekt Studia podyplomowe z zakresu wytwarzania oprogramowania oraz zarządzania

Bardziej szczegółowo

Wprowadzenie do języka SQL

Wprowadzenie do języka SQL Wprowadzenie do języka SQL język dostępu do bazy danych grupy poleceń języka: DQL (ang( ang.. Data Query Language) DML (ang( ang.. Data Manipulation Language) DDL (ang( ang.. Data Definition Language)

Bardziej szczegółowo

Politechnika Poznańska TWO

Politechnika Poznańska TWO Politechnika Poznańska TWO Data: 2009-11-24 Nr Lab.: I Prowadzący: dr inż. Szymon Wilk Mateusz Jancy Joanna Splitter Zadanie: DZIELENIE RELACYJNE Rok: I Grupa: B Semestr: I Ocena: Cel zadania: Wykonać

Bardziej szczegółowo

Administracja i programowanie pod Microsoft SQL Server 2000

Administracja i programowanie pod Microsoft SQL Server 2000 Administracja i programowanie pod Paweł Rajba pawel@ii.uni.wroc.pl http://www.kursy24.eu/ Zawartość modułu 9 Optymalizacja zapytań Pobieranie planu wykonania Indeksy i wydajność - 1 - Zadania optymalizatora

Bardziej szczegółowo

Rozproszone bazy danych 3

Rozproszone bazy danych 3 Rozproszone bazy danych 3 Optymalizacja zapytań rozproszonych Laboratorium przygotował: Robert Wrembel ZSBD laboratorium 3 (1) 1 Plan laboratorium Zapytanie rozproszone i jego plan wykonania Narzędzia

Bardziej szczegółowo

Wstęp Wprowadzenie do BD Podstawy SQL. Bazy Danych i Systemy informacyjne Wykład 1. Piotr Syga

Wstęp Wprowadzenie do BD Podstawy SQL. Bazy Danych i Systemy informacyjne Wykład 1. Piotr Syga Bazy Danych i Systemy informacyjne Wykład 1 Piotr Syga 09.10.2017 Ogólny zarys wykładu Podstawowe zapytania SQL Tworzenie i modyfikacja baz danych Elementy dynamiczne, backup, replikacja, transakcje Algebra

Bardziej szczegółowo

Oracle11g: Wprowadzenie do SQL

Oracle11g: Wprowadzenie do SQL Oracle11g: Wprowadzenie do SQL OPIS: Kurs ten oferuje uczestnikom wprowadzenie do technologii bazy Oracle11g, koncepcji bazy relacyjnej i efektywnego języka programowania o nazwie SQL. Kurs dostarczy twórcom

Bardziej szczegółowo

Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU

Hurtownie danych. Przetwarzanie zapytań. http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Hurtownie danych Przetwarzanie zapytań. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur ZAPYTANIA NA ZAPLECZU Magazyny danych operacyjnych, źródła Centralna hurtownia danych Hurtownie

Bardziej szczegółowo

Zapytania z ograniczeniem czasowym w Oracle

Zapytania z ograniczeniem czasowym w Oracle 22 stycznia 2009 Tytuł oryginalny Supporting Time-Constrained Queries in Oracle Ying Hu, Seema Sundara, Jagannathan Srinivasan Oracle New England Development Center VLDB 2007 Materiały żródłowe: referat,

Bardziej szczegółowo

Optymalizacja zapytań

Optymalizacja zapytań Optymalizacja zapytań Charakterystyka środowiska relacyjnej bazy danych 1. Złożone zapytania zawierające wiele elementarnych operacji relacyjnych: selekcji, projekcji, połączenia, porządkowania, itd. select

Bardziej szczegółowo

060 SQL FIZYCZNA STRUKTURA BAZY DANYCH. Prof. dr hab. Marek Wisła

060 SQL FIZYCZNA STRUKTURA BAZY DANYCH. Prof. dr hab. Marek Wisła 060 SQL FIZYCZNA STRUKTURA BAZY DANYCH Prof. dr hab. Marek Wisła Struktura tabeli Data dane LOB - Large Objects (bitmapy, teksty) Row-Overflow zawiera dane typu varchar, varbinary http://msdn.microsoft.com/en-us/library/ms189051(v=sql.105).aspx

Bardziej szczegółowo

SQL (ang. Structured Query Language)

SQL (ang. Structured Query Language) SQL (ang. Structured Query Language) SELECT pobranie danych z bazy, INSERT umieszczenie danych w bazie, UPDATE zmiana danych, DELETE usunięcie danych z bazy. Rozkaz INSERT Rozkaz insert dodaje nowe wiersze

Bardziej szczegółowo

Model relacyjny. Wykład II

Model relacyjny. Wykład II Model relacyjny został zaproponowany do strukturyzacji danych przez brytyjskiego matematyka Edgarda Franka Codda w 1970 r. Baza danych według definicji Codda to zbiór zmieniających się w czasie relacji

Bardziej szczegółowo

Podstawowe zapytania SELECT (na jednej tabeli)

Podstawowe zapytania SELECT (na jednej tabeli) Podstawowe zapytania SELECT (na jednej tabeli) Struktura polecenia SELECT SELECT opisuje nazwy kolumn, wyrażenia arytmetyczne, funkcje FROM nazwy tabel lub widoków WHERE warunek (wybieranie wierszy) GROUP

Bardziej szczegółowo

Podstawy języka SQL cz. 2

Podstawy języka SQL cz. 2 Podstawy języka SQL cz. 2 1. Operatory zbiorowe a. UNION suma zbiorów z eliminacją powtórzeń, b. EXCEPT różnica zbiorów z eliminacją powtórzeń, c. INTERSECT część wspólna zbiorów z eliminacją powtórzeń.

Bardziej szczegółowo

Bazy danych 11. Algorytmy złaczeń. P. F. Góra

Bazy danych 11. Algorytmy złaczeń. P. F. Góra Bazy danych 11. Algorytmy złaczeń P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2009 Typy złaczeń SELECT... FROM T 1 JOIN T 2 ON T 1.k p =T 2.k q JOIN T 3 ON T 2.k r =T 3.k s WHERE...; SELECT... FROM

Bardziej szczegółowo

Fizyczna struktura bazy danych w SQL Serwerze

Fizyczna struktura bazy danych w SQL Serwerze Sposób przechowywania danych na dysku twardym komputera ma zasadnicze znaczenie dla wydajności całej bazy i jest powodem tworzenia między innymi indeksów. Fizyczna struktura bazy danych w SQL Serwerze

Bardziej szczegółowo

77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego.

77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego. 77. Modelowanie bazy danych rodzaje połączeń relacyjnych, pojęcie klucza obcego. Przy modelowaniu bazy danych możemy wyróżnić następujące typy połączeń relacyjnych: jeden do wielu, jeden do jednego, wiele

Bardziej szczegółowo

Wykład 7 Implementacja języka SQL w systemach baz danych Oracle sortowanie, funkcje agregujące i podzapytania.

Wykład 7 Implementacja języka SQL w systemach baz danych Oracle sortowanie, funkcje agregujące i podzapytania. Wykład 7 Implementacja języka SQL w systemach baz danych Oracle sortowanie, funkcje agregujące i podzapytania. Przykładowa RBD o schematach relacji (tzw. płaska postać RBD): N(PRACOWNICY) = {ID_P, IMIĘ,

Bardziej szczegółowo

Integralność danych Wersje języka SQL Klauzula SELECT i JOIN

Integralność danych Wersje języka SQL Klauzula SELECT i JOIN Integralność danych Wersje języka SQL Klauzula SELECT i JOIN Robert A. Kłopotek r.klopotek@uksw.edu.pl Wydział Matematyczno-Przyrodniczy. Szkoła Nauk Ścisłych, UKSW Integralność danych Aspekty integralności

Bardziej szczegółowo

Wstęp wprowadzający do laboratorium 2. mgr inż. Rafał Grycuk

Wstęp wprowadzający do laboratorium 2. mgr inż. Rafał Grycuk Wstęp wprowadzający do laboratorium 2 mgr inż. Rafał Grycuk Plan prezentacji 1. Czym jest T-SQL i czym się różni od standardu SQL 2. Typy zapytań 3. Zapytanie typu SELECT 4. Słowo o indeksach T-SQL (1)

Bardziej szczegółowo

Wstęp 5 Rozdział 1. Podstawy relacyjnych baz danych 9

Wstęp 5 Rozdział 1. Podstawy relacyjnych baz danych 9 Wstęp 5 Rozdział 1. Podstawy relacyjnych baz danych 9 Tabele 9 Klucze 10 Relacje 11 Podstawowe zasady projektowania tabel 16 Rozdział 2. Praca z tabelami 25 Typy danych 25 Tworzenie tabel 29 Atrybuty kolumn

Bardziej szczegółowo

Optymalizacja zapytań część II

Optymalizacja zapytań część II Optymalizacja zapytań część II Wykład przygotował: Tadeusz Morzy BD wykład 13 Niniejszy wykład jest kontynuacją wykładu poświęconego problemom wykonywania i optymalizacji zapytań w systemach baz danych.

Bardziej szczegółowo

Perspektywy Stosowanie perspektyw, tworzenie perspektyw prostych i złożonych, perspektywy modyfikowalne i niemodyfikowalne, perspektywy wbudowane.

Perspektywy Stosowanie perspektyw, tworzenie perspektyw prostych i złożonych, perspektywy modyfikowalne i niemodyfikowalne, perspektywy wbudowane. Perspektywy Stosowanie perspektyw, tworzenie perspektyw prostych i złożonych, perspektywy modyfikowalne i niemodyfikowalne, perspektywy wbudowane. 1 Perspektywa Perspektywa (ang. view) jest strukturą logiczną

Bardziej szczegółowo

Bazy Danych. SQL Podstawy języka II: zapytania. Krzysztof Regulski WIMiIP, KISiM, B5, pok. 408

Bazy Danych. SQL Podstawy języka II: zapytania. Krzysztof Regulski WIMiIP, KISiM, B5, pok. 408 Bazy Danych SQL Podstawy języka II: zapytania Krzysztof Regulski WIMiIP, KISiM, regulski@agh.edu.pl B5, pok. 408 Konstrukcja select-from-where SQL oparty jest na algebrze relacji z pewnymi modyfikacjami

Bardziej szczegółowo

Projekt jest finansowany ze środków Unii Europejskiej, Europejskiego Funduszu Społecznego i budŝetu państwa. Studia Podyplomowe dla Nauczycieli

Projekt jest finansowany ze środków Unii Europejskiej, Europejskiego Funduszu Społecznego i budŝetu państwa. Studia Podyplomowe dla Nauczycieli Projekt jest finansowany ze środków Unii Europejskiej, Europejskiego Funduszu Społecznego i budŝetu państwa Studia Podyplomowe dla Nauczycieli Bazy danych SQL Języki baz danych Interfejs DBMS składa się

Bardziej szczegółowo

Podzapytania. Rozdział 5. Podzapytania. Podzapytania wyznaczające wiele krotek (1) Podzapytania wyznaczające jedną krotkę

Podzapytania. Rozdział 5. Podzapytania. Podzapytania wyznaczające wiele krotek (1) Podzapytania wyznaczające jedną krotkę Podzapytania Rozdział 5 Podzapytania podzapytania proste i skorelowane, podzapytania w klauzuli SELECT i FROM, klauzula WITH, operatory ANY, ALL i EXISTS, zapytania hierarchiczne Podzapytanie jest poleceniem

Bardziej szczegółowo

Rozpatrzymy bardzo uproszczoną bazę danych o schemacie

Rozpatrzymy bardzo uproszczoną bazę danych o schemacie Wykład 6 Algebraiczne podstawy implementacji strukturalnego języka zapytań (SQL) w systemach baz danych Oracle zapytania w języku algebry relacyjnych baz danych i ich odpowiedniki w SQL Rozpatrzymy bardzo

Bardziej szczegółowo

Zapytania, złączenia, optymalizacja zapytań, planowanie zapytań, optymalizacja indeksów.

Zapytania, złączenia, optymalizacja zapytań, planowanie zapytań, optymalizacja indeksów. Dr inŝ. Dziwiński Piotr Katedra InŜynierii Komputerowej Zapytania, złączenia, optymalizacja zapytań, planowanie zapytań, optymalizacja indeksów. Kontakt: piotr.dziwinski@kik.pcz.pl 2 SQLQuery4_1.sql 3

Bardziej szczegółowo

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski. Relacyjne bazy danych. są podstawą zachodniej cywilizacji

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski. Relacyjne bazy danych. są podstawą zachodniej cywilizacji Relacyjne bazy danych Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski 1 Model danych Relacyjne bazy danych są podstawą zachodniej cywilizacji 3 Model danych: Aspekt strukturalny: Zbiór struktur

Bardziej szczegółowo

Struktury danych i optymalizacja

Struktury danych i optymalizacja Krzysztof Dembczyński Instytut Informatyki Zakład Inteligentnych Systemów Wspomagania Decyzji Politechnika Poznańska Technologie Wytwarzania Oprogramowania Semestr zimowy 2005/06 Plan wykładu Ewolucja

Bardziej szczegółowo

Modelowanie hierarchicznych struktur w relacyjnych bazach danych

Modelowanie hierarchicznych struktur w relacyjnych bazach danych Modelowanie hierarchicznych struktur w relacyjnych bazach danych Wiktor Warmus (wiktorwarmus@gmail.com) Kamil Witecki (kamil@witecki.net.pl) 5 maja 2010 Motywacje Teoria relacyjnych baz danych Do czego

Bardziej szczegółowo

Internetowe Bazy Danych. dr inż. Roman Ptak Katedra Informatyki Technicznej

Internetowe Bazy Danych. dr inż. Roman Ptak Katedra Informatyki Technicznej Internetowe Bazy Danych dr inż. Roman Ptak Katedra Informatyki Technicznej roman.ptak@pwr.edu.pl Plan wykładu 5. Optymalizacja baz danych Struktura fizyczna systemu MS SQL Server Plan wykonania w MS SQL

Bardziej szczegółowo

Bazy danych. Andrzej Grzybowski. Instytut Fizyki, Uniwersytet Śląski

Bazy danych. Andrzej Grzybowski. Instytut Fizyki, Uniwersytet Śląski Bazy danych Andrzej Grzybowski Instytut Fizyki, Uniwersytet Śląski Wykład 1 Algebra relacyjnych baz danych jako podstawa języka SQL i jego implementacji w systemach baz danych Oracle Bazy danych. Wykład

Bardziej szczegółowo

T-SQL w Microsoft SQL Server 2014 i SQL Server 2012

T-SQL w Microsoft SQL Server 2014 i SQL Server 2012 Itzik Ben-Gan Dejan Sarka Adam Machanic Kevin Farlee Zapytania w języku T-SQL w Microsoft SQL Server 2014 i SQL Server 2012 Przekład: Natalia Chounlamany Marek Włodarz APN Promise, Warszawa 2015 Spis treści

Bardziej szczegółowo

Operacja Teta-złączenia. v1 v1 Θ v2

Operacja Teta-złączenia. v1 v1 Θ v2 Operacja Teta-złączenia Dane są: r(r) tabela r o schemacie R, A R s(s) tabela s o schemacie S, B S R i S nie zawierają tych samych nazw (R S = Ø) Θ {>, =,

Bardziej szczegółowo

Przykłady najlepiej wykonywać od razu na bazie i eksperymentować z nimi.

Przykłady najlepiej wykonywać od razu na bazie i eksperymentować z nimi. Marek Robak Wprowadzenie do języka SQL na przykładzie baz SQLite Przykłady najlepiej wykonywać od razu na bazie i eksperymentować z nimi. Tworzenie tabeli Pierwsza tabela W relacyjnych bazach danych jedna

Bardziej szczegółowo

Bazy danych. Plan wykładu. Model logiczny i fizyczny. Operacje na pliku. Dyski. Mechanizmy składowania

Bazy danych. Plan wykładu. Model logiczny i fizyczny. Operacje na pliku. Dyski. Mechanizmy składowania Plan wykładu Bazy danych Wykład 10: Fizyczna organizacja danych w bazie danych Model logiczny i model fizyczny Mechanizmy składowania plików Moduł zarządzania miejscem na dysku i moduł zarządzania buforami

Bardziej szczegółowo

SQL Structured Query Language

SQL Structured Query Language SQL Structured Query Language stworzony na początku lat 70 ubiegłego wieku w IBM przez Donalda Messerly'ego, Donalda Chamberlina oraz Raymonda Boyce'a pod nazwą SEQUEL pierwszy SZBD System R utworzony

Bardziej szczegółowo

Plan wykładu. Klucz wyszukiwania. Pojęcie indeksu BAZY DANYCH. Pojęcie indeksu - rodzaje indeksów Metody implementacji indeksów.

Plan wykładu. Klucz wyszukiwania. Pojęcie indeksu BAZY DANYCH. Pojęcie indeksu - rodzaje indeksów Metody implementacji indeksów. Plan wykładu 2 BAZY DANYCH Wykład 4: Indeksy. Pojęcie indeksu - rodzaje indeksów Metody implementacji indeksów struktury statyczne struktury dynamiczne Małgorzata Krętowska Wydział Informatyki PB Pojęcie

Bardziej szczegółowo

Microsoft SQL Server Podstawy T-SQL

Microsoft SQL Server Podstawy T-SQL Itzik Ben-Gan Microsoft SQL Server Podstawy T-SQL 2012 przełożył Leszek Biolik APN Promise, Warszawa 2012 Spis treści Przedmowa.... xiii Wprowadzenie... xv Podziękowania... xix 1 Podstawy zapytań i programowania

Bardziej szczegółowo

Bazy danych. Dr inż. Paweł Kasprowski

Bazy danych. Dr inż. Paweł Kasprowski Plan wykładu Bazy danych Podstawy relacyjnego modelu danych Dr inż. Paweł Kasprowski pawel@kasprowski.pl Relacyjne bazy danych Język SQL Zapytania SQL (polecenie select) Bezpieczeństwo danych Integralność

Bardziej szczegółowo

Spis treści. Przedmowa

Spis treści. Przedmowa Spis treści Przedmowa V 1 SQL - podstawowe konstrukcje 1 Streszczenie 1 1.1 Bazy danych 1 1.2 Relacyjny model danych 2 1.3 Historia języka SQL 5 1.4 Definiowanie danych 7 1.5 Wprowadzanie zmian w tabelach

Bardziej szczegółowo

System Oracle podstawowe czynności administracyjne

System Oracle podstawowe czynności administracyjne 6 System Oracle podstawowe czynności administracyjne Stany bazy danych IDLE nieczynna, pliki zamknięte, procesy tła niedziałaja NOMOUNT stan po odczytaniu pfile-a, zainicjowaniu SGA i uruchomieniu procesów

Bardziej szczegółowo

RBD Relacyjne Bazy Danych Więzy realcji

RBD Relacyjne Bazy Danych Więzy realcji Wykład 8 RBD Relacyjne Bazy Danych Więzy realcji Bazy Danych - A. Dawid 2011 1 Więzy (Constraints) Więzy ograniczenia na związki między poszczególnymi atrybutami w bazie danych. Określają często zakres

Bardziej szczegółowo

Indeksy. Indeks typu B drzewo

Indeksy. Indeks typu B drzewo Indeksy dodatkowe struktury służące przyśpieszeniu dostępu do danych o użyciu indeksu podczas realizacji poleceń decyduje SZBD niektóre systemy bazodanowe automatycznie tworzą indeksy dla kolumn o wartościach

Bardziej szczegółowo

Język SQL. Rozdział 6. Podzapytania Podzapytania proste i skorelowane, podzapytania w klauzuli SELECT i FROM, operatory ANY, ALL i EXISTS.

Język SQL. Rozdział 6. Podzapytania Podzapytania proste i skorelowane, podzapytania w klauzuli SELECT i FROM, operatory ANY, ALL i EXISTS. Język SQL. Rozdział 6. Podzapytania Podzapytania proste i skorelowane, podzapytania w klauzuli SELECT i FROM, operatory ANY, ALL i EXISTS. 1 Podzapytania Podzapytanie jest poleceniem SELECT zagnieżdżonym

Bardziej szczegółowo

Ćwiczenie zapytań języka bazy danych PostgreSQL

Ćwiczenie zapytań języka bazy danych PostgreSQL Ćwiczenie zapytań języka bazy danych PostgreSQL 1. Uruchom link w przeglądarce: http://127.0.0.1/phppgadmin 2. Kliknij w zaznaczony na czerwono link PostgreSQL: 3. Zaloguj się wpisując hasło i login student.

Bardziej szczegółowo

Laboratorium Bazy danych SQL 2

Laboratorium Bazy danych SQL 2 Klauzula order by występuje jako ostatnia klauzula w poleceniu select, powoduje posortowanie wierszy będących wynikiem zapytania według wartości atrybutu w niej wskazanego. Domyślnie sortowanie jest według

Bardziej szczegółowo

KOLEKCJE - to typy masowe,zawierające pewną liczbę jednorodnych elementów

KOLEKCJE - to typy masowe,zawierające pewną liczbę jednorodnych elementów KOLEKCJE - to typy masowe,zawierające pewną liczbę jednorodnych elementów SQL3 wprowadza następujące kolekcje: zbiory ( SETS ) - zestaw elementów bez powtórzeń, kolejność nieistotna listy ( LISTS ) - zestaw

Bardziej szczegółowo

PODSTAWY BAZ DANYCH 13. PL/SQL

PODSTAWY BAZ DANYCH 13. PL/SQL PODSTAWY BAZ DANYCH 13. PL/SQL 1 Wprowadzenie do języka PL/SQL Język PL/SQL - rozszerzenie SQL o elementy programowania proceduralnego. Możliwość wykorzystywania: zmiennych i stałych, instrukcji sterujących

Bardziej szczegółowo

Bazy danych. Plan wykładu. Diagramy ER. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych

Bazy danych. Plan wykładu. Diagramy ER. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych Plan wykładu Bazy danych Wykład 9: Przechodzenie od diagramów E/R do modelu relacyjnego. Definiowanie perspektyw. Diagramy E/R - powtórzenie Relacyjne bazy danych Od diagramów E/R do relacji SQL - perspektywy

Bardziej szczegółowo

Laboratorium nr 10. Temat: Połączenia relacji

Laboratorium nr 10. Temat: Połączenia relacji Laboratorium nr 10 Temat: Połączenia relacji Dotychczas omawiane zapytania zawsze dotyczyły jednej relacji. MoŜliwe jest jednak pisanie zapytań, które odczytują i łączą dane z wielu relacji. Celem tego

Bardziej szczegółowo

Bazy danych wykład trzeci. Konrad Zdanowski

Bazy danych wykład trzeci. Konrad Zdanowski SQL - przypomnienie Podstawowa forma kwerendy SQL: select A1,..., Ak from R1,..., Rn where ; Odpowiada jej w algebrze relacji operacja π A1,...,Ak (σ (R1 Rn)) SQL semantyka select R.

Bardziej szczegółowo

1: 2: 3: 4: 5: 6: 7: 8: 9: 10:

1: 2: 3: 4: 5: 6: 7: 8: 9: 10: Grupa A (LATARNIE) Imię i nazwisko: Numer albumu: 1: 2: 3: 4: 5: 6: 7: 8: 9: 10: Nazwisko prowadzącego: 11: 12: Suma: Ocena: Zad. 1 (10 pkt) Dana jest relacja T. Podaj wynik poniższego zapytania (podaj

Bardziej szczegółowo

Systemowe aspekty baz

Systemowe aspekty baz Systemowe aspekty baz danych Deklaracja zmiennej Zmienne mogą być wejściowe i wyjściowe Zmienne w T-SQL można deklarować za pomocą @: declare @nazwisko varchar(20) Zapytanie z użyciem zmiennej: select

Bardziej szczegółowo

Struktura bazy danych

Struktura bazy danych Bazy danych - MySQL Warunki zaliczenia tych zajęć Rozwiązania zadań domowych proszę zapisać do pliku o nazwie Bazy danych i wysłać do mnie jako załącznik. Ostateczny termin: niedziela, 9.06, godzina 24:00.

Bardziej szczegółowo

Podstawy języka T-SQL : Microsoft SQL Server 2016 i Azure SQL Database / Itzik Ben-Gan. Warszawa, Spis treści

Podstawy języka T-SQL : Microsoft SQL Server 2016 i Azure SQL Database / Itzik Ben-Gan. Warszawa, Spis treści Podstawy języka T-SQL : Microsoft SQL Server 2016 i Azure SQL Database / Itzik Ben-Gan. Warszawa, 2016 Spis treści Wprowadzenie Podziękowania xiii xvii 1 Podstawy zapytań i programowania T-SQL 1 Podstawy

Bardziej szczegółowo

DB2 with BLU acceleration rozwiązanie in-memory szybsze niż pamięć operacyjna&

DB2 with BLU acceleration rozwiązanie in-memory szybsze niż pamięć operacyjna& DB2 with BLU acceleration rozwiązanie in-memory szybsze niż pamięć operacyjna& Artur Wroński" Priorytety rozwoju technologii Big Data& Analiza większych zbiorów danych, szybciej& Łatwość użycia& Wsparcie

Bardziej szczegółowo

Bazy Danych - Instrukcja do Ćwiczenia laboratoryjnego nr 8

Bazy Danych - Instrukcja do Ćwiczenia laboratoryjnego nr 8 Bazy Danych - Instrukcja do Ćwiczenia laboratoryjnego nr 8 Bazowy skrypt PHP do ćwiczeń z bazą MySQL: Utwórz skrypt o nazwie cw7.php zawierający następującą treść (uzupełniając go o właściwą nazwę uŝytkownika

Bardziej szczegółowo

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 (a) T (b) N (c) N (d) T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 (a) T (b) N (c) N (d) T PRZYKŁADOWE PYTANIA NA EGZAMIN Z PRZEDMIOTU ADMINISTRACJA BAZAMI DANYCH - 2005/2006-1- A Nazwisko i imię: Kierunek: Rok studiów: Pytanie 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Punkty 5 5 5

Bardziej szczegółowo

Fizyczna struktura bazy danych Indeksy Optymalizacja. Fizyczna struktura bazy danych (c.d.) Tadeusz Pankowski

Fizyczna struktura bazy danych Indeksy Optymalizacja. Fizyczna struktura bazy danych (c.d.) Tadeusz Pankowski Indeksowanie: B-drzewa Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski Fizyczna struktura bazy danych Indeksy Optymalizacja Fizyczna struktura bazy danych Techniki używane do przechowywania dużej

Bardziej szczegółowo

Bazy danych. Wprowadzenie. SKiBD

Bazy danych. Wprowadzenie. SKiBD Bazy danych Wprowadzenie SKiBD Motywacja do rozwoju baz danych Posiadanie dużej ilości danych Trudności w przechowywaniu i udostępnianiu danych Konieczność szybkiego dostępu do informacji Potrzeba: Przechowywanie

Bardziej szczegółowo

Bazy Danych egzamin 9 luty, 2012 rozwiazania

Bazy Danych egzamin 9 luty, 2012 rozwiazania Bazy Danych egzamin 9 luty, 2012 rozwiazania 1 Zadania 1. Stwórz diagram ER dla następującego opisu bazy danych drużyn i rozgrywek lig regionalnych. W szczególności oznacz słabe encje, klucze, rodzaje

Bardziej szczegółowo

Szkolenie Oracle SQL podstawy. Terminy. 15 17 lutego 2010 First Minute! 1100zł!

Szkolenie Oracle SQL podstawy. Terminy. 15 17 lutego 2010 First Minute! 1100zł! Szkolenie Oracle SQL podstawy Terminy 15 17 lutego 2010 First Minute! 1100zł! Opis szkolenia Baza danych Oracle od dawna cieszy się zasłużona sławą wśród informatyków. Jej wydajność, szybkość działania

Bardziej szczegółowo

Opis: Instrukcja warunkowa Składnia: IF [NOT] warunek [AND [NOT] warunek] [OR [NOT] warunek].

Opis: Instrukcja warunkowa Składnia: IF [NOT] warunek [AND [NOT] warunek] [OR [NOT] warunek]. ABAP/4 Instrukcja IF Opis: Instrukcja warunkowa Składnia: IF [NOT] warunek [AND [NOT] warunek] [OR [NOT] warunek]. [ELSEIF warunek. ] [ELSE. ] ENDIF. gdzie: warunek dowolne wyrażenie logiczne o wartości

Bardziej szczegółowo

Stosowanie indeksów ma swoje korzyści, ale bywa również kosztowne.

Stosowanie indeksów ma swoje korzyści, ale bywa również kosztowne. INDEKSY Indeks to plik (o rozszerzeniu sas7bndx) powiązany ze zbiorem, który pozwala na bezpośredni dostęp do obserwacji. Przechowuje wartości obserwacji w porządku rosnącym oraz położenie obserwacji w

Bardziej szczegółowo

Wykład 5 Fizyczne projektowanie bazy danych (Paul Beynon-Davies, Systemy baz danych )

Wykład 5 Fizyczne projektowanie bazy danych (Paul Beynon-Davies, Systemy baz danych ) Zawartość wykładu: Wykład 5 Fizyczne projektowanie bazy danych (Paul Beynon-Davies, Systemy baz danych ) 1) Logiczne projektowanie bazy danych 2) Fizyczne projektowanie bazy danych 3) Zdefiniowanie wydajności

Bardziej szczegółowo

T-SQL dla każdego / Alison Balter. Gliwice, cop Spis treści. O autorce 11. Dedykacja 12. Podziękowania 12. Wstęp 15

T-SQL dla każdego / Alison Balter. Gliwice, cop Spis treści. O autorce 11. Dedykacja 12. Podziękowania 12. Wstęp 15 T-SQL dla każdego / Alison Balter. Gliwice, cop. 2016 Spis treści O autorce 11 Dedykacja 12 Podziękowania 12 Wstęp 15 Godzina 1. Bazy danych podstawowe informacje 17 Czym jest baza danych? 17 Czym jest

Bardziej szczegółowo

Kolekcje Zbiory obiektów, rodzaje: tablica o zmiennym rozmiarze (ang. varray) (1) (2) (3) (4) (5) Rozszerzenie obiektowe w SZBD Oracle

Kolekcje Zbiory obiektów, rodzaje: tablica o zmiennym rozmiarze (ang. varray) (1) (2) (3) (4) (5) Rozszerzenie obiektowe w SZBD Oracle Rozszerzenie obiektowe w SZBD Oracle Cześć 2. Kolekcje Kolekcje Zbiory obiektów, rodzaje: tablica o zmiennym rozmiarze (ang. varray) (1) (2) (3) (4) (5) Malinowski Nowak Kowalski tablica zagnieżdżona (ang.

Bardziej szczegółowo

Bazy danych 8. Złaczenia ciag dalszy. Grupowanie.

Bazy danych 8. Złaczenia ciag dalszy. Grupowanie. Bazy danych 8. Złaczenia ciag dalszy. Grupowanie. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Filtry Wyobraźmy sobie zapytanie SELECT... FROM T 1 JOIN T 2 ON... WHERE P(T 1 )

Bardziej szczegółowo