WYKŁAD 1. Wprowadzenie w tematykę kursu

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYKŁAD 1. Wprowadzenie w tematykę kursu"

Transkrypt

1 Wrocław University of Technology WYKŁAD 1 Wprowadzenie w tematykę kursu autor: Maciej Zięba Politechnika Wrocławska

2 Informacje dotyczące zajęć Cykl 8 wykładów. Konsultacje odbywają się w sali 121 w budynku C3 w terminach (proszę o wcześniejsze potwierdzenie mailem): PN, CZ, ND, Kontakt do prowadzącego: Strona prowadzącego: Na ostatnim wykładzie kolokwium zaliczeniowe. 2/34

3 Zawartość merytoryczna (1) 1. Zagadnienia podstawowe: metody pozyskiwania, wykorzystywania i integracji wiedzy; wprowadzenie niezbędnych pojęć związanych z prawdopodobieństwem; typowe rozkłady dyskretne i ciągłe. 2. Modele probabilistyczne: reprezentacja wiedzy w postaci modelu probabilistycznego; wnioskowanie na podstawie modeli probabilistycznych; ekstrakcja wiedzy z modeli probabilistycznych; integracja modeli probabilistycznych; złożone modele probabilistyczne. 3/34

4 Zawartość merytoryczna (2) 3. Modele funkcyjne, reguły i drzewa decyzyjne: metody ekstrakcji wiedzy dla modeli funkcyjnych; metody konstrukcji drzew i reguł decyzyjnych; metody konstrukcji zespołów modeli; metody integracji modeli o różnych reprezentacjach wiedzy. 4. Inne rodzaje reprezentacji wiedzy: zbiory rozmyte; ontologie; 5. Przykłady integracji wiedzy. 4/34

5 Pojęcie wiedzy Pojęcie wiedzy po raz pierwszy wprowadził Platon. Uważał on, że wiedza to prawdziwe i uzasadnione przekonanie. Arystoteles z kolei wyodrębnia wiedzę teoretyczną i praktyczną. Podział wiedzy ze względu na kryterium doświadczenia: Wiedza a priori jest niezależna od zmysłów i dotyczy prawd absolutnych lub uniwersalnych jakimi są prawa logiki, prawa matematyki. Wiedza a posteriori jest wiedzą nabytą poprzez zmysły i jej prawdziwość może być obalona poprzez następne obserwacje. 5/34

6 Pojęcie wiedzy w sztucznej inteligencji Pojęcie wiedzy w sztucznej inteligencji odnosi się do struktur modeli reprezentujących pewne procesy podejmowania decyzji. W zależności od procesu podejmowania decyzji wiedza może być reprezentowana w postaci rozmaitych struktur, takich jak funkcje, drzewa, grafy, reguły, bądź zbiory. Wiedza może mieć charakter: zrozumiały (interpretowalny); niejawny (nieinterpretowalny). Źródła wiedzy: wiedza eksperta; wiedza pozyskana z danych. 6/34

7 Pojęcie wiedzy w sztucznej inteligencji Pojęcie wiedzy w sztucznej inteligencji odnosi się do struktur modeli reprezentujących pewne procesy podejmowania decyzji. W zależności od procesu podejmowania decyzji wiedza może być reprezentowana w postaci rozmaitych struktur, takich jak funkcje, drzewa, grafy, reguły, bądź zbiory. Wiedza może mieć charakter: zrozumiały (interpretowalny); niejawny (nieinterpretowalny). Źródła wiedzy: wiedza eksperta; wiedza pozyskana z danych. 6/34

8 Uczenie maszynowe i eksploracja danych (1) Uczenie maszynowe (ang. machine learning) to proces pozyskiwania wiedzy do rozwiązania pewnego zadania w oparciu o doświadczenie i z wykorzystaniem pewnej miary jakości. Wraz ze wzrostem doświadczenia, następuje przyrost wiedzy potrzebnej do realizacji zadania mierzony z wykorzystaniem miary jakości. Eksploracja (ekstrakcja) danych (ang. data mining) to proces pozyskiwania wiedzy z danych reprezentowanej przez pewne wzorce. ZADANIE Jaka to litera? DOŚWIADCZENIE MIARA JAKOŚCI 7/34

9 Uczenie maszynowe i eksploracja danych (2) Metody uczenia maszynowego: są wykorzystywane jako narzędzia w procesach eksploracji danych. mają wymiar teoretyczny; modelują zjawiska wspomagając się danymi; modelują rzeczywistość w sposób probabilistyczny; zorientowane głownie na modele nieinterpretowalne; Metody eksploracji danych: jako narzędzia wykorzystują metody uczenia maszynowego. mają wymiar praktyczny; koncentrują się na analizie danych; modelują rzeczywistość w sposób deterministyczny; zorientowane głownie na modele interpretowalne. 8/34

10 Dane w uczeniu maszynowym Jeżeli rozważamy problem uczenia nadzorowanego (predykcji), to interesuje nas znalezienie mapowania wartości wejściowych x na wartości wyjściowe y. Mapowanie to odbywa się na podstawie tzn. zbioru uczącego (treningowego), który zawiera pary wejście-wyjście nazywane przykładami: D = {(x n, y n )} N n=1. Każdy element wejściowy x i zawiera zestaw wartości nominalnych i liczbowych, które nazywane są cechami, bądź atrybutami. Każdy element wyjściowy y i reprezentowany jest przez wartość liczbową (regresja), bądź też nominalną (klasyfikacja). Jeżeli rozważamy problem uczenia nienadzorowanego (deskrypcji) to interesuje nas znalezienie ciekawych wzorców w danych: D = {x n } N n=1. 9/34

11 Źródła danych DANE BANKOWE DANE MEDYCZNE DANE DŹWIĘKOWE OBRAZY DANE MAILOWE PORTALE SPOŁECZNOŚCIOWE DANE O KLIENTACH DANE Z CZUJNIKÓW DANE GIEŁDOWE 10/34

12 Problemy uczenia maszynowego Uczenie z nadzorem (ang. supervised learning): klasyfikacja (ang. classification); regresja (ang. regression); Uczenie bez nadzoru (ang. unsupervised learning): grupowanie (klasteryzacja, analiza skupień) (ang. clustering); redukcja wymiarów (ang. dimensionality reduction); uzupełnianie wartości (ang. matrix completion). Uczenie ze wzmocnieniem (ang. reinforcement learning). 11/34

13 Uczenie z nadzorem: Regresja Regresja (ang. Regression): Dysponujemy obserwacjami z odpowiadającymi im wartościami ciągłymi. Celem uczenia jest skonstruowanie modelu regresji na podstawie danych. Model konstruowany jest tak, aby możliwe było przewidywanie nowych obserwacji. 12/34

14 Uczenie z nadzorem: Regresja Regresja (ang. Regression): Dysponujemy obserwacjami z odpowiadającymi im wartościami ciągłymi. Celem uczenia jest skonstruowanie modelu regresji na podstawie danych. Model konstruowany jest tak, aby możliwe było przewidywanie nowych obserwacji. 12/34

15 Uczenie z nadzorem: Regresja Regresja (ang. Regression): Dysponujemy obserwacjami z odpowiadającymi im wartościami ciągłymi. Celem uczenia jest skonstruowanie modelu regresji na podstawie danych. Model konstruowany jest tak, aby możliwe było przewidywanie nowych obserwacji. 12/34

16 Uczenie z nadzorem: Regresja Regresja (ang. Regression): Dysponujemy obserwacjami z odpowiadającymi im wartościami ciągłymi. Celem uczenia jest skonstruowanie modelu regresji na podstawie danych. Model konstruowany jest tak, aby możliwe było przewidywanie nowych obserwacji. 12/34

17 Regresja: Śledzenie ruchu Cel: Dane: Wyznaczenie następnego położenia obiektu. Sekwencja obrazów z poruszającymi się obiektami. Na podstawie dotychczas zarejestrowanej sekwencji obrazów wyznaczane jest położenie obiektu. 13/34

18 Regresja: Predykcja notowań giełdowych Cel: Dane: Wycena akcji. Notowania akcji z poprzednich okresów oraz inne czynniki wpływające na cenę akcji. Na podstawie notowań historycznych i innych czynników mających wpływ na cenę akcji budowany jest model predykcyjny. Model aktualizowany jest z wykorzystaniem bieżących notowań. 14/34

19 Regresja: Predykcja przeżywalności pooperacyjnej Cel: Dane: Określenie jaki okres czasu pacjent przeżyje po operacji. Wyniki badań pacjenta przeprowadzonych przed i po operacji, ogólna charakterystyka zdrowia pacjenta. Na podstawie danych o pacjencie należy określić jaki okres czasu przeżyje on po operacji. 15/34

20 Uczenie z nadzorem: Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami (klasami), które przyjmują wartości nominalne. Celem uczenia jest skonstruowanie klasyfikatora separującego obiekty należące do różnych klas. Klasyfikator konstruowany jest tak, aby możliwe było przewidywanie klas nowych, niesklasyfikowanych obserwacji. 16/34

21 Uczenie z nadzorem: Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami (klasami), które przyjmują wartości nominalne. Celem uczenia jest skonstruowanie klasyfikatora separującego obiekty należące do różnych klas. Klasyfikator konstruowany jest tak, aby możliwe było przewidywanie klas nowych, niesklasyfikowanych obserwacji. 16/34

22 Uczenie z nadzorem: Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami (klasami), które przyjmują wartości nominalne. Celem uczenia jest skonstruowanie klasyfikatora separującego obiekty należące do różnych klas. Klasyfikator konstruowany jest tak, aby możliwe było przewidywanie klas nowych, niesklasyfikowanych obserwacji. 16/34

23 Uczenie z nadzorem: Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami (klasami), które przyjmują wartości nominalne. Celem uczenia jest skonstruowanie klasyfikatora separującego obiekty należące do różnych klas. Klasyfikator konstruowany jest tak, aby możliwe było przewidywanie klas nowych, niesklasyfikowanych obserwacji. 16/34

24 Klasyfikacja: Rozpoznawanie znaków Cel: Dane: Określenie, jaki znak (cyfra, litera) znajduje się na obrazku. Zestaw obrazków treningowych reprezentujących różne znaki wraz z korespondującymi etykietami. Wydobywane są cechy obrazka różnicujące reprezentowane znaki. Na podstawie cech i wykorzystując dane treningowe wykonywana jest klasyfikacja obrazka do najbardziej prawdopodobnego znaku. 17/34

25 Klasyfikacja: Detekcja obiektów Cel: Dane: Wykrycie obiektu na obrazie. Obraz na którym bada się wystąpienie obiektu, oraz zestaw obrazów treningowych przedstawiających dany obiekt. Do analizy obrazu wykorzystuje się okno przesuwne. W każdym kroku obraz z okna przesuwnego klasyfikowany jest jako obiekt poszukiwany lub nie. 18/34

26 Klasyfikacja: Detekcja SPAMU Cel: Dane: Zbadać, czy dana wiadomość jest SPAMEM. Zestaw zawierający zaetykietowane wiadomości mailowe. Wydobywane są cechy (występowanie słów) różnicujące SPAM od zwykłej poczty. Klasyfikacja nowej wiadomości odbywa się z wykorzystaniem wydobytych cech. 19/34

27 Klasyfikacja: Credit Scoring Cel: Dane: Zbadać zdolność kredytową klienta bankowego. Charakterystyki klientów bankowych pochodzące z systemów informatycznych i kwestionariuszy. Wydobywane są cechy mające wpływ na decyzje kredytowe. Klasyfikatory do oceny zdolności kredytowej są powszechnie stosowanym narzędziem. 20/34

28 Uczenie bez nadzoru: Klasteryzacja Klasteryzacja (ang. Clustering): Dysponujemy obserwacjami bez etykiet. Celem uczenia jest znalezienie grup (klastrów), w których skupione są dane. Obserwacje z danej grupy charakteryzują się podobieństwem. Inne nazwy: grupowanie, analiza skupień. 21/34

29 Uczenie bez nadzoru: Klasteryzacja Klasteryzacja (ang. Clustering): Dysponujemy obserwacjami bez etykiet. Celem uczenia jest znalezienie grup (klastrów), w których skupione są dane. Obserwacje z danej grupy charakteryzują się podobieństwem. Inne nazwy: grupowanie, analiza skupień. 21/34

30 Klateryzacja: Grupowanie osób w sieci społecznej Cel: Dane: Wyodrębnienie grup znajomych w sieci społecznej. Dane o interakcji między osobami. Wyodrębnione grupy znajomych przy pomocy TouchGraph dla Facebook a. Znajomi w tych samych klastrach charakteryzują się wewnętrzną interakcją między sobą. 22/34

31 Uczenie bez nadzoru: Redukcja wymiarów Redukcja wymiarów (ang. Dimensionality reduction): Dysponujemy obserwacjami bez etykiet. Celem uczenia jest znalezienie niskowymiarowej podprzestrzeni (rozmaitości), na której leżą dane. Obserwacje mogą zostać zakodowane przy pomocy układu współrzędnych związanego z niskowymiarową podprzestrzenią. 23/34

32 Uczenie bez nadzoru: Redukcja wymiarów Redukcja wymiarów (ang. Dimensionality reduction): Dysponujemy obserwacjami bez etykiet. Celem uczenia jest znalezienie niskowymiarowej podprzestrzeni (rozmaitości), na której leżą dane. Obserwacje mogą zostać zakodowane przy pomocy układu współrzędnych związanego z niskowymiarową podprzestrzenią. 23/34

33 Redukcja wymiarów: Kodowanie i kompresja zdjęć Cel: Znalezienie twarzy bazowych rozpinających niskowymiarową przestrzeń. Dane: Zdjęcia twarzy. Wyróżnione M twarzy bazowych rozpina M-wymiarową podprzestrzeń w przestrzeni twarzy. Twarze mogą być kodowane poprzez położenie na niskowymiarowej przestrzeni. Metoda może służyć, jako automatyczna ekstrakcja cech ze zdjęć. 24/34

34 Uczenie bez nadzoru: Uzupełnianie wartości Uzupełnianie wartości (ang. Matrix completion): Dysponujemy obserwacjami bez etykiet. Celem uczenia jest znalezienie brakujących wartości dla niekompletnych obserwacji. Obserwacje uzupełniane są poprzez wstawienie najbardziej prawdopodobnych wartości. 25/34

35 Uczenie bez nadzoru: Uzupełnianie wartości Uzupełnianie wartości (ang. Matrix completion): Dysponujemy obserwacjami bez etykiet. Celem uczenia jest znalezienie brakujących wartości dla niekompletnych obserwacji. Obserwacje uzupełniane są poprzez wstawienie najbardziej prawdopodobnych wartości. 25/34

36 Uczenie bez nadzoru: Uzupełnianie wartości Uzupełnianie wartości (ang. Matrix completion): Dysponujemy obserwacjami bez etykiet. Celem uczenia jest znalezienie brakujących wartości dla niekompletnych obserwacji. Obserwacje uzupełniane są poprzez wstawienie najbardziej prawdopodobnych wartości. 25/34

37 Uzupełnianie wartości: Rekonstrukcja obrazu Cel: Dane: Odtworzyć zakłócony obraz. Zestaw niezakłóconych zdjęć, oraz zakłócony obraz do rekonstrukcji. W oparciu o niezakłócone zdjęcia i analizowany obraz konstruowany jest rozkład prawdopodobieństwa na brakujące piksele. Na podstawie rozkładu uzupełniane są brakujące wartości pikseli poprzez wstawianie wartości najbardziej prawdopodobnych. 26/34

38 Uzupełnianie wartości: Rekomendacja produktów Cel: Dane: Zaproponować klientowi produkty, które skłonny jest kupić. Produkty do tej pory kupione przez klienta i transakcje zrealizowane przez innych klientów. W oparciu o zakupiony koszyk produktów nabytych przez klienta i zestaw transakcji konstruowany jest rozkład prawdopodobieństwa na produkty. Na podstawie rozkładu wybierane do rekomendacji są produkty charakteryzujące się najwyższym prawdopodobieństwem. 27/34

39 Reprezentacje wiedzy Wiedza w postaci funkcyjnej Wiedza reprezentowania jest w postaci funkcji i jej parametrów. Proces podejmowania decyzji odbywa się poprzez wyznaczenie wartości funkcji dla zadanych wartości argumentów. Uczenie najczęściej odbywa się poprzez estymację parametrów w procesie optymalizacji pewnego kryterium. Przykład: f(w ZROST, W AGA) = 2 W AGA + W ZROST 320. f(176, 85) = 26 > 0; Wniosek: osoba, która ma 176 cm wzrostu i waży 85 kg jest rugbistą. 28/34

40 Reprezentacje wiedzy Wiedza w postaci funkcyjnej Wiedza reprezentowania jest w postaci funkcji i jej parametrów. Proces podejmowania decyzji odbywa się poprzez wyznaczenie wartości funkcji dla zadanych wartości argumentów. Uczenie najczęściej odbywa się poprzez estymację parametrów w procesie optymalizacji pewnego kryterium. Przykład: f(w ZROST, W AGA) = 2 W AGA + W ZROST 320. f(176, 85) = 26 > 0; Wniosek: osoba, która ma 176 cm wzrostu i waży 85 kg jest rugbistą. 28/34

41 Reprezentacje wiedzy Wiedza w postaci funkcyjnej Wiedza reprezentowania jest w postaci funkcji i jej parametrów. Proces podejmowania decyzji odbywa się poprzez wyznaczenie wartości funkcji dla zadanych wartości argumentów. Uczenie najczęściej odbywa się poprzez estymację parametrów w procesie optymalizacji pewnego kryterium. Przykład: f(w ZROST, W AGA) = 2 W AGA + W ZROST 320. f(176, 85) = 26 > 0; Wniosek: osoba, która ma 176 cm wzrostu i waży 85 kg jest rugbistą. 28/34

42 Reprezentacje wiedzy Wiedza w postaci probabilistycznej Wiedza reprezentowania jest w postaci rozkładów prawdopodobieństwa. Proces podejmowania decyzji odbywa się poprzez wybór najbardziej prawdopodobnego wariantu. Uczenie realizowane jest poprzez estymację rozkładów prawdopodobieństwa. Przykład: p(176, 85 rugbista) = 0.17; p(176, 85 skoczek) = Wniosek: bardziej prawdopodobne jest, że jeśli osoba jest rugbistą, to ma 176 cm wzrostu i waży 85 kg. 29/34

43 Reprezentacje wiedzy Wiedza w postaci probabilistycznej Wiedza reprezentowania jest w postaci rozkładów prawdopodobieństwa. Proces podejmowania decyzji odbywa się poprzez wybór najbardziej prawdopodobnego wariantu. Uczenie realizowane jest poprzez estymację rozkładów prawdopodobieństwa. Przykład: p(176, 85 rugbista) = 0.17; p(176, 85 skoczek) = Wniosek: bardziej prawdopodobne jest, że jeśli osoba jest rugbistą, to ma 176 cm wzrostu i waży 85 kg. 29/34

44 Reprezentacje wiedzy Wiedza w postaci reguł decyzyjnych Wiedza reprezentowania jest w postaci reguł decyzyjnych. Każda reguła opisana jest w formie implikacji, na którą składa się koniunkcja wartości atrybutów (lewa strona implikacji), oraz jeden z możliwych wariantów decyzyjnych (prawa strona implikacji). Proces podejmowania decyzji odbywa się poprzez wybór odpowiedniej reguły (bądź reguł) decyzyjnych, która dotyczy (pokrywa) danego zagadnienia i na jej podstawie przeprowadzenie procesu wnioskowania. Uczenie polega na znalezieniu zestawu reguł najlepiej opisujących rzeczywistość. Interpretowalna reprezentacja wiedzy. Przykładowa reguła: (Kwota kredytu > 700) (Dochod < 1100) (status = odmowa)) 30/34

45 Reprezentacje wiedzy Wiedza w postaci drzew decyzyjnych Wiedza reprezentowania jest w strukturze drzewa. Drzewo decyzyjne w wierzchołkach przechowuje atrybuty, krawędzie reprezentują podział wartości dla danego atrybutu, natomiast w liściach przechowywane są możliwe warianty decyzyjne. Proces podejmowania decyzji odbywa się poprzez przejście jedną z możliwych ścieżek w drzewie i odczytaniu wariantu decyzyjnego z liścia. Uczenie odbywa się poprzez wybór najbardziej informacyjnej cechy, umieszczenie jej w danym wierzchołku i wprowadzenie najbardziej informacyjnego podziału jej wartości. Interpretowalna reprezentacja wiedzy. Każda ścieżka reprezentuje odrębną regułę decyzyjną. Zbiór wszystkich ścieżek reprezentuje kompletny i niesprzeczny zestaw reguł. 31/34

46 Reprezentacje wiedzy Przykład drzewa decyzyjnego <0 $ Checking account status >= 0 $ Credit amount Employment status < $ > = $ full-time unemployment Employment status bad good part-time bad full-time unemployment part-time Credit amount good bad < $ > = $ good good Duration of credit <18 months > =18 months good divorced or widowed Personal status married single good good bad 32/34

47 Integracja wiedzy Integracja wiedzy (bądź danych na potrzeby pozyskania wiedzy) odbywa się głównie celem: podejmowania decyzji na podstawie wielu modeli; wydobywanie interpretowalnej wiedzy na podstawie wielu modeli; integracja danych rozłożonych danych w różnych obszarach przestrzeni. 33/34

48 Literatura Należy zapoznać się z treścią książki (Rozdział 1 i 2): Murphy, Kevin P. Machine learning: a probabilistic perspective. MIT Press, /34

SPOTKANIE 2: Wprowadzenie cz. I

SPOTKANIE 2: Wprowadzenie cz. I Wrocław University of Technology SPOTKANIE 2: Wprowadzenie cz. I Piotr Klukowski Studenckie Koło Naukowe Estymator piotr.klukowski@pwr.edu.pl 17.10.2016 UCZENIE MASZYNOWE 2/27 UCZENIE MASZYNOWE = Konstruowanie

Bardziej szczegółowo

SPOTKANIE 1: Wprowadzenie do uczenia maszynowego

SPOTKANIE 1: Wprowadzenie do uczenia maszynowego Wrocław University of Technology SPOTKANIE 1: Wprowadzenie do uczenia maszynowego Adam Gonczarek Studenckie Koło Naukowe Estymator adam.gonczarek@pwr.wroc.pl 18.10.2013 Początki uczenia maszynowego Cybernetyka

Bardziej szczegółowo

Wrocław University of Technology. Wprowadzenie cz. I. Adam Gonczarek. Rozpoznawanie Obrazów, Lato 2015/2016

Wrocław University of Technology. Wprowadzenie cz. I. Adam Gonczarek. Rozpoznawanie Obrazów, Lato 2015/2016 Wrocław University of Technology Wprowadzenie cz. I Adam Gonczarek adam.gonczarek@pwr.edu.pl Rozpoznawanie Obrazów, Lato 2015/2016 ROZPOZNAWANIE OBRAZÓW / WZORCÓW Definicja z Wikipedii 2/39 ROZPOZNAWANIE

Bardziej szczegółowo

WYKŁAD 6. Reguły decyzyjne

WYKŁAD 6. Reguły decyzyjne Wrocław University of Technology WYKŁAD 6 Reguły decyzyjne autor: Maciej Zięba Politechnika Wrocławska Reprezentacje wiedzy Wiedza w postaci reguł decyzyjnych Wiedza reprezentowania jest w postaci reguł

Bardziej szczegółowo

Plan prezentacji 0 Wprowadzenie 0 Zastosowania 0 Przykładowe metody 0 Zagadnienia poboczne 0 Przyszłość 0 Podsumowanie 7 Jak powstaje wiedza? Dane Informacje Wiedza Zrozumienie 8 Przykład Teleskop Hubble

Bardziej szczegółowo

Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego

Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis Elementy uczenia maszynowego Literatura [1] Bolc L., Zaremba

Bardziej szczegółowo

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny

Bardziej szczegółowo

Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18

Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18 Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)

Bardziej szczegółowo

ALGORYTM RANDOM FOREST

ALGORYTM RANDOM FOREST SKRYPT PRZYGOTOWANY NA ZAJĘCIA INDUKOWANYCH REGUŁ DECYZYJNYCH PROWADZONYCH PRZEZ PANA PAWŁA WOJTKIEWICZA ALGORYTM RANDOM FOREST Katarzyna Graboś 56397 Aleksandra Mańko 56699 2015-01-26, Warszawa ALGORYTM

Bardziej szczegółowo

Pattern Classification

Pattern Classification Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors

Bardziej szczegółowo

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu

Bardziej szczegółowo

CLUSTERING. Metody grupowania danych

CLUSTERING. Metody grupowania danych CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych

Bardziej szczegółowo

Wprowadzenie do technologii informacyjnej.

Wprowadzenie do technologii informacyjnej. Wprowadzenie do technologii informacyjnej. Data mining i jego biznesowe zastosowania dr Tomasz Jach Definicje Eksploracja danych polega na torturowaniu danych tak długo, aż zaczną zeznawać. Eksploracja

Bardziej szczegółowo

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016 Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania

Bardziej szczegółowo

Wybrane zagadnienia uczenia maszynowego. Zastosowania Informatyki w Informatyce W2 Krzysztof Krawiec

Wybrane zagadnienia uczenia maszynowego. Zastosowania Informatyki w Informatyce W2 Krzysztof Krawiec Wybrane zagadnienia uczenia maszynowego Zastosowania Informatyki w Informatyce W2 Krzysztof Krawiec Przygotowane na podstawie T. Mitchell, Machine Learning S.J. Russel, P. Norvig, Artificial Intelligence

Bardziej szczegółowo

Wprowadzenie do uczenia maszynowego

Wprowadzenie do uczenia maszynowego Wprowadzenie do uczenia maszynowego Agnieszka Ławrynowicz 12 stycznia 2017 Co to jest uczenie maszynowe? dziedzina nauki, która zajmuje się sprawianiem aby komputery mogły uczyć się bez ich zaprogramowania

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2012 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę

Bardziej szczegółowo

Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010

Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010 Materiały/konsultacje Automatyczna predykcja http://www.ibp.pwr.wroc.pl/kotulskalab Konsultacje wtorek, piątek 9-11 (uprzedzić) D1-115 malgorzata.kotulska@pwr.wroc.pl Co to jest uczenie maszynowe? Uczenie

Bardziej szczegółowo

Techniki uczenia maszynowego nazwa przedmiotu SYLABUS

Techniki uczenia maszynowego nazwa przedmiotu SYLABUS Techniki uczenia maszynowego nazwa SYLABUS Obowiązuje od cyklu kształcenia: 2014/20 Część A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej studiów Poziom kształcenia Profil studiów

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 1. INFORMACJE WSTĘPNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 1. INFORMACJE WSTĘPNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 1. INFORMACJE WSTĘPNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PLAN WYKŁADU WSTĘP W 1 Uczenie się w ujęciu algorytmicznym. W

Bardziej szczegółowo

Analiza danych i data mining.

Analiza danych i data mining. Analiza danych i data mining. mgr Katarzyna Racka Wykładowca WNEI PWSZ w Płocku Przedsiębiorczy student 2016 15 XI 2016 r. Cel warsztatu Przekazanie wiedzy na temat: analizy i zarządzania danymi (data

Bardziej szczegółowo

Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl

Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl 1. Wstęp Aby skorzystać z możliwości RapidMinera w zakresie analizy tekstu, należy zainstalować Text Mining Extension. Wybierz: 1 Po

Bardziej szczegółowo

Algorytmy, które estymują wprost rozkłady czy też mapowania z nazywamy algorytmami dyskryminacyjnymi.

Algorytmy, które estymują wprost rozkłady czy też mapowania z nazywamy algorytmami dyskryminacyjnymi. Spis treści 1 Wstęp: generatywne algorytmy uczące 2 Gaussowska analiza dyskryminacyjna 2.1 Gaussowska analiza dyskryminacyjna a regresja logistyczna 3 Naiwny Klasyfikator Bayesa 3.1 Wygładzanie Laplace'a

Bardziej szczegółowo

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu i business intelligence Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl Wrocław 2005-2007 Plan na dziś : 1. Wprowadzenie do przedmiotu (co będzie omawiane oraz jak będę weryfikował zdobytą wiedzę

Bardziej szczegółowo

INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH

INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH 1. Czym jest eksploracja danych Eksploracja danych definiowana jest jako zbiór technik odkrywania nietrywialnych zależności i schematów w dużych

Bardziej szczegółowo

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty

Bardziej szczegółowo

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu. SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu

Bardziej szczegółowo

Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji

Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji Konkurs z przedmiotu eksploracja i analiza danych: problem regresji i klasyfikacji Michał Witczak Data Mining 20 maja 2012 r. 1. Wstęp Dostarczone zostały nam 4 pliki, z których dwa stanowiły zbiory uczące

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Ćwiczenia lista zadań nr 7 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie

Bardziej szczegółowo

Diagramy ERD. Model struktury danych jest najczęściej tworzony z wykorzystaniem diagramów pojęciowych (konceptualnych). Najpopularniejszym

Diagramy ERD. Model struktury danych jest najczęściej tworzony z wykorzystaniem diagramów pojęciowych (konceptualnych). Najpopularniejszym Diagramy ERD. Model struktury danych jest najczęściej tworzony z wykorzystaniem diagramów pojęciowych (konceptualnych). Najpopularniejszym konceptualnym modelem danych jest tzw. model związków encji (ERM

Bardziej szczegółowo

Mail: Pokój 214, II piętro

Mail: Pokój 214, II piętro Wykład 2 Mail: agnieszka.nowak@us.edu.pl Pokój 214, II piętro http://zsi.tech.us.edu.pl/~nowak Predykcja zdolność do wykorzystania wiedzy zgromadzonej w systemie do przewidywania wartości dla nowych danych,

Bardziej szczegółowo

LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów

LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów Łukasz Piątek, Jerzy W. Grzymała-Busse Katedra Systemów Ekspertowych i Sztucznej Inteligencji, Wydział Informatyki

Bardziej szczegółowo

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski Systemy ekspertowe i ich zastosowania Katarzyna Karp Marek Grabowski Plan prezentacji Wstęp Własności systemów ekspertowych Rodzaje baz wiedzy Metody reprezentacji wiedzy Metody wnioskowania Języki do

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 3. SYSTEMY UCZĄCE SIĘ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska LITERATURA [Cic] * Cichosz P.: Systemy uczące się. WNT, 2003

Bardziej szczegółowo

Uczenie się maszyn. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki

Uczenie się maszyn. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Machine Learning (uczenie maszynowe, uczenie się maszyn, systemy uczące się) interdyscyplinarna nauka, której celem jest stworzenie

Bardziej szczegółowo

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe. zajecia.jakubw.pl/nai Literatura: S. Osowski, Sieci neuronowe w ujęciu algorytmicznym. WNT, Warszawa 997. PODSTAWOWE ZAGADNIENIA TECHNICZNE AI

Bardziej szczegółowo

Scoring kredytowy w pigułce

Scoring kredytowy w pigułce Analiza danych Data mining Sterowanie jakością Analityka przez Internet Scoring kredytowy w pigułce Mariola Kapla Biuro Informacji Kredytowej S.A. StatSoft Polska Sp. z o.o. ul. Kraszewskiego 36 30-110

Bardziej szczegółowo

Agnieszka Nowak Brzezińska

Agnieszka Nowak Brzezińska Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia

Bardziej szczegółowo

dr inż. Jacek Naruniec email: J.Naruniec@ire.pw.edu.pl

dr inż. Jacek Naruniec email: J.Naruniec@ire.pw.edu.pl dr inż. Jacek Naruniec email: J.Naruniec@ire.pw.edu.pl Coraz większa ilość danych obrazowych How much information, University of California Berkeley, 2002: przyrost zdjęć rentgenowskich to 17,2 PB rocznie

Bardziej szczegółowo

Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel

Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel według przewidywań internetowego magazynu ZDNET News z 8 lutego 2001 roku eksploracja danych (ang. data mining ) będzie jednym z najbardziej rewolucyjnych osiągnięć następnej dekady. Rzeczywiście MIT Technology

Bardziej szczegółowo

Inteligentne Multimedialne Systemy Uczące

Inteligentne Multimedialne Systemy Uczące Działanie realizowane w ramach projektu Absolwent informatyki lub matematyki specjalistą na rynku pracy Matematyka i informatyka może i trudne, ale nie nudne Inteligentne Multimedialne Systemy Uczące dr

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

w ekonomii, finansach i towaroznawstwie

w ekonomii, finansach i towaroznawstwie w ekonomii, finansach i towaroznawstwie spotykane określenia: zgłębianie danych, eksploracyjna analiza danych, przekopywanie danych, męczenie danych proces wykrywania zależności w zbiorach danych poprzez

Bardziej szczegółowo

Lektura obowiązkowa dla każdego, kto poważnie myśli o wykorzystaniu okazji, jakie niosą ze sobą wielkie zbiory danych.

Lektura obowiązkowa dla każdego, kto poważnie myśli o wykorzystaniu okazji, jakie niosą ze sobą wielkie zbiory danych. Wszystko co powinieneś wiedzieć o eksploracji danych i myśleniu w kategoriach analityki danych. Wyciągaj trafne wnioski! Lektura obowiązkowa dla każdego, kto poważnie myśli o wykorzystaniu okazji, jakie

Bardziej szczegółowo

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów Eksploracja danych Piotr Lipiński Informacje ogólne Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów UWAGA: prezentacja to nie

Bardziej szczegółowo

Analiza i wizualizacja danych Data analysis and visualization

Analiza i wizualizacja danych Data analysis and visualization KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L, Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której

Bardziej szczegółowo

Sieci Kohonena Grupowanie

Sieci Kohonena Grupowanie Sieci Kohonena Grupowanie http://zajecia.jakubw.pl/nai UCZENIE SIĘ BEZ NADZORU Załóżmy, że mamy za zadanie pogrupować następujące słowa: cup, roulette, unbelievable, cut, put, launderette, loveable Nie

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 2 Detekcja twarzy autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się algorytmem gradientu prostego

Bardziej szczegółowo

Data Mining Wykład 1. Wprowadzenie do Eksploracji Danych. Prowadzący. Dr inż. Jacek Lewandowski

Data Mining Wykład 1. Wprowadzenie do Eksploracji Danych. Prowadzący. Dr inż. Jacek Lewandowski Data Mining Wykład 1 Wprowadzenie do Eksploracji Danych Prowadzący Dr inż. Jacek Lewandowski Katedra Genetyki Wydział Biologii i Hodowli Zwierząt Uniwersytet Przyrodniczy we Wrocławiu ul. Kożuchowska 7,

Bardziej szczegółowo

Data Mining Wykład 6. Naiwny klasyfikator Bayes a Maszyna wektorów nośnych (SVM) Naiwny klasyfikator Bayesa.

Data Mining Wykład 6. Naiwny klasyfikator Bayes a Maszyna wektorów nośnych (SVM) Naiwny klasyfikator Bayesa. GLM (Generalized Linear Models) Data Mining Wykład 6 Naiwny klasyfikator Bayes a Maszyna wektorów nośnych (SVM) Naiwny klasyfikator Bayesa Naiwny klasyfikator Bayesa jest klasyfikatorem statystycznym -

Bardziej szczegółowo

Wprowadzenie do multimedialnych baz danych. Opracował: dr inż. Piotr Suchomski

Wprowadzenie do multimedialnych baz danych. Opracował: dr inż. Piotr Suchomski Wprowadzenie do multimedialnych baz danych Opracował: dr inż. Piotr Suchomski Wprowadzenie bazy danych Multimedialne bazy danych to takie bazy danych, w których danymi mogą być tekst, zdjęcia, grafika,

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 7 Eksploracja danych 09 stycznia 2013 Plan wykładu Co to jest eksploracja danych? 1 Co to jest eksploracja danych? 2 3 Definicja Eksploracja danych ED (Data mining) Metody wydobywania ukrytych informacji

Bardziej szczegółowo

Diagnostyka procesów przemysłowych Kod przedmiotu

Diagnostyka procesów przemysłowych Kod przedmiotu Diagnostyka procesów przemysłowych - opis przedmiotu Informacje ogólne Nazwa przedmiotu Diagnostyka procesów przemysłowych Kod przedmiotu 06.0-WE-AiRP-DPP Wydział Kierunek Wydział Informatyki, Elektrotechniki

Bardziej szczegółowo

Opis. Wymagania wstępne (tzw. sekwencyjny system zajęć i egzaminów) Liczba godzin zajęć dydaktycznych z podziałem na formy prowadzenia zajęć

Opis. Wymagania wstępne (tzw. sekwencyjny system zajęć i egzaminów) Liczba godzin zajęć dydaktycznych z podziałem na formy prowadzenia zajęć Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. nazwa SYLABUS A. Informacje ogólne Tę część wypełnia koordynator (w porozumieniu ze wszystkimi prowadzącymi dany przedmiot w jednostce)

Bardziej szczegółowo

Eksploracja danych (data mining)

Eksploracja danych (data mining) Eksploracja (data mining) Tadeusz Pankowski www.put.poznan.pl/~pankowsk Czym jest eksploracja? Eksploracja oznacza wydobywanie wiedzy z dużych zbiorów. Eksploracja badanie, przeszukiwanie; np. dziewiczych

Bardziej szczegółowo

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników

Bardziej szczegółowo

O badaniach nad SZTUCZNĄ INTELIGENCJĄ

O badaniach nad SZTUCZNĄ INTELIGENCJĄ O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia

Bardziej szczegółowo

System wizyjny OMRON Xpectia FZx

System wizyjny OMRON Xpectia FZx Ogólna charakterystyka systemu w wersji FZ3 w zależności od modelu można dołączyć od 1 do 4 kamer z interfejsem CameraLink kamery o rozdzielczościach od 300k do 5M pikseli możliwość integracji oświetlacza

Bardziej szczegółowo

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 2.12.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia Maszyn)

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Eksploracja danych Rok akademicki: 2030/2031 Kod: MIS-2-105-MT-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Informatyka Stosowana Specjalność: Modelowanie

Bardziej szczegółowo

Sylabus modułu kształcenia na studiach wyższych. Nazwa Wydziału. Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia

Sylabus modułu kształcenia na studiach wyższych. Nazwa Wydziału. Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Załącznik nr 4 do zarządzenia nr 12 Rektora UJ z 15 lutego 2012 r. Sylabus modułu kształcenia na studiach wyższych Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Wydział Matematyki

Bardziej szczegółowo

Prof. Stanisław Jankowski

Prof. Stanisław Jankowski Prof. Stanisław Jankowski Zakład Sztucznej Inteligencji Zespół Statystycznych Systemów Uczących się p. 228 sjank@ise.pw.edu.pl Zakres badań: Sztuczne sieci neuronowe Maszyny wektorów nośnych SVM Maszyny

Bardziej szczegółowo

Co to jest grupowanie

Co to jest grupowanie Grupowanie danych Co to jest grupowanie 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Szukanie grup, obszarów stanowiących lokalne gromady punktów Co to jest grupowanie

Bardziej szczegółowo

Metody Sztucznej Inteligencji II

Metody Sztucznej Inteligencji II 17 marca 2013 Neuron biologiczny Neuron Jest podstawowym budulcem układu nerwowego. Jest komórką, która jest w stanie odbierać i przekazywać sygnały elektryczne. Neuron działanie Jeżeli wartość sygnału

Bardziej szczegółowo

Bazy danych. Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wykład 3: Model związków encji.

Bazy danych. Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wykład 3: Model związków encji. Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Bazy danych Wykład 3: Model związków encji. dr inż. Magdalena Krakowiak makrakowiak@wi.zut.edu.pl Co to jest model związków encji? Model związków

Bardziej szczegółowo

Sztuczna Inteligencja Projekt

Sztuczna Inteligencja Projekt Sztuczna Inteligencja Projekt Temat: Algorytm LEM2 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm LEM 2. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu LEM 2 wygenerować

Bardziej szczegółowo

Podstawy sztucznej inteligencji

Podstawy sztucznej inteligencji wykład 7 Eksploracja danych 25 stycznia 2011 Plan wykładu Co to jest eksploracja danych? 1 Co to jest eksploracja danych? 2 3 Definicja Eksploracja danych ED (Data mining) Metody wydobywania ukrytych informacji

Bardziej szczegółowo

Hurtownie danych. Analiza zachowań użytkownika w Internecie. Ewa Kowalczuk, Piotr Śniegowski. Informatyka Wydział Informatyki Politechnika Poznańska

Hurtownie danych. Analiza zachowań użytkownika w Internecie. Ewa Kowalczuk, Piotr Śniegowski. Informatyka Wydział Informatyki Politechnika Poznańska Hurtownie danych Analiza zachowań użytkownika w Internecie Ewa Kowalczuk, Piotr Śniegowski Informatyka Wydział Informatyki Politechnika Poznańska 2 czerwca 2011 Wprowadzenie Jak zwiększyć zysk sklepu internetowego?

Bardziej szczegółowo

Drzewa decyzyjne. 1. Wprowadzenie.

Drzewa decyzyjne. 1. Wprowadzenie. Drzewa decyzyjne. 1. Wprowadzenie. Drzewa decyzyjne są graficzną metodą wspomagania procesu decyzyjnego. Jest to jedna z najczęściej wykorzystywanych technik analizy danych. Drzewo składają się z korzenia

Bardziej szczegółowo

Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych

Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych Inteligentne wydobywanie informacji z internetowych serwisów społecznościowych AUTOMATYKA INFORMATYKA Technologie Informacyjne Sieć Semantyczna Przetwarzanie Języka Naturalnego Internet Edytor Serii: Zdzisław

Bardziej szczegółowo

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,

Bardziej szczegółowo

1 Automaty niedeterministyczne

1 Automaty niedeterministyczne Szymon Toruńczyk 1 Automaty niedeterministyczne Automat niedeterministyczny A jest wyznaczony przez następujące składniki: Alfabet skończony A Zbiór stanów Q Zbiór stanów początkowych Q I Zbiór stanów

Bardziej szczegółowo

Proces odkrywania wiedzy z baz danych

Proces odkrywania wiedzy z baz danych Proces odkrywania wiedzy z baz danych Wydział Informatyki Politechnika Białostocka Marcin Czajkowski email: m.czajkowski@pb.edu.pl Świat pełen danych Świat pełen danych Możliwości analizowania i zrozumienia

Bardziej szczegółowo

Pomysł mechanizmu konfigurowania produktów opiera się na dwóch

Pomysł mechanizmu konfigurowania produktów opiera się na dwóch 1 Pomysł mechanizmu konfigurowania produktów opiera się na dwóch spostrzeżeniach: każdy model produktu jest opisany pewnym zestawem parametrów, to wartości tych parametrów decydują o tym, czy dany punkt

Bardziej szczegółowo

PODSTAWY INŻYNIERI WIEDZY

PODSTAWY INŻYNIERI WIEDZY Z1-PU7 WYDANIE N1 Strona 1 z 4 (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: PODSTAWY INŻYNIERI WIEDZY 2. Kod przedmiotu: PIW 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma

Bardziej szczegółowo

Klasyfikacja metodą Bayesa

Klasyfikacja metodą Bayesa Klasyfikacja metodą Bayesa Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski warunkowe i bezwarunkowe 1. Klasyfikacja Bayesowska jest klasyfikacją statystyczną. Pozwala przewidzieć prawdopodobieństwo

Bardziej szczegółowo

Metody wypełniania braków w danych ang. Missing values in data

Metody wypełniania braków w danych ang. Missing values in data Analiza danych wydobywanie wiedzy z danych III Metody wypełniania braków w danych ang. Missing values in data W rzeczywistych zbiorach danych dane są często nieczyste: - niekompletne (brakujące ważne atrybuty,

Bardziej szczegółowo

ZESPOŁY KLASYFIKATORÓW SVM DLA DANYCH NIEZBALAN-

ZESPOŁY KLASYFIKATORÓW SVM DLA DANYCH NIEZBALAN- Politechnika Wrocławska Wydział Informatyki i Zarządzania Instytut Informatyki Rozprawa doktorska ZESPOŁY KLASYFIKATORÓW SVM DLA DANYCH NIEZBALAN- SOWANYCH Maciej Zięba Promotor: prof. dr hab. inż. Jerzy

Bardziej szczegółowo

Data Mining z wykorzystaniem programu Rapid Miner

Data Mining z wykorzystaniem programu Rapid Miner Data Mining z wykorzystaniem programu Rapid Miner Michał Bereta www.michalbereta.pl Program Rapid Miner jest dostępny na stronie: http://rapid-i.com/ Korzystamy z bezpłatnej wersji RapidMiner Community

Bardziej szczegółowo

Metody zbiorów przybliżonych w uczeniu się podobieństwa z wielowymiarowych zbiorów danych

Metody zbiorów przybliżonych w uczeniu się podobieństwa z wielowymiarowych zbiorów danych Metody zbiorów przybliżonych w uczeniu się podobieństwa z wielowymiarowych zbiorów danych WMIM, Uniwersytet Warszawski ul. Banacha 2, 02-097 Warszawa, Polska andrzejanusz@gmail.com 13.06.2013 Dlaczego

Bardziej szczegółowo

Eksploracja danych a serwisy internetowe Przemysław KAZIENKO

Eksploracja danych a serwisy internetowe Przemysław KAZIENKO Eksploracja danych a serwisy internetowe Przemysław KAZIENKO Wydział Informatyki i Zarządzania Politechnika Wrocławska kazienko@pwr.wroc.pl Dlaczego eksploracja danych w serwisach internetowych? Kanały

Bardziej szczegółowo

Scoring w oparciu o Big Data. 8 kwietnia 2014 roku

Scoring w oparciu o Big Data. 8 kwietnia 2014 roku Scoring w oparciu o Big Data 8 kwietnia 2014 roku Od początków ludzkości do roku 2003 wygenerowano 5 eksabajtów informacji tyle samo ludzkość generuje dziś co dwa dni. - Eric Schmidt, Google CEO 2 Dlaczego

Bardziej szczegółowo

Data mininig i wielowymiarowa analiza danych zgromadzonych w systemach medycznych na potrzeby badań naukowych

Data mininig i wielowymiarowa analiza danych zgromadzonych w systemach medycznych na potrzeby badań naukowych Temat: Data mininig i wielowymiarowa analiza danych zgromadzonych w systemach medycznych na potrzeby badań naukowych Autorzy: Tomasz Małyszko, Edyta Łukasik 1. Definicja eksploracji danych Eksploracja

Bardziej szczegółowo

Implementacja wybranych algorytmów eksploracji danych na Oracle 10g

Implementacja wybranych algorytmów eksploracji danych na Oracle 10g Implementacja wybranych algorytmów eksploracji danych na Oracle 10g Sławomir Skowyra, Michał Rudowski Instytut Informatyki Wydziału Elektroniki i Technik Informacyjnych, Politechnika Warszawska S.Skowyra@stud.elka.pw.edu.pl,

Bardziej szczegółowo

Złożoność i zagadnienia implementacyjne. Wybierz najlepszy atrybut i ustaw jako test w korzeniu. Stwórz gałąź dla każdej wartości atrybutu.

Złożoność i zagadnienia implementacyjne. Wybierz najlepszy atrybut i ustaw jako test w korzeniu. Stwórz gałąź dla każdej wartości atrybutu. Konwersatorium Matematyczne Metody Ekonomii Narzędzia matematyczne w eksploracji danych Indukcja drzew decyzyjnych Wykład 3 - część 2 Marcin Szczuka http://www.mimuw.edu.pl/ szczuka/mme/ Plan wykładu Generowanie

Bardziej szczegółowo

Eksploracja danych w środowisku R

Eksploracja danych w środowisku R Eksploracja danych w środowisku R Moi drodzy, niniejszy konspekt nie omawia eksploracji danych samej w sobie. Nie dowiecie się tutaj o co chodzi w generowaniu drzew decyzyjnych czy grupowaniu danych. Te

Bardziej szczegółowo

Szczegółowy opis przedmiotu zamówienia

Szczegółowy opis przedmiotu zamówienia ZP/ITS/19/2013 SIWZ Załącznik nr 1.1 do Szczegółowy opis przedmiotu zamówienia Przedmiotem zamówienia jest: Przygotowanie zajęć dydaktycznych w postaci kursów e-learningowych przeznaczonych dla studentów

Bardziej szczegółowo

Przykładowa analiza danych

Przykładowa analiza danych Przykładowa analiza danych W analizie wykorzystano dane pochodzące z publicznego repozytorium ArrayExpress udostępnionego na stronach Europejskiego Instytutu Bioinformatyki (http://www.ebi.ac.uk/). Zbiór

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

ZASTOSOWANIE TECHNOLOGII WIRTUALNEJ RZECZYWISTOŚCI W PROJEKTOWANIU MASZYN

ZASTOSOWANIE TECHNOLOGII WIRTUALNEJ RZECZYWISTOŚCI W PROJEKTOWANIU MASZYN MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 37, s. 141-146, Gliwice 2009 ZASTOSOWANIE TECHNOLOGII WIRTUALNEJ RZECZYWISTOŚCI W PROJEKTOWANIU MASZYN KRZYSZTOF HERBUŚ, JERZY ŚWIDER Instytut Automatyzacji Procesów

Bardziej szczegółowo

Systemy ekspertowe : program PCShell

Systemy ekspertowe : program PCShell Instytut Informatyki Uniwersytetu Śląskiego lab 1 Opis sytemu ekspertowego Metody wnioskowania System PcShell Projekt System ekspertowy - system ekspertowy to system komputerowy zawierający w sobie wyspecjalizowaną

Bardziej szczegółowo

Wielowymiarowa Analiza Korespondencji. Wielowymiarowa Analiza Danych z wykorzystaniem pakietu SPSS. Joanna Ciecieląg, Marek Pęczkowski WNE UW

Wielowymiarowa Analiza Korespondencji. Wielowymiarowa Analiza Danych z wykorzystaniem pakietu SPSS. Joanna Ciecieląg, Marek Pęczkowski WNE UW Wielowymiarowa Analiza Korespondencji Wielowymiarowa Analiza Danych z wykorzystaniem pakietu SPSS Joanna Ciecieląg, Marek Pęczkowski WNE UW ANALIZA KORESPONDENCJI opisowa i eksploracyjna technika analizy

Bardziej szczegółowo

B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ;

B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ; Algorytm LEM1 Oznaczenia i definicje: U - uniwersum, tj. zbiór obiektów; A - zbiór atrybutów warunkowych; d - atrybut decyzyjny; IND(B) = {(x, y) U U : a B a(x) = a(y)} - relacja nierozróżnialności, tj.

Bardziej szczegółowo

Podstawowe pojęcia statystyczne

Podstawowe pojęcia statystyczne Podstawowe pojęcia statystyczne Istnieją trzy rodzaje kłamstwa: przepowiadanie pogody, statystyka i komunikat dyplomatyczny Jean Rigaux Co to jest statystyka? Nauka o metodach ilościowych badania zjawisk

Bardziej szczegółowo